
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Inter-
national License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified
the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of
this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

METHOD

Blindenbach et al. Genome Biology (2024) 25:314
https://doi.org/10.1186/s13059-024-03447-9

Genome Biology

SQUiD: ultra‑secure storage and analysis
of genetic data for the advancement
of precision medicine
Jacob Blindenbach1,2,3†, Jiayi Kang4†, Seungwan Hong2,3*†, Caline Karam3, Thomas Lehner3^ and
Gamze Gürsoy1,2,3*    

Abstract 

Cloud computing allows storing the ever-growing genotype-phenotype datasets
crucial for precision medicine. Due to the sensitive nature of this data and varied laws
and regulations, additional security measures are needed to ensure data privacy. We
develop SQUiD, a secure queryable database for storing and analyzing genotype-
phenotype data. SQUiD allows storage and secure querying of data in a low-security,
low-cost public cloud using homomorphic encryption in a multi-client setting. We
demonstrate SQUiD’s practical usability and scalability using synthetic and UK Biobank
data.

Background
Precision medicine aims to tailor medical care to the characteristics of an individual’s
unique genetic makeup, lifestyle, and environment. This approach has garnered consid-
erable attention worldwide due to its potential to enhance patient outcomes and miti-
gate healthcare expenses [1]. But several significant obstacles impede the realization of
the full potential of precision medicine. One such challenge is the need for extensive
and diverse patient genotype-phenotype datasets in order to advance the diagnosis and
treatment of future patients [2]. However, this need for large amounts of data is often
in conflict with the need to protect patient privacy [3]. This challenge is further com-
plicated by the heterogeneous regulatory landscape governing privacy protection, with
varying definitions and practices across different jurisdictions (e.g., General Data Pro-
tection Regulation [GDPR] in Europe vs. frameworks in USA) [4, 5]. Furthermore, indi-
vidual hospitals and institutions maintain their own policies due to the prevalence of
health data breaches and privacy attacks.

Genomic data plays a pivotal role in precision medicine research, enabling the
customization of medical care based on specific genetic variants, biomarkers, and

†Jacob Blindenbach, Jiayi
Kang and Seungwan Hong
contributed equally to this work.

^Thomas Lehner is deceased.

*Correspondence:
shong@nygenome.org; gamze.
gursoy@columbia.edu

1 Department of Computer
Science, Columbia University,
New York, USA
2 Department of Biomedical
Informatics, Columbia University,
New York, USA
3 New York Genome Center, New
York, USA
4 COSIC, KU Leuven, Leuven,
Belgium

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-024-03447-9&domain=pdf
http://orcid.org/0000-0002-1352-8686

Page 2 of 27Blindenbach et al. Genome Biology (2024) 25:314

inherited traits. Thus, there is a surge in data generation, which has challenged the
ability of local servers to accommodate the rapid growth of data size and increased
computational requirements [6]. Therefore, there is a pressing need and significant
push towards cloud computing. However, this exacerbates the concerns about the pri-
vacy and prohibitions on use of personal data due to local, global, and/or institutional
privacy policies. For example, with the introduction of the GDPR in Europe, the stor-
age of genomic and related data in the cloud has become more stringent with the
requirement of appropriate security measures in place such as encryption. Starting
from 2023, many states in the US (California, Connecticut, Colorado, Utah, and Vir-
ginia) are entering a new GDPR-like privacy era that will have similar requirements
about storing genomic and related data in the cloud [7]. Yet, the current state of pri-
vacy preservation through laws and institutional policies is fraught with instability
and unpredictability, which poses significant challenges to the research community.
If the data is kept in the encrypted form in cloud servers, then researchers, who are
approved for access, need to download large quantities of data locally and decrypt
them to perform analysis, which defeats the purpose of outsourcing the storage to
the cloud. This situation creates additional hurdles for scientists, especially when
attempting to combine multiple data sets to gain statistical power. Furthermore, it
creates significant delays in research and requires large amounts of resources, which
impedes the democratization of data access. As a result, advances in medicine will
significantly be impacted if new privacy-preserving frameworks that comply with
laws and policies are not developed and implemented.

Homomorphic encryption (HE) is one of the cryptographic tools that enables direct
computations of functions on encrypted data in the public cloud. Homomorphic
encryption has emerged as a useful approach to keep the data secure at rest, at transit,
and during analysis. But, this approach also has thus far presented severe bottlenecks in
its applicability, scalability, and performance [8, 9]. However, recent advances in algo-
rithm designs and computing power have enabled an increase in the use of homomor-
phic encryption in genomics. For example, it has been shown that privacy-enhancing
genome-wide association studies (GWAS) can be possible [10–13]. It has also been
shown that secure genotype imputation is feasible and scalable using homomorphic
encryption [14–16]. Homomorphic encryption was also used for genomic variant que-
rying [17], regression analysis for rare disease variants [18], and inference using genetic
variants in machine learning applications [19]. These methods have added tremendous
algorithmic advances to the field and paved the way for more practical privacy-pre-
serving analysis of genomes. However, their use in genotype-phenotype database set-
tings has been limited. This is primarily attributed to two factors. Firstly, homomorphic
encryption relies on public key cryptography, which is designed for client-server scenar-
ios where the client owns the dataset and delegates computation to the cloud. However,
in the context of genotype-phenotype databases, the data owner encrypts the data while
multiple researchers access and analyze it. Secondly, the computational burden associ-
ated with homomorphic encryption makes it infeasible for applications involving large
sample sizes. Both the storage size of encrypted data (i.e., ciphertexts) and the computa-
tion times for homomorphic encryption are several orders of magnitude greater than
those for the original plaintexts [20].

Page 3 of 27Blindenbach et al. Genome Biology (2024) 25:314 	

Here, we developed Secure Queriable Database (SQUiD), a scalable framework
designed to store and query genotype-phenotype databases in an ultra-secure cloud-
based setting using homomorphic encryption. In our approach, we incorporate several
key components: a ciphertext packing storage method to minimize the required stor-
age space for encrypted data, a set of optimizations we developed to reduce query pro-
cessing time, and an innovative cryptographic primitive (public key-switching) to enable
homomorphic encryption for multiple users. We demonstrate that SQUiD is capable of
efficiently executing various types of queries on large scale genotype-phenotype data-
sets, all the while maintaining the encryption of the data in the cloud. Specifically, it
can perform tasks such as counting the number of patients in a filtered cohort, com-
puting the minor allele frequency (MAF) of genetic variants in a cohort, calculating
polygenic risk scores (PRS) for patients, and generating a cohort of genetically similar
patients in remarkably short timeframes. Our findings highlight the potential of SQUiD
as a valuable tool for secure, timely, and efficient analysis and interpretation of genetic
and phenotypic data. At a time when data breaches are becoming increasingly common
in healthcare settings, where data is a commodity, SQUiD provides a key resource to
safeguarding patient privacy and enabling data providers to adhere to evolving laws and
regulations, while ensuring the democratization of data.

Results
Our conceptual framework allows ultra‑secure interactions with encrypted

genotype‑phenotype databases

Our conceptual framework is focused on solving real-world security challenges encoun-
tered in the storage and querying large-scale genotype-phenotype datasets. These chal-
lenges involve safeguarding the confidential information contained within such data
from third party cloud providers and outside adversaries. Our framework is based on
a scenario that involves three parties: the data owner, the researcher(s), and the public
cloud. The data owner, who in many cases could be an organization such as the National
Institutes of Health (NIH), possesses a vast amount of genotype-phenotype data that can
be used for various analyses. Due to the large size of this data and the limited comput-
ing power and resources, the data owner encrypts the data and stores it in the public
cloud. Their role is limited to authenticating clients who have permission to access the
encrypted data, and they do not participate in the computation phase. The client, typi-
cally a researcher, seeks to perform computations on the data to obtain results. How-
ever, due to the large size of the data and the limitations of their computing power, it
is not feasible for them to download, decrypt, and analyze the data locally. The client,
therefore, interacts with the encrypted data deposited to the cloud. An overview of each
party’s role in the architecture of SQUiD is visualized in Fig. 1.

The cloud server does not have knowledge of the information contained in the data
because all data stored in the public cloud is encrypted. Computations are performed
directly on this encrypted data without decryption using homomorphic encryption.
In homomorphic encryption [21–23], data, referred to as plaintext, is encrypted into
ciphertexts. Addition and multiplication can be performed on ciphertexts such that
two ciphertexts can be added or multiplied to produce a new ciphertext, which can be
decrypted to the sum or product of the corresponding plaintexts. In our scenario, the

Page 4 of 27Blindenbach et al. Genome Biology (2024) 25:314

complex functions behind our queries are sequences of homomorphic additions and
multiplications which the cloud server performs on the encrypted genotype-pheno-
type data. The outputs of these functions will remain encrypted and are only decrypted
after the outputs are sent back to the client. Operations on encrypted data are possible
because plaintexts and ciphertexts are expressed as polynomials in HE. The algebraic
structures of these polynomials are exploited to enable the computation on encrypted
data (see Additional file 1: Supplementary Material for more details). Importantly,
retrieving the plaintext polynomial from the ciphertext polynomials without the secret
key is extremely difficult. This difficulty is equivalent to the difficulty of solving the ring
learning with errors (RLWE) problem, which is known to be computationally hard under
suitable parameters [24].

Using homomorphic encryption with appropriate parameters ensures that the sensi-
tive information is protected while computations are being performed and the output
is provided to the client in the encrypted form. Figure 2 describes the four key compo-
nents of our framework: encrypted data storage, access authorization, query capabilities,
and the API for user-friendly interactions with the database. Unfortunately, this sce-
nario cannot be realized with traditional homomorphic encryption, which is based on a

Fig. 1  An architecture overview of SQUiD. Initially, the data owner uploads their encrypted genotype
and phenotype data to the public cloud. Within the cloud, only authorized researchers are permitted to
securely query the data. Authorization is granted through possession of a key-switching key, which is stored
in the key-switching store. When a researcher initiates a query on the databases, the database responds
by encrypting the query result under the data owner’s public key. Subsequently, the key-switching store
transforms this encrypted result to be under the querier’s key. The encrypted result is then sent back to the
querier, who can decrypt it using their own secret key

Page 5 of 27Blindenbach et al. Genome Biology (2024) 25:314 	

two-party (data owner and public cloud) system. In a traditional two-party system, the
data owner encrypts the data with their public key and decrypts the results with their
private key. Thus, the researcher cannot query and decrypt the results since they do not
(and should not) have access to the data owner’s private key. To overcome this challenge,
we adopted the established concept of the proxy re-encryption system [25] to develop
a theoretical realization and practical implementation of it within the framework of
homomorphic encryption. This adaptation, which we refer to as the public key-switch-
ing technique [26–28], enables secure multi-client queries on encrypted data without
the need for exchanging secret keys, specifically addressing the needs of our application
in the biomedical domain.

The public key-switching operation serves as a cryptographic primitive facilitating
the conversion of ciphertexts encrypted under one secret key to ciphertexts encrypted
under a second secret key, without the need to decrypt the ciphertexts to plaintexts or
possess access to the second secret key. Precisely, in key-switching, the original cipher-
text needs to be homomorphically decrypted within the ciphertext space of the second
secret key, which requires a key-switching key ksk, i.e., encryption of the first secret key
under the second secret key. Since the entire key-switching procedure together with
ksk occurs within an encrypted space, the underlying messages remain secure without

Fig. 2  A Data storage. The owner vertically packs their data to reduce storage costs, then encrypts their data
with a public key, and then uploads the data to the public cloud. B Authorization. The onboarding process
for a new researcher starts with the creation of their public and private key. The researcher sends their public
key to the data owner for authorization. The owner authorizes the researcher by creating a key-switching
key to switch the encryption of data to the researcher’s key and uploading this key to the key-switching key
store in the public cloud. The data owner can revoke a researcher’s access by removing the key-switching
key from the store. C Query. An authorized researcher can submit one of four queries to the public cloud,
which performs the necessary operations homomorphically on encrypted data under the data owner’s key.
The result is then re-encrypted under the researcher’s public key and sent back for decryption. D API. We
created a command-line API for researchers to use SQUiD easily. It generates a public and private key for the
researcher, sends the public key to the data owner for authorization, sends queries to the server, and decrypts
any encrypted results received via email or through a returned file

Page 6 of 27Blindenbach et al. Genome Biology (2024) 25:314

knowledge of either the first or the second secret key. Moreover, in public key-switch-
ing, ksk is generated by encrypting the first secret key with a public key, which does not
require knowledge of the second secret key. In our scenario, this means the data owner
can use their secret key for this operation without needing to access any of the clients’
secret keys. This capability holds immense value in establishing secure interactions with
an encrypted database. For example, in SQUiD, the encrypted database can compute a
researcher’s query under the encryption of the owner’s key, convert the computed result
from an encryption under the owner’s key to under the public key of the researcher, and
send this encrypted result to the researcher. Importantly, this conversion takes place
without the need to decrypt the query result or disclose any information about it to the
cloud. The researcher can effectuate this conversion by solely providing their public key,
thereby circumventing any security risks associated with sharing their secret key.

When granting access to a new researcher, both the data owner and the researcher
collaborate to create a public key-switching key, which is subsequently added to the key-
switching store in the public cloud (Fig. 2B). The key-switching store offers two signifi-
cant advantages. Firstly, it allows the data owner to remain offline during any query, as
the researcher exclusively interacts with the public cloud where the pre-calculated and
stored public key-switching keys reside. Secondly, the data owner retains control over
data access by managing the inclusion or exclusion of researchers’ public key-switch-
ing keys within the store, thus ensuring the ability to govern data access. We show that
performance overhead from generating a key-switching key and key-switching a cipher-
text under the encryption of one key to another to be less than a second (Additional
file 1: Fig. S1). The public key-switching key of each authorized researcher is stored in a
dedicated key-switching store that dynamically expands to accommodate the number of
authorized researchers. We show that the extra storage required for the key-switching
store is minimal, around 55 MB per researcher (see Additional file 1: Fig. S2 and Addi-
tional file 1: Supplementary Material for an explanation why it is larger than a regular
key storage).

Vertical packing allows efficient storage of encrypted large genotype‑phenotype

databases

We designed SQUiD to handle sensitive genotype-phenotype data from a large number
of patients. SQUiD is specifically tailored to ingest data that has already undergone qual-
ity control. Here, we represent the data as a table with columns for basic attributes like
age, sex, gender, etc.; genotypes for single-nucleotide polymorphisms (SNPs); and the
phenotype or disease status of the patients, and rows for each patient in the database
(Fig. 2A). While each entry in the table needs to be an integer for the homomorphic
encryption libraries we used, continuous phenotypes can be discretized into integers
via scaling (see Additional file 1: Supplementary Material for more details). The encryp-
tion of this data introduces additional storage requirements compared to its original
unencrypted form. Consequently, the storage expenses associated with storing large
genotype-phenotype databases in their encrypted state can be substantial. In order to
optimize storage within the SQUiD framework, we adopt a vertical packing approach for
our data organization (see the “Methods” section). This method involves storing the gen-
otypes of multiple patients for a single SNP within a single ciphertext. Vertical packing

Page 7 of 27Blindenbach et al. Genome Biology (2024) 25:314 	

in homomorphic encryption is a method where multiple pieces of data are combined
into a single, larger unit before encryption. This allows multiple calculations to be per-
formed simultaneously on all the packed data within one operation, rather than process-
ing each piece of data individually in a single instruction, multiple data (SIMD) fashion
(see the “Methods” section for details) [29]. By vertically packing our data (Fig. 2A), we
effectively reduce the number of ciphertexts necessary to accommodate a substantial
volume of data, thereby minimizing the associated storage costs. Such packing still ena-
bles homomorphic updates (addition of new patients/SNPs/attributes) to the encrypted
database without the need for decryption (see the “Methods” section for details).

We benchmarked the storage requirements of SQUiD on four different types/num-
bers of SNPs: ClinVar SNPs, Illumina Human1M-Duo v3.0 DNA Analysis BeadChip
SNPs, Whole Exome Sequencing (WES) SNPs, and Whole Genome Sequencing (WGS)
SNPs. These SNPs can be stored either at a per-chromosome level or genome-wide in
SQUiD. Clinvar contains approximately 70,000 SNPs, and Illumina BeadChip arrays
contain approximately 1,072,820 SNPs. We estimated that around 8.2 million and 84
million SNPs would be observed in exomes and whole genomes at a population level,
respectively, by using the data from 1000 Genomes Project [30]. We have benchmarked
the packed storage of SQUiD against an unpacked homomorphic encryption storage,
a storage encrypted with the industry standard AES-128-CBC, and a plaintext stor-
age that stores SNPs as single bytes for the various SNP sets (Fig. 3). We found that
the storage cost for SQUiD is 49,960x better than the unpacked homomorphic storage
cost (Fig. 3). This efficiency is achieved because a single packed ciphertext in SQUiD
can store data for up to 49,960 patients, whereas an unpacked ciphertext can only store
data for one. Furthermore, vertical packing reduces the time for encryption by 49,960
fold compared to unpacked homomorphic encryption as fewer ciphertexts need to be

Fig. 3  Plots showing the storage space required to store the ClinVar, Illumina Beadchip, WES, and WGS SNP
genotypes with different schemes. The number of SNPs for WES and WGS is approximated using the 1000
Genomes Project

Page 8 of 27Blindenbach et al. Genome Biology (2024) 25:314

encrypted (Additional file 1: Fig. S3). Vertical packing also improves query performance
(Additional file 1: Fig. S4), because HE operations on ciphertexts compute these opera-
tions pairwise (i.e., SIMD-like) on the vertically packed data. The query performance of
the unpacked solution for the count, MAF, PRS, and similarity queries quickly becomes
impractical and is outperformed by the packed solution in databases with as few as 10
patients for the count and MAF queries and just 1 patient for the PRS and similarity
queries (Additional file 1: Fig. S4).

Enabling secure, scalable, and fast analysis of genotypes and phenotypes

We have devised four encrypted query functionalities within the SQUiD framework.
This modular design allows for seamless implementation of additional functionalities
to accommodate diverse analysis requirements. Our queries include count, MAF, PRS,
and similarity. Figure 2C depicts how querying works under the public key-switching
framework.

Count queries within the SQUiD framework return the number of patients satisfying
specific filters or equality checks. For example, a count query could count the number
of patients with type-2 diabetes (T2D), whose SNP on gene TCF7L2 has a heterozygous
alternative allele. MAF queries are employed to compute the MAF for a given target
SNP within a filtered patient cohort. For instance, SQUiD can compute two MAF que-
ries: one for a target SNP on the TCF7L2 gene within a cohort of patients with T2D and
another within a cohort of patients without T2D to study correlations between SNPs
on the TCF7L2 gene and T2D. We can further add many different filters to build the
cohort such as constraining it to patients with homozygous SNPs on a gene of interest.
PRS queries involve the calculation and return of the PRS for all patients given a list of
GWAS SNPs and their coefficients. PRS queries require only the coefficients and SNPs
to be supplied post training such as those found on the PGS catalog [31]. Finally, similar-
ity queries take a target patient’s encrypted genotype as input, build a cohort of geneti-
cally similar patients in the database through a scoring function like the squared L2
-norm, and output the number of similar patients with and without a particular disease
of interest (see the “Methods” section and Additional file 1: Supplementary Material). To
evaluate the performance of each query, we conducted benchmarking against a plain-
text implementation. The plaintext implementation keeps the genotype-phenotype data
encrypted at rest (as mandated by the policies) and decrypts the necessary components
of the data to compute the query in plaintext, while SQUiD keeps the data encrypted
both at rest and during computation, enabling much stronger security as the data no
longer has visibility to the computing party. This plaintext implementation models the
current data access guidelines set by initiatives such as the dbGaP and UK Biobank
where researchers download encrypted data, decrypt the data locally, and then analyze
the data in plaintext [32].

We implemented SQUiD using the HE library, HElib [33], and benchmarked SQUiD
on an n2-standard-64 Google Cloud instance with an Intel Xeon Gold 6268 processor
running at 2.8 GHz and 256 GB of memory (see Additional file 1: Supplementary Mate-
rial for more details on the experimental setup and HE parameters). On a dataset with
499,600 patients, SQUiD can perform a count query with 2 filters in 4 min (0.004 s in
plaintext), a MAF query with 2 filters in 5 min (0.004 s in plaintext), a PRS query with

Page 9 of 27Blindenbach et al. Genome Biology (2024) 25:314 	

1024 effect SNPs in 2 min (0.59 s in plaintext), and a similarity query with 1024 SNPs in
10 h (2.7 s in plaintext) (Fig. 4).

We investigated the overhead of the HE library used in SQUiD and the overhead of
the algorithms developed in SQUiD by comparing the query times against a solution
that is a direct translation of SQUID algorithms without using the HE library (denoted
as “SQUiD without HE”). SQUiD without HE computes the plaintext versions of the
SQUiD queries by converting the HE library functions to their plaintext counterparts
and then using these functions in the same way that SQUiD does. We found that the
SQUiD without HE solution has a 20x overhead for a count and MAF queries with 2
filters, 2.5x overhead for a PRS query with 1024 effect SNPs (k), and a 180x overhead for
a similarity query with 1024 SNPs compared to the plaintext solution (Additional file 1:
Fig. S5).

We also show that our queries are highly parallelizable because of their linear struc-
ture. Each query involves computing a filter, a linear combination, or an L2 similarity
for a set of SNPs across patients. Since these operations are performed for each patient,
SQUiD achieves parallelism by chunking the database rows and processing these chunks
concurrently. Our benchmarking in a multi-threaded environment shows that query
performance scales linearly with the number of cores used (Fig. 5). On large databases
with millions of patients, this scaling ensures reasonable query performance. To demon-
strate this, we also ran each query with 50 threads on a database with 9,992,000 patients
and found that a count query with 2 filters took 3 min, a MAF query with 2 filters took
4 min, a PRS query with 1024 effect SNPs took 5 min, and a similarity query with 1024
SNPs took 4 h (Additional file 1: Fig. S6).

Our results show that all the functionalities implemented in SQUiD exhibit linear
scaling relative to the size of their inputs. Specifically, the count and MAF queries
scale linearly with the number of filters with a slope of 0.62, the PRS query scales lin-
early with the number of SNPs with a slope of 0.001, and the similarity query scales
linearly with the number of SNPs given for the target patient with a slope of 0.068

Fig. 4  A, B, C, D For each query, the plots on the right show the query time by varying the number of
filters for the count and MAF query, by varying the number of SNPs and effect sizes (k) for the PRS query,
and by varying the number of SNPs for the similarity query. The query time for SQUiD and the query time
of a plaintext solution are shown for comparison. The plaintext solution works on a database encrypted
with AES. For each plaintext query, the necessary components for the query are decrypted and then
computed on. A Count query. The count query returns the number of patients that pass a given filter
in the query (patients who pass the filter are highlighted in green, with darker green cells indicating
passing a condition). A black line of best fit for a count query with 2 filters is given as the equation
time (s) = 0.00025(# of patients)+ 82.71 . Due to the strict linear scaling, the performance of our query can
easily be interpolated by this line of best fit. B MAF Query. The MAF query creates a filtered cohort of patients
(patients who pass the filter are highlighted in green, with darker green cells indicating passing a condition)
and computes the MAF of a target SNP for that cohort (purple SNPs). A black line of best fit for a MAF query
with 2 filters is given as time (s) = 0.00025(# of patients)+ 170 . C PRS query. The PRS query returns the
PRS score of all patients for a pre-determined PRS SNP set and their effect sizes. A black line of best fit for a
prs query with 1024 effect SNPs is given as time (s) = 0.00019(# of patients)+ 2.6 . D Similarity query. The
similarity query returns the number of patients with and without a disease from a cohort of patients similar
to a target patient (patients highlighted in green). The target patient’s genome is encrypted with the owner’s
public key when it is sent to the public cloud. A black line of best fit for a similarity query with 1024 SNPs is
given as time (s) = 0.073(# of patients)+ 1800

(See figure on next page.)

Page 10 of 27Blindenbach et al. Genome Biology (2024) 25:314

Fig. 4  (See legend on previous page.)

Page 11 of 27Blindenbach et al. Genome Biology (2024) 25:314 	

(Fig. 4). Our slopes consistently indicate a slow growth in runtime. Notably, the runt-
ime of all protocols is proportional to the number of patients in the database and
independent of the total number of SNPs in the database (Additional file 1: Fig. S7).
A plaintext implementation of our protocols would also scale linearly with the num-
ber of patients in the database and the number of filters and SNPs involved in the
query. Thus, SQUiD achieves optimal linear scaling as expected from a plaintext
implementation, which signifies its ability to efficiently adapt to larger datasets in the
future. Furthermore, with the expected decrease in the price of cloud computing in
the future, the steady runtime observed for all queries ensures that increasing the size
of the databases beyond the limits benchmarked in this study will yield steady perfor-
mance outcomes, enabling real-world applications of SQUiD with biobank-scale data.
We also show that the SQUiD’s communication cost for all queries except PRS query
is constant regardless of the number of patients in the database while communication
cost increases with the number of patients for all query types in plaintext (Additional
file 1: Fig. S8 and S9). Overall, the communication is minimal. Comparable to an ins-
tagram post which has a maximum size of 4.3 MB (1080 by 1350 pixels) [34], most of
our queries use less than 50 MB on databases with 100,000 patients.

Fig. 5  Plots of count, MAF, PRS, and similarity query time by the number filters, effect SNPs (k), and SNPs
varying the number of threads. We benchmarked the time for each query on a database with 49,960 patients
using 2, 4, 8, and 16 filters for the count and MAF queries, and 1,024, 4,096, and 16,384 SNPs for the PRS and
similarity queries

Page 12 of 27Blindenbach et al. Genome Biology (2024) 25:314

We also developed an API and a command line interface (CLI) to facilitate interaction
with SQUiD, thereby enhancing its usability for researchers (Additional file 1: Fig. S10).
The API and CLI enable researchers to execute various queries and perform essential
functions through simple commands. For instance, researchers can generate private and
public keys required for encryption and authorization, send the public key to the data
owner, execute all desired queries (See Additional file 1: Table S2 for query parameters),
and decrypt the returned query results. The API simplifies the deployment process for
researchers who are not experts in privacy and security when utilizing SQUiD.

SQUiD can reproduce known genotype‑phenotype relationships in UK Biobank

We studied the relationship between patients with T2D and a control group in the UK
Biobank dataset to assess the accuracy of the MAF and count queries in SQUiD. Firstly,
we calculated the MAFs for the top five SNPs with the largest difference between T2D
patients and the control group patients (Fig. 6A). We compared the MAFs computed by
SQUiD with the MAFs computed in plaintext to show there is no difference between
them. Secondly, for these same five SNPs, we computed a chi-square statistic by using
the allele counts for the control and case group (T2D in our case) [12]. We used the
count query in SQUiD to get the allele counts and then computed the chi-square sta-
tistic in plaintext. The chi-square scores obtained from SQUiD queries are identical to
the plaintext computation results (Fig. 6B). Note that SQUiD does not directly execute
GWAS, but it has the capability to generate cohorts with specific attributes. We have
shown that it can create accurate cohorts that will result in accurate GWAS (Fig. 6).

We further evaluated the accuracy of SQUiD by replicating the sparse PRS calculations
for standing height and T2D performed in the UK Biobank PRS study [35] using both
plaintext calculations and the SQUiD PRS query. The standing height and T2D PRS use
51,209 and 183,830 SNPs, respectively. They are the traits with the most number of SNPs
involved in PRS calculations in the UK Biobank. We performed these calculations for
20,000 randomly selected patients in the UK Biobank. Our analysis revealed no observ-
able difference in the PRS distribution and scores between plaintext and SQUiD queries
(Fig. 7). Notably, the sole discrepancy between the calculations arose from a marginal
loss in precision. To accommodate the requirements of using integers in SNP effect sizes
in SQUiD PRS queries, the effect sizes were multiplied by 1000 and converted to inte-
gers. However, the resulting precision loss was minimal (Fig. 7B, C).

Discussion
We introduce SQUiD, a novel, secure, and user-friendly queryable genotype-phenotype
database implemented using homomorphic encryption. We envision SQUiD as a valu-
able tool for data owners, including hospitals, non-profit academic research institutions,
and government health agencies, offering them a secure means to store genotype-phe-
notype data in the cloud while enabling authorized researchers to securely analyze this
data. We propose that our system has the potential to replace existing genotype-phe-
notype databases, delivering enhanced security measures without compromising func-
tionality. By employing homomorphic encryption, SQUiD offers a robust, scalable, and
practical solution to mitigate privacy risks associated with sensitive genetic and phe-
notypic data. We demonstrate this by showing that SQUiD can scale with increasing

Page 13 of 27Blindenbach et al. Genome Biology (2024) 25:314 	

Fi
g.

 6
 A

 H
is

to
gr

am
s

of
 th

e
M

A
Fs

 o
f S

N
Ps

 e
xh

ib
iti

ng
 th

e
m

os
t s

ub
st

an
tia

l d
iff

er
en

ce
 b

et
w

ee
n

co
nt

ro
l a

nd
 T

2D
 p

at
ie

nt
 g

ro
up

s.
Th

e
M

A
Fs

 w
er

e
ca

lc
ul

at
ed

 w
ith

 S
Q

U
iD

 (o
ra

ng
e)

, a
nd

 in
 p

la
in

te
xt

(b

lu
e)

. B
 P

lo
t o

f -
lo

g(
p-

va
lu

e)
 fo

r t
he

 S
N

Ps
 in

 A
 

Page 14 of 27Blindenbach et al. Genome Biology (2024) 25:314

numbers of patients and SNPs in a genotype-phenotype database, by performing a sim-
ple study on UKBB data, as well as by replicating PRS calculations in UKBB [35]. All
our query protocols (count query, MAF query, PRS query, and similarity query) and
encryption protocols (setup of the database) were run on single-threads unless other-
wise indicated.

SQUiD leverages homomorphic encryption, which, to date, presents three key chal-
lenges. Firstly, traditional homomorphic encryption was designed for a two-party set-
ting involving a server and a client. Secondly, it is known to incur a high storage cost.
Lastly, analysis with homomorphic encryption tends to be slow. To overcome the first
challenge, we adopted the established concept of the proxy re-encryption system [25]
and adapted it to develop a theoretical and practical implementation within the frame-
work of homomorphic encryption. This adaptation, which we refer to as the public key-
switching technique, enables secure multi-client queries on encrypted data, specifically
addressing the needs of our application in the biomedical domain.

Furthermore, we demonstrate a significant improvement in storage efficiency through
the application of a well-known vertical packing storage method, achieving a storage
enhancement of 49,960 times compared to a naive homomorphic encryption solution.
While storing SNP genotypes using homomorphic encryption increases storage costs
relative to state-of-the-art encryption methods like AES, this approach is indispensable
as homomorphic encryption allows execution of functions on encrypted data. While
our queries demonstrate slower performance compared to plaintext solutions, we con-
sider the trade-off between security and performance to be within acceptable limits.
Additionally, implementing multi-threading significantly enhances performance. This

Fig. 7  A Boxplots of the PRS score distributions of UK Biobank patients for standing height and type
2 diabetes (T2D) calculated with SQUiD (orange) vs plaintext (blue). B A scatter plot of the height PRS
calculated by SQUiD vs. plaintext, where each point represents a patient. The black line is a line of best fit with
an R2 of 0.9999. C The same plot as B for T2D with an R2 value of 0.9985

Page 15 of 27Blindenbach et al. Genome Biology (2024) 25:314 	

performance overhead is unlikely to significantly impact the usability and utility of the
framework for researchers. This is because the alternative is to download a large data-
base and analyze the data locally, which is a much more time-consuming and resource-
intensive process. Therefore, we believe that our framework offers an optimal balance of
security and performance.

Although encrypted database systems do exist, to the best of our knowledge, none of
them offer the same level of security guarantees and functionality as SQUiD. A devel-
oped secure database framework named CryptDB [36] offers efficient secure data stor-
age and query performance. However, it does not offer the functionalities provided by
SQUiD for two main reasons. Firstly, this framework is unable to compute the same
set of queries as SQUiD. For instance, CryptDB lacks the ability to add and multiply
encrypted database items, a necessary requirement for computing the linear combina-
tions in PRS queries. Secondly, and more critically, CryptDB exhibits significant infor-
mation leakage during equality checks used in the filtering process in count and MAF
queries. Specifically, CryptDB exposes the count of unique items within the columns
used for the equality checks. For genotype-phenotype databases that store SNPs with
just three possible genotypes with known allele frequencies, CryptDB would expose the
patients with the same genotypes for each SNP. This information could be combined
with the known and well-studied population frequencies of each SNP to devise a simple
attack that reconstructs the genotype values for each patient in the database, resulting in
a complete breach of security. Furthermore, while databases that keep data encrypted at
rest with AES can answer the same queries as SQUiD, they cannot perform these que-
ries as securely as SQUiD does. For any query, these databases must first decrypt the
relevant data to compute the query, exposing the data to potential attacks. In contrast,
SQUiD can perform all queries without the need for decryption.

Privacy-preserving MAF calculations using homomorphic encryption were proposed
before [37]. Notably, SQUiD’s MAF query differs from this approach as it computes the
MAF within a filtered patient cohort, where the filtering is done via protocols developed
in this work. For a detailed mathematical exposition of these distinctions, refer to Addi-
tional file 1: Supplementary Material.

We compared our patient similarity queries to existing private patient similarity que-
ries (SPQ). Many existing SPQ protocols such as Wang et al. [18] privately compute
patient similarity under the secure multiparty computation security assumptions, (i.e.,
non-colluding parties). Since SQUiD employs homomorphic encryption, no assump-
tions about collusion between parties are necessary. Additionally, our query process
involves a single round of communication, with the querying researcher sending a query
to the cloud and receiving a prompt response. In contrast, the protocol outlined in [18]
necessitates an interactive protocol with multiple rounds.

We also empirically compared SQUiD to another study [38] due to the similar secu-
rity settings. This study proposes a partial homomorphic encryption algorithm that
supports only ciphertext addition and scalar multiplication operations for computing
patient similarity using a squared L2-norm. We implemented the euclidean distance
(equivalent to the squared L2-norm protocol) from the study [38] to the best of our
understanding for comparison purposes. Additional file 1: Fig. S11 shows that SQUiD

Page 16 of 27Blindenbach et al. Genome Biology (2024) 25:314

can compute the squared L2-norm faster for larger datasets with an approximately 2x
speed up for datasets with 49,960 patients.

We envision three use cases for this framework: (1) funding agencies such as NIH
can employ this framework to disseminate insights derived from the data currently
available through the NIMH Data Archive (NDA) or Database of Genotypes and Phe-
notypes (dbGAP), (2) multi-site consortia can employ this framework to disseminate
data to their members while keeping the data secure in cloud storage, (3) learning
health systems can employ this framework to disseminate data to their researchers
while keeping the data secure in cloud storage. Our secure framework is designed to
enable users to form specific patient cohorts based on desired characteristics. Within
this system, users can also determine the distribution of PRS for a particular disease
across various patient populations. For example, one can explore the PRS distribution
for schizophrenia among patients diagnosed with bipolar disorder. Additionally, the
framework allows for the analysis of disease outcomes in patients who share genetic
similarities with a specific patient of interest, facilitating more personalized and tar-
geted approaches to healthcare and research.

We designed SQUiD with ease of use in mind for both researchers and data owners.
Data owners are only required to provide a VCF file for the genotypes and a CSV file for
the phenotype data. SQUiD then handles the packing, encryption, and uploading of this
data to a public cloud platform. The SQUiD codebase includes a cloud-deployable API
framework, allowing researchers to query the data through API calls seamlessly.

SQUiD’s design is scalable to support multiple data owners. In a multi-owner sys-
tem, each data owner independently prepares, encrypts, and uploads their data to the
public cloud. Each data owner’s information is stored in a separate encrypted data-
base along with a corresponding key store. When a researcher wishes to query the
data, they send their public key to each data owner. The data owners then generate a
public key-switching key using their secret key and store this in their key-switching
store. The researcher’s query is processed in the public cloud, where it is evaluated
across the encrypted databases. The results are key-switched using the respective
data owner’s key-switching store, ensuring that the final query results are encrypted
under the researcher’s public key. These results are aggregated and sent back to the
researcher, who can then decrypt them to obtain the final output.

This multi-owner implementation introduces additional storage, as the public cloud
must store multiple key-switching stores for each data owner. It also needs to main-
tain evaluation keys (relinearization keys, rotation keys, and bootstrapping keys) for
each data owner. Despite this, the process ensures the privacy of each data owner is
maintained, and the researcher can securely access aggregated results without com-
promising individual data security. There are also approaches that do not require
multiple evaluation keys for each owner [39], however, they are not tailored to the
specific needs of genotype-phenotype data.

SQUiD can handle missing data. For count and MAF queries, SQUiD defaults to
excluding patients with missing values from the cohort being analyzed. For the PRS
and similarity queries, any column with missing SNPs will be excluded from the PRS
and similarity query calculation.

Page 17 of 27Blindenbach et al. Genome Biology (2024) 25:314 	

Conclusions
SQUiD presents an innovative and impactful solution for a world grappling with escalat-
ing concerns surrounding security and privacy of genetic and clinical data. By circum-
venting the challenges posed by the ever-changing, heterogeneous landscape of data
protection laws, SQUiD offers a robust framework to safeguard sensitive information.
Moreover, we firmly believe that SQUiD has the potential to enhance patient trust by
ensuring the security and controlled utilization of their data for specific research pur-
poses and thus has the potential to increase participation in genetic research. Lastly,
although this study focused on genotype-phenotype analyses for proof of principle,
SQUiD’s modular design allows for the integration of other discrete data modalities and
analytic approaches, as the need arises. This adaptability will be critical at a time when
precision medicine research is rapidly expanding to encompass more complex molecular
and clinical datasets.

Methods
Security and threat models

Our security assumption is based on the current data-sharing policies within many pub-
lic and private entities, that is, the data owner and authorized researchers are mutually
trusted. Thus, authorized researchers are allowed to query the genotype-phenotype data
that do not threaten the confidentiality of patients according to the data use agreements.
The inherent data leakage from query results and potential inference attacks from
authorized researchers are therefore not considered.

Meanwhile, genotypes and phenotypes as well as a subset of the queries are protected
from the public cloud and attackers. More precisely, we consider the following three
threat models for database management [40, 41]:

–	 Snapshot attackers that obtain a snapshot of the database
–	 Persistent passive attackers that compromise the cloud server to obtain not only the

database but also queries and all server’s operations
–	 Active attackers that fully compromise the server to deviate from pre-designed pro-

tocols for queries

In our SQUiD construction, snapshot attackers receive ciphertexts of the Braker-
ski-Gentry-Vaikuntanathan (BGV) homomorphic encryption scheme. We use the
security level estimator from HElib [33, 42] to choose BGV parameters that provide a
128-bit security level against known attacks. Consequently, the security towards snap-
shot attackers inherits from BGV’s IND-CPA security, i.e., the ciphertexts are almost
indistinguishable from random characters.

For persistent passive attackers, there are many ways that querying encrypted data-
bases can result in private information leakage [43–46]. Most prominent ones include
leakage through (1) access pattern, which determines if certain records are consist-
ently accessed, and (2) search pattern, which indicates if and when an encrypted query
is repeated. Many cryptosystems, including property-preserving encryption (PPE) [47,
48] and searchable encryption (SE) [49, 50], fail to protect against these types of infor-
mation leaks. This is primarily due to their inherent functionality, which inadvertently

Page 18 of 27Blindenbach et al. Genome Biology (2024) 25:314

discloses properties of datasets, thereby compromising privacy. However, homomorphic
encryption schemes such as BGV provide a solution that does not leak access and search
patterns [51]. Using HE to encrypt databases propels algorithms that have to touch all
the relevant records in the dataset for a single query. For example, to find out whether
an encrypted input is in the encrypted database, the input needs to be compared with
every single encrypted value in the database homomorphically. This prevents access pat-
tern leakages since the access pattern remains uniform for all queries. In addition, search
pattern leakages are prevented due to the IND-CPA security under carefully selected
parameters, since encrypted queries are indistinguishable from one another, regardless
of their contents [51].

It is worth mentioning that persistent passive attackers do not learn additional infor-
mation about the database from knowledge of the server’s computation patterns. Pre-
cisely, when an authorized researcher sends a query f, the server performs a series of
operations on the encrypted database Enc(m) to obtain Enc(f (m)) . The function f is in
plaintext for Count, MAF and PRS queries and contains ciphertexts for similarity que-
ries. In all these cases, the computation pattern for the server is predefined and contains
operations such as homomorphic additions, multiplications, and key switching. As such,
inference attacks from persistent passive attackers are also prevented, as only computa-
tional patterns of different functions are revealed but not any computation result f(m).

While the problem of defending against active attackers is challenging and still
unsolved [40, 52], our SQUiD construction provides reasonable mitigation towards
active attackers. Namely, active attackers can deviate from pre-determined operations
in SQUiD and therefore send wrong computation results to authorized researchers, but
they can not learn information about the database.

Homomorphic encryption

Encryption is a procedure that maps the plaintext data into its ciphertext, such that
the plaintext can not be deduced from the ciphertext without knowing the secret key.
Homomorphic encryption is a class of encryption schemes with an additional property:
computations can be performed over ciphertexts without knowing the secret key.

Figure 8 visualizes this property in a commutative diagram, which enables secure com-
putation outsourcing.

To compute a function f on plaintexts m1, . . . ,mt without revealing them, plaintexts
are encrypted and corresponding ciphertexts Enc(m1), . . . ,Enc(mt) are sent to the
public cloud. Then, a function f̃  , which corresponds to the HE-friendly version of the
desired function f, is evaluated among the ciphertexts homomorphically. As a result, a
ciphertext of f (m1, . . . ,mt) is derived, which contains the evaluation result equivalent

Fig. 8  The homomorphic evaluation of a function f on ciphertexts

Page 19 of 27Blindenbach et al. Genome Biology (2024) 25:314 	

to that of a plain evaluation. Therefore, the decryption of the final ciphertext outputs the
desired evaluation result.

HE ciphertexts contain a noise component, whose value grows with homomorphic
operations. This is controlled by pre-fixed HE parameters, which is also used to set a
noise budget. If the number of operations in an algorithm is too large such that the noise
consumption exceeds the budget, then the result can no longer be decrypted correctly.
To avoid this, a bootstrapping operation is introduced to refresh the ciphertexts, ena-
bling the fully homomorphic encryption (FHE) schemes that support evaluations of
arbitrary circuits for different operations including multiplications and additions (i.e.,
arbitrary f) [53]. Detailed realizations of homomorphic operations are included in the
supplementary material.

Brakerski‑Gentry‑Vaikuntanathan scheme (BGV)

The BGV scheme is an FHE scheme that relies on the hardness of the ring learning with
error (RLWE) problem [54]. Its basic building blocks are homomorphic addition ADD
and multiplication MULT. Since any computable function can be realized with addi-
tions and multiplications, the homomorphic evaluation of any computable f can be real-
ized with ADDs and MULTs. Bootstrapping in BGV is a very costly operation [55, 56].
It is, therefore, common to use BGV in the leveled manner, i.e., to choose the HE noise
parameter with large noise capacity such that computations can be performed without
bootstrapping. Our study uses the leveled version of BGV.

BGV allows efficient computations in the amortized sense. It supports single instruc-
tion, multiple data (SIMD) operations, which allows multiple values to be packed into
one BGV ciphertext, enabling computations over a single ciphertext to be performed on
all packed values in an efficient manner [57]. Details of the SIMD packing are included
in the supplementary material.

Public key‑switching

In general, HE binary operations only support input ciphertexts that are encrypted
under the same key. Therefore, in the scenario of multiple users each holding their own
keys, there is a natural need to convert a ciphertext encrypted under one key to another
ciphertext that encrypts the same message under a different key. A naive approach is to
decrypt and re-encrypt with a different key, but this exposes the original secret key and
the message to the party that performs this procedure. To prevent such leakages, the
above procedure can be done homomorphically such that the evaluation party can not
access the message in the clear. Such a technique is called key switching. Mathematically,
when converting the key system from (pk, sk) to (pk∗, sk∗) , the evaluation party does not
need to know sk , but a key-switching key ksk(sk→sk∗) which leaks no information about
secret keys.

Our scenario exploits the key-switching key ksk(sk→sk∗) . While the traditional key-
switching key generation uses both sk and sk∗ , only sk and pk∗ are needed in our
design; hence, it is called public key-switching. This design preserves the confiden-
tiality of sk∗ as it does not need to be shared to compute the key-switching key. In
our scenario, the secret key of the authorized researchers does not need to be sent to

Page 20 of 27Blindenbach et al. Genome Biology (2024) 25:314

the data owner to generate the key-switching key. Please see supplementary material
for the mathematical details of the realization of public key-switching with BGV and
how we control the increasing noise.

Database construction with vertical packing

The dataset in SQUiD is represented as a matrix M = {m(i,j)|1 ≤ i ≤ r, 1 ≤ j ≤ k} ,
where r is the number of patients, k is the number of attributes (features), and the
value in position (i, j) corresponds to the j-th feature of the i-th patient (e.g., the
genotype of j-th SNP of i-th patient). We use the term vertical or horizontal for
the direction in the matrix, which corresponds to an attribute for all patients or all
attributes for a single patient, respectively.

As we explained earlier, BGV supports packing multiple messages into one cipher-
text. SQUiD packs elements vertically: let ℓ denote the packing capacity in a cipher-
text, then the r elements in the jth column are encrypted into ⌈r/ℓ⌉ ciphertexts

where 1 ≤ s ≤ ⌈r/ℓ⌉ and mi,j is considered as 0 for i > r . Overall, entire dataset is
encrypted into C = {ct(s,j) | 1 ≤ s ≤ ⌈r/ℓ⌉, 1 ≤ j ≤ k}.

The update, insert, and delete operations on a vertically packed encrypted data-
base vary slightly from their typical implementations.

–	 Update: To update a single value m′ at index i, j, a new encryption of ct(s,j) where
s = ⌈i/ℓ⌉ needs to be uploaded where

–	 Insert: To insert a new row at r + 1 , if ciphertexts are not fully packed (i.e., ℓ | r ),
then the last row of packed ciphertexts contains zeros at row index r + 1 , which
are updated. Otherwise, the following k fresh ciphertexts are added, forming the
last row of C.

–	 Delete: To delete an entry at index i, j, a plaintext, which encodes zero at the
i mod ℓ-th slot and one elsewhere is multiplied with ct(⌈i/ℓ⌉,j).

Note that update and insert operations both upload new ciphertexts with low noise,
but the delete operation increases the noise with a plaintext-ciphertext multipli-
cation. To bound the noise growth, we set a number α for the maximum times of
consecutive delete operations. On the (α + 1)-th time to delete an entry, an update
should be performed instead, after which α deletes are again allowed. For SQUID
with our experimental parameters, the value α is taken to be 5.

ct(s,j) = Enc {m(ℓ·s+1,j),m(ℓ·s+2,j), · · · ,m(ℓ·(s+1),j)}

ct(s,j) = Enc
(

{m(ℓ·s+1,j),m(ℓ·s+2,j), · · · ,m
′, · · · ,m(ℓ·(s+1),j)}

)

{

ct(s+1,j) = Enc
(

{m(ℓ·r+1,j), 0, · · · , 0}
)

, 1 ≤ j ≤ k
}

Page 21 of 27Blindenbach et al. Genome Biology (2024) 25:314 	

Functionalities

In this section, we describe the supported functionalities of SQUiD and the evalua-
tion procedures using homomorphic encryption.

Count queries

The first category of queries is to count the number of patients whose attributes satisfy
certain conjunctive (AND) and/or disjunctive (OR) relations. Its evaluation contains
two stages, filtering and vertical aggregation.

Filtering  Suppose the researcher specifies τ > 1 selection criteria (either in plaintext or
ciphertext) and their relation (AND and/or OR). The filtering stage outputs a predicate
vector p composed of r encrypted binary numbers. If the element p[i] decrypts to 1, then
the patient i is in this pre-defined cohort.

First, we explain how to homomorphically check a single selection criterion, which
amounts to performing a homomorphic equality test between the given value in a
query and a value in the matrix. The key idea is to find a polynomial representation,
which can be evaluated as a sequence of homomorphic additions and multiplications.

Without loss of generality, we consider the inputs of EQTest as genotype values in
{−1, 0, 1, 2} where −1 indicates a missing SNP, and denote them as u and v. As shown
in Table 1, this function determines a unique truth table.

We derive the polynomial representation of EQTest(u, v) as follows. Let v be an
encrypted matrix value, and u be the query value, which can be either in the clear
or encrypted depending on the researcher. If u is provided in the clear, then we can
interpolate the u-th column of the truth Table 1 into a degree-3 polynomial Fu with
input variable v. If u is also encrypted, then we precompute a polynomial F of degree
5 that maps 0 to 1 and {±1,±2, 3} to 0, whose input variable is u− v ∈ {0,±1,±2, 3} .
Note that we do not consider the case where both u and v are missing because it is
assumed that the query value would never look for missing SNPs.

Second, we explain how to homomorphically combine the results of multiple equal-
ity checks using AND and OR. Let {(uk , vk)}τk=1 be the set of (encrypted or unen-
crypted) queries and (encrypted) matrix values, then for each patient i we compute

Function EQTest ⇐⇒ Polynomial ⇐⇒ Sequence of ADDs andMULTs

Table 1  The truth table of EQtest(u, v) for SNPs. We assume that the query value u is not missing
( u = −1)

u
v 0 1 2

−1 0 0 0

0 1 0 0

1 0 1 0

2 0 0 1

Page 22 of 27Blindenbach et al. Genome Biology (2024) 25:314

the expression homomorphically as Eq. 1, where d and b are constants in Table 2. The
evaluation decrypts to 1 if the data of the patient i matches the selecting criteria, and
0 otherwise.

Vertical aggregation  Suppose each ciphertext provides ℓ SIMD slots, then the predicate
vector for r patients is batched into ⌈r/ℓ⌉ ciphertexts. The procedure of summing over
these batched messages is a vertical aggregation.

Our design fully exploits the advantages of parallel computing. Namely, we perform
O(r/ℓ) homomorphic additions with additive depth O(log (r/ℓ)) to obtain one cipher-
text, whose ℓ slots are then aggregated with O(log ℓ) homomorphic rotations and
additions. To support larger databases sizes, not all ℓ slots might be aggregated as the
aggregated value would overflow the ring in the BGV scheme. In these cases, it is up to
the client to aggregate the remaining slots. Please see supplementary material for details
of homomorphic addition and rotations with BGV.

PRS queries

The second category of queries is to obtain polygenic risk scores of all the patients.

Definition 1  The polygenic risk score (PRS) of a patient is a linear combination of val-
ues of attributes in a subset S. For given coefficients (i.e., effect sizes) {βj}j∈S , the PRS
for patient i is fi =

∑

j∈S βj ·m(i,j) , where m(i,j) is the genotype of the j-th SNP for i-th
patient.

The PRS for each patient can be calculated with homomorphic multiplication and
additions. Please see supplementary material for details of homomorphic addition and
multiplications with BGV.

Horizontal aggregation  PRS queries aggregate information horizontally. We use paral-
lel computing to minimize the execution time, and as can be seen from the “Results” sec-
tion, answering PRS queries is relatively fast.

MAF queries

The third category of queries is to calculate the minor allele frequency for a target SNP of
a filtered cohort of patients.

(1)xi = d +

τ
∏

k=1

[b+ EQTest(uk , vk)]

Table 2  Constants in circuit (1) [58]

Query type b d

Conjunction 0 0

Disjunction 1 1

Page 23 of 27Blindenbach et al. Genome Biology (2024) 25:314 	

Definition 2  Minor allele frequency (MAF) is the frequency at which the minor allele
occurs in a given population or a cohort. Let p be the predicate vector for r patients,
where p[i] indicates whether the patient i is in the cohort. Then, for the dataset
M = {m(i,j)} , the MAF for SNP j with p is

As the homomorphic division and minimum comparisons are currently expen-
sive operations, the cloud instead computes the numerator and denominator homo-
morphically and then returns the results to the clients for decryption, division, and
the minumum operation.

Similarity queries

The fourth category of queries determines whether a specific individual (denoted as
d) is genetically similar to patients with a certain disease or those without. There are
two similarity metrics for researchers to choose from.

Definition 3  Suppose the database stores k attributes and the last attribute is the
disease.

1.	 The L2-distance similarity score SL2(i, d) is defined as

2.	 The Jaccard similarity score SJcd(i, d) is defined as

 where EQTest(·, ·) equals to 1 if two inputs are equal and 0 otherwise.

In other words, the similarity score S(·)(i, d) horizontally aggregates the result of the
squared difference or EQTest.

As a result of this query, the researcher will receive two encrypted values r1, r2 from
the cloud. The value r1 is the number of patients that are genetically similar to the tar-
get d with this disease, r2 is the number of patients that are genetically similar to the
target d and do not have the disease.

These two values are homomorphically computed as follows.

1.	 Similar to the filtering method in “Filtering” section, the cloud computes a predicate
p for patients with this disease.

AF(p, j) =

(

r
∑

i=1

m(i,j) · p[i]

)

/

(

2

r
∑

i=1

p[i]

)

,

MAF(p, j) = min(AF(p, j), 1− AF(p, j)).

SL2(i, d) =

k−1
∑

j=1

(m(i,j) − dj)
2.

SJcd(i, d) =

k−1
∑

j=1

EQTest(m(i,j), dj),

Page 24 of 27Blindenbach et al. Genome Biology (2024) 25:314

2.	 To count similar patients, the cloud computes the similarity score S(·)(i, d) between
the target d and patient i. Then the cloud homomorphically checks if S(·)(i, d) is
greater than the pre-determined threshold t, which is done by evaluating the interpo-
lation polynomial of degree Range(S(·)(i, d))− 1 . In our implementation, we use the
Paterson-Stockmeyer method [59], a well-established technique [60–63], to evaluate
polynomials efficiently. As such, we get a predicate ps.

3.	 Multiplying the two predicates p and ps component-wise realizes the AND relation
and leads to another vector, whose vertical aggregation gives r1.

4.	 Multiplying the inverse predicate ¬p and predicate ps component-wise realizes the
AND relation and leads to another vector, whose vertical aggregation gives r2.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​024-​03447-9.

Additional file 1. Supplementary material, tables, and figures.

Additional file 2. Review history.

Acknowledgements
This study is dedicated to the memory of Dr. Thomas Lehner, whose visionary leadership made this work possible.

Review history
The review history is available as Additional file 2.

Peer review information
Veronique van den Berghe was the primary editor of this article and managed its editorial process and peer review in
collaboration with the rest of the editorial team.

Authors’ contributions
GG, TL, and CK conceived the study. JB, JK, and SH developed the theoretical foundation with supervision from GG. JB
and SH implemented the theory. JB developed the software and analyzed the results with supervision from GG and SH.
JB, JK, SH, CK, TL, and GG drafted the initial manuscript. All authors read and edited the manuscript.

Funding
This project was funded by NIH grants R00HG0110909 and R35GM147004 to GG, funding from Warren Alpert Founda-
tion to GG and TL, a National Science Foundation GRFP fellowship to JB, and funding from by CyberSecurity Research
Flanders (reference number VR20192203) to JK.

Data availability
The code for SQUiD, including the SQUiD API and CLI, is available under the GNU General Public License at https://​
github.​com/​G2Lab/​SQUiD/ [64] and 10.​5281/​zenodo.​14166​727 [65]. This repository contains all benchmarking code
necessary to reproduce the results presented in this paper. Instructions for running the code are provided in the
Benchmarking section of the README. UK Biobank data was downloaded from https://​www.​ukbio​bank.​ac.​uk/ [66] under
application number 100316, and simulated data can be generated using https://​github.​com/​G2Lab/​SQUiD/. Example
data is also included in the repository. The variants and their effect sizes used in the PRS calculations were download
from the PGS Catalog at https://​www.​pgsca​talog.​org/ [31, 67].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 12 March 2024 Accepted: 26 November 2024

https://doi.org/10.1186/s13059-024-03447-9
https://github.com/G2Lab/SQUiD/
https://github.com/G2Lab/SQUiD/
10.5281/zenodo.14166727
https://www.ukbiobank.ac.uk/
https://github.com/G2Lab/SQUiD/
https://www.pgscatalog.org/

Page 25 of 27Blindenbach et al. Genome Biology (2024) 25:314 	

References
	1.	 Ginsburg GS, Phillips KA. Precision medicine: from science to value. Health Aff. 2018;37(5):694–701.
	2.	 Ward R, Ginsburg GS. Local and global challenges in the clinical implementation of precision medicine.

Genomic and precision medicine. Academic Press, 2017. 105-117
	3.	 Acosta JN, Falcone GJ, Rajpurkar P, Topol EJ. Multimodal biomedical AI. Nature Medicine 28.9 (2022):1773–1784.
	4.	 European Parliament. Regulation (EU) 2016/679 of the European Parliament and of the Council. 2016. https://​

data.​europa.​eu/​eli/​reg/​2016/​679/​oj. Last Accessed 11 Dec 2024.
	5.	 U S Department of Health and Human Services. Health Insurance Portability and Accountability Act. U.S. Gov-

ernment Printing Office; 1996.
	6.	 Tanjo T, Kawai Y, Tokunaga K, Ogasawara O, Nagasaki M. Practical guide for managing large-scale human

genome data in research. J Hum Genet. 2021;66(1):39–52.
	7.	 U.S. data privacy laws to enter new era in 2023. Reuters. https://​www.​reute​rs.​com/​legal/​legal​indus​try/​us-​data-​

priva​cy-​laws-​enter-​new-​era-​2023-​2023-​01-​12/. Last Accessed 11 Dec 2024.
	8.	 Liu J, Lu YH, Koh CK. Performance analysis of arithmetic operations in homomorphic encryption. 2010. Purdue

University e-Pub. https://​docs.​lib.​purdue.​edu/​cgi/​viewc​ontent.​cgi?​artic​le=​1403&​conte​xt=​ecetr. Last Accessed
11 Dec 2024.

	9.	 Introduction. https://​homom​orphi​cencr​yption.​org/​intro​ducti​on/. Accessed 3 Apr 2023.
	10.	 Sim JJ, Chan FM, Chen S, Meng Tan BH, Mi Aung KM. Achieving GWAS with homomorphic encryption. BMC Med

Genomics. 2020;13(Suppl 7):90.
	11.	 Yang M, Zhang C, Wang X, Liu X, Li S, Huang J, et al. TrustGWAS: a full-process workflow for encrypted GWAS

using multi-key homomorphic encryption and pseudorandom number perturbation. Cell Syst. 2022;13(9):752-
767.e6.

	12.	 Blatt M, Gusev A, Polyakov Y, Goldwasser S. Secure large-scale genome-wide association studies using homo-
morphic encryption. Proc Natl Acad Sci U S A. 2020;117(21):11608–13.

	13.	 Kim D, Son Y, Kim D, Kim A, Hong S, Cheon JH. Privacy-preserving approximate GWAS computation based on
homomorphic encryption. BMC Med Genomics. 2020;13(Suppl 7):77.

	14.	 Zhou J, Lei B, Lang H, Panaousis E, Liang K, Xiang J. Secure genotype imputation using homomorphic encryp-
tion. J Inf Secur Appl. 2023;72:103386.

	15.	 Chan FM, Badawi AQAA, Sim JJ, Tan BHM, Sheng FC, Aung KMM. Genotype imputation with homomorphic
encryption. In: Proceedings of the 6th International Conference on Biomedical Signal and Image Processing.
ICBIP ’21. New York: Association for Computing Machinery; 2021. pp. 9–13.

	16.	 Gürsoy G, Chielle E, Brannon CM, Maniatakos M, Gerstein M. Privacy-preserving genotype imputation with fully
homomorphic encryption. Cell Syst. 2022;13(2):173-182.e3.

	17.	 Çetin GS, Chen H, Laine K, Lauter K, Rindal P, Xia Y. Private queries on encrypted genomic data. BMC Med
Genomics. 2017;10(Suppl 2):45.

	18.	 Wang S, Zhang Y, Dai W, Lauter K, Kim M, Tang Y, et al. HEALER: homomorphic computation of ExAct Logistic
rEgRession for secure rare disease variants analysis in GWAS. Bioinformatics. 2016;32(2):211–8.

	19.	 Sarkar E, Chielle E, Gürsoy G, Mazonka O, Gerstein M, Maniatakos M. Fast and scalable private genotype imputa-
tion using machine learning and partially homomorphic encryption. IEEE Access. 2021;9:93097–110.

	20.	 Sidorov V, Wei EYF, Ng WK. Comprehensive performance analysis of homomorphic cryptosystems for practical
data processing. arXiv preprint arXiv:2202.02960 (2022).

	21.	 Brakerski Z. Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP. In: Safavi-Naini R,
Canetti R, editors. Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Science. Springer; 2012.
pp. 868–886. https://​doi.​org/​10.​1007/​978-3-​642-​32009-5_​50.

	22.	 Fan J, Vercauteren F. Somewhat practical fully homomorphic encryption. IACR Cryptol ePrint Arch. 2012:144.
http://​eprint.​iacr.​org/​2012/​144. Last Accessed 11 Dec 2024.

	23.	 Brakerski Z, Gentry C, Vaikuntanathan V. (Leveled) fully homomorphic encryption without bootstrapping. ACM
Trans Comput Theory (TOCT). 2014;6(3):1–36.

	24.	 Lyubashevsky V, Peikert C, Regev O. On ideal lattices and learning with errors over rings. In: Gilbert H, editor.
Advances in Cryptology - EUROCRYPT 2010. Springer, Berlin Heidelberg: Berlin, Heidelberg; 2010. pp. 1–23.

	25.	 Polyakov Y, Rohloff K, Sahu G, Vaikuntanathan V. Fast proxy re-encryption for publish/subscribe systems. ACM
Trans Priv Secur. 2017;20(4):1–31.

	26.	 Blaze M, Bleumer G, Strauss M. Divertible protocols and atomic proxy cryptography. In: Advances in Cryptology
— EUROCRYPT’98. Springer Berlin Heidelberg; 1998. pp. 127–144.

	27.	 Ivan A, Dodis Y. Proxy cryptography revisited. https://​cites​eerx.​ist.​psu.​edu/​docum​ent?​repid=​rep1&​type=​pdf &​
doi=​626ec​bdfdf​0f92e​f3068​65cc2​85033​50d25​91008. Accessed 28 July 2023.

	28.	 Ateniese G, Fu K, Green M, Hohenberger S. Improved proxy re-encryption schemes with applications to secure
distributed storage. ACM Trans Inf Syst Secur. 2006;9(1):1–30.

	29.	 Smart NP, Vercauteren F. Fully homomorphic SIMD operations. 71(1):57–81. https://​doi.​org/​10.​1007/​
s10623-​012-​9720-4.

	30.	 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global refer-
ence for human genetic variation. Nature. 2015;526(7571):68–74.

	31.	 Lambert SA, Gil L, Jupp S, Ritchie SC, Xu Y, Buniello A, et al. The Polygenic Score Catalog as an open database for
reproducibility and systematic evaluation. Nat Genet. 2021;53(4):420–5.

	32.	 UK Biobank Data Access Guide at 2023. https://​uk-​bioba​nk.​gitbo​ok.​io/​data-​access-​guide. Last Accessed 11 Dec
2024.

	33.	 IBM. HElib: An implementation of homomorphic encryption (2.0.0). 2021. https://​github.​com/​homenc/​
HElib. Last Accessed 11 Dec 2024.

	34.	 Help Center. https://​help.​insta​gram.​com/​16318​21640​426723. Accessed 18 July 2023.

https://data.europa.eu/eli/reg/2016/679/oj
https://data.europa.eu/eli/reg/2016/679/oj
https://www.reuters.com/legal/legalindustry/us-data-privacy-laws-enter-new-era-2023-2023-01-12/
https://www.reuters.com/legal/legalindustry/us-data-privacy-laws-enter-new-era-2023-2023-01-12/
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1403&context=ecetr
https://homomorphicencryption.org/introduction/
https://doi.org/10.1007/978-3-642-32009-5_50
http://eprint.iacr.org/2012/144
https://citeseerx.ist.psu.edu/document?repid=rep1%20&type=pdf%20&doi=626ecbdfdf0f92ef306865cc28503350d2591008
https://citeseerx.ist.psu.edu/document?repid=rep1%20&type=pdf%20&doi=626ecbdfdf0f92ef306865cc28503350d2591008
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/s10623-012-9720-4
https://uk-biobank.gitbook.io/data-access-guide.
https://github.com/homenc/HElib
https://github.com/homenc/HElib
https://help.instagram.com/1631821640426723

Page 26 of 27Blindenbach et al. Genome Biology (2024) 25:314

	35.	 Tanigawa Y, Qian J, Venkataraman G, Justesen JM, Li R, Tibshirani R, et al. Significant sparse polygenic risk scores
across 813 traits in UK Biobank. PLoS Genet. 2022;18(3):e1010105.

	36.	 Popa RA, Redfield CMS, Zeldovich N, Balakrishnan H. CryptDB: protecting confidentiality with encrypted query
processing. In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles. SOSP ’11.
New York: Association for Computing Machinery; 2011. pp. 85–100.

	37.	 Kim M, Lauter K. Private genome analysis through homomorphic encryption. BMC Med Inform Decis Mak.
2015;15(5):S3. https://​doi.​org/​10.​1186/​1472-​6947-​15-​S5-​S3.

	38.	 Salem A, Berrang P, Humbert M, Backes M. Privacy-preserving similar patient queries for combined biomedical
data. Proc Priv Enhancing Technol. 2019;2019(1):47–67.

	39.	 Mouchet C, Troncoso-Pastoriza J, Bossuat JP, Hubaux JP. Multiparty homomorphic encryption from ring-learn-
ing-with-errors. Proc Priv Enhancing Technol. 2021;4:291–311.

	40.	 Grubbs P, Ristenpart T, Shmatikov V. Why Your Encrypted Database Is Not Secure. In: Fedorova A, Warfield A, Bes-
chastnikh I, Agarwal R, editors. Proceedings of the 16th Workshop on Hot Topics in Operating Systems, HotOS
2017, Whistler, BC, Canada, May 8-10, 2017. ACM; 2017. pp. 162–168. https://​doi.​org/​10.​1145/​31029​80.​31030​07.

	41.	 Alves PGMR, Aranha DF. A framework for searching encrypted databases. J Internet Serv Appl. 2018;9(1):1:1–1:18.
https://​doi.​org/​10.​1186/​S13174-​017-​0073-0.

	42.	 Albrecht MR, Player R, Scott S. On the concrete hardness of learning with errors. J Math Cryptol.
2015;9(3):169–203.

	43.	 Fuller B, Varia M, Yerukhimovich A, Shen E, Hamlin A, Gadepally V, et al. Sok: Cryptographically protected data-
base search. In: 2017 IEEE Symposium on Security and Privacy (SP). IEEE; 2017. pp. 172–91.

	44.	 Islam MS, Kuzu M, Kantarcioglu M. Access pattern disclosure on searchable encryption: ramification, attack and
mitigation. In: Ndss, vol. 20. Citeseer; 2012. pp. 12.

	45.	 Liu C, Zhu L, Wang M, Tan Ya. Search pattern leakage in searchable encryption: attacks and new construction. Inf
Sci. 2014;265:176–188.

	46.	 Oya S, Kerschbaum F. Hiding the access pattern is not enough: exploiting search pattern leakage in searchable
encryption. 30th USENIX security symposium (USENIX Security 21). 2021.

	47.	 Agrawal R, Kiernan J, Srikant R, Xu Y. Order preserving encryption for numeric data. Proceedings of the 2004
ACM SIGMOD international conference on Management of data. 2004.

	48.	 Lewi K, Wu DJ. Order-revealing encryption: new constructions, applications, and lower bounds. Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security. 2016. pp. 1167–1178.

	49.	 Curtmola R, Garay J, Kamara S, Ostrovsky R. Searchable symmetric encryption: improved definitions and efficient
constructions. Proceedings of the 13th ACM conference on Computer and communications security. 2006. pp.
79–88.

	50.	 Song DX, Wagner D, Perrig A. Practical techniques for searches on encrypted data. In: Proceeding 2000 IEEE
symposium on security and privacy. S &P 2000. IEEE; 2000. pp. 44–55.

	51.	 Kamara S, Kati A, Moataz T, Schneider T, Treiber A, Yonli M, SoK: cryptanalysis of encrypted search with LEAKER-a
framework for LEakage AttacK Evaluation on Real-world data. In: 2022 IEEE 7th European Symposium on Secu-
rity and Privacy (EuroS &P). IEEE; 2022. pp. 90–108.

	52.	 Grubbs P, McPherson R, Naveed M, Ristenpart T, Shmatikov V. Breaking web applications built on top of
encrypted data. In: Weippl ER, Katzenbeisser S, Kruegel C, Myers AC, Halevi S, editors. Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, October 24-28, 2016.
ACM; 2016. pp. 1353–1364. https://​doi.​org/​10.​1145/​29767​49.​29783​51.

	53.	 Gentry C. A fully homomorphic encryption scheme. Stanford University; 2009.
	54.	 Lyubashevsky V, Peikert C, Regev O. On ideal lattices and learning with errors over rings. J ACM. 2013;60(6):1–35.
	55.	 Chen H, Han K. Homomorphic lower digits removal and improved FHE bootstrapping. In: Advances in Cryptol-

ogy–EUROCRYPT 2018: 37th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29-May 3, 2018 Proceedings, Part I. Springer; 2018. pp. 315–337.

	56.	 Halevi S, Shoup V. Bootstrapping for helib. J Cryptol. 2021;34(1):7.
	57.	 Smart NP, Vercauteren F. Fully homomorphic SIMD operations. Des Codes Crypt. 2014;71:57–81.
	58.	 Kim M, Lee HT, Ling S, Ren SQ, Tan BHM, Wang H. Better security for queries on encrypted databases. 2016.

Cryptology ePrint Archive, Paper 2016/470. https://​eprint.​iacr.​org/​2016/​470. Last Accessed 11 Dec 2024.
	59.	 Paterson M, Stockmeyer L. On the number of nonscalar multiplications necessary to evaluate polynomials. SIAM

J Comput. 1973;03(2):60–6. https://​doi.​org/​10.​1137/​02020​07.
	60.	 Chen H, Chillotti I, Song Y. Improved Bootstrapping for Approximate Homomorphic Encryption. In: Ishai Y,

Rijmen V, editors. Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings,
Part II. vol. 11477 of Lecture Notes in Computer Science. Springer; 2019. pp. 34–54. https://​doi.​org/​10.​1007/​
978-3-​030-​17656-3_2.

	61.	 Cheon JH, Kim D, Kim D. Efficient Homomorphic Comparison Methods with Optimal Complexity. In: Moriai S,
Wang H, editors. Advances in Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory and
Application of Cryptology and Information Security, Daejeon, South Korea, December 7-11, 2020, Proceedings,
Part II. vol. 12492 of Lecture Notes in Computer Science. Springer; 2020. pp. 221–256. https://​doi.​org/​10.​1007/​
978-3-​030-​64834-3_8.

	62.	 Cong K, Moreno RC, da Gama MB, Dai W, Iliashenko I, Laine K, et al. Labeled PSI from homomorphic encryp-
tion with reduced computation and communication. In: Kim Y, Kim J, Vigna G, Shi E, editors. CCS ’21: 2021 ACM
SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of Korea, November 15
- 19, 2021. ACM; 2021. pp. 1135–1150. https://​doi.​org/​10.​1145/​34601​20.​34847​60.

	63.	 Iliashenko I, Zucca V. Faster homomorphic comparison operations for BGV and BFV. Proc Priv Enhancing Technol.
2021;2021(3):246–64.

	64.	 Blindenbach J, Kang J, Hong S, Karam C, Lehner T, Gürsoy G. SQUiD. GitHub; 2024. https://​github.​com/​g2lab/​
squid. Last Accessed 11 Dec 2024.

https://doi.org/10.1186/1472-6947-15-S5-S3
https://doi.org/10.1145/3102980.3103007
https://doi.org/10.1186/S13174-017-0073-0
https://doi.org/10.1145/2976749.2978351
https://eprint.iacr.org/2016/470
https://doi.org/10.1137/0202007
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-030-64834-3_8
https://doi.org/10.1007/978-3-030-64834-3_8
https://doi.org/10.1145/3460120.3484760
https://github.com/g2lab/squid
https://github.com/g2lab/squid

Page 27 of 27Blindenbach et al. Genome Biology (2024) 25:314 	

	65.	 Blindenbach J, Kang J, Hong S, Karam C, Lehner T, Gürsoy G. SQUiD. Zenodo. 2024. https://​doi.​org/​10.​5281/​
zenodo.​14166​727.

	66.	 Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyp-
ing and genomic data. Nature. 2018;562(7726):203–9. https://​doi.​org/​10.​1038/​s41586-​018-​0579-z.

	67.	 Lambert SA, Wingfield B, Gibson JT, Gil L, Ramachandran S, Yvon F, et al. Enhancing the Polygenic Score Cata-
log with tools for score calculation and ancestry normalization. Nat Genet. 2024. https://​doi.​org/​10.​1038/​
s41588-​024-​01937-x.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.5281/zenodo.14166727
https://doi.org/10.5281/zenodo.14166727
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1038/s41588-024-01937-x
https://doi.org/10.1038/s41588-024-01937-x

	SQUiD: ultra-secure storage and analysis of genetic data for the advancement of precision medicine
	Abstract
	Background
	Results
	Our conceptual framework allows ultra-secure interactions with encrypted genotype-phenotype databases
	Vertical packing allows efficient storage of encrypted large genotype-phenotype databases
	Enabling secure, scalable, and fast analysis of genotypes and phenotypes
	SQUiD can reproduce known genotype-phenotype relationships in UK Biobank

	Discussion
	Conclusions
	Methods
	Security and threat models
	Homomorphic encryption
	Brakerski-Gentry-Vaikuntanathan scheme (BGV)
	Public key-switching
	Database construction with vertical packing
	Functionalities
	Count queries
	PRS queries
	MAF queries
	Similarity queries

	Acknowledgements
	References

