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Abstract 

Cloud computing allows storing the ever-growing genotype-phenotype datasets 
crucial for precision medicine. Due to the sensitive nature of this data and varied laws 
and regulations, additional security measures are needed to ensure data privacy. We 
develop SQUiD, a secure queryable database for storing and analyzing genotype-
phenotype data. SQUiD allows storage and secure querying of data in a low-security, 
low-cost public cloud using homomorphic encryption in a multi-client setting. We 
demonstrate SQUiD’s practical usability and scalability using synthetic and UK Biobank 
data.

Background
Precision medicine aims to tailor medical care to the characteristics of an individual’s 
unique genetic makeup, lifestyle, and environment. This approach has garnered consid-
erable attention worldwide due to its potential to enhance patient outcomes and miti-
gate healthcare expenses [1]. But several significant obstacles impede the realization of 
the full potential of precision medicine. One such challenge is the need for extensive 
and diverse patient genotype-phenotype datasets in order to advance the diagnosis and 
treatment of future patients [2]. However, this need for large amounts of data is often 
in conflict with the need to protect patient privacy [3]. This challenge is further com-
plicated by the heterogeneous regulatory landscape governing privacy protection, with 
varying definitions and practices across different jurisdictions (e.g., General Data Pro-
tection Regulation [GDPR] in Europe vs. frameworks in USA) [4, 5]. Furthermore, indi-
vidual hospitals and institutions maintain their own policies due to the prevalence of 
health data breaches and privacy attacks.

Genomic data plays a pivotal role in precision medicine research, enabling the 
customization of medical care based on specific genetic variants, biomarkers, and 
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inherited traits. Thus, there is a surge in data generation, which has challenged the 
ability of local servers to accommodate the rapid growth of data size and increased 
computational requirements [6]. Therefore, there is a pressing need and significant 
push towards cloud computing. However, this exacerbates the concerns about the pri-
vacy and prohibitions on use of personal data due to local, global, and/or institutional 
privacy policies. For example, with the introduction of the GDPR in Europe, the stor-
age of genomic and related data in the cloud has become more stringent with the 
requirement of appropriate security measures in place such as encryption. Starting 
from 2023, many states in the US (California, Connecticut, Colorado, Utah, and Vir-
ginia) are entering a new GDPR-like privacy era that will have similar requirements 
about storing genomic and related data in the cloud [7]. Yet, the current state of pri-
vacy preservation through laws and institutional policies is fraught with instability 
and unpredictability, which poses significant challenges to the research community. 
If the data is kept in the encrypted form in cloud servers, then researchers, who are 
approved for access, need to download large quantities of data locally and decrypt 
them to perform analysis, which defeats the purpose of outsourcing the storage to 
the cloud. This situation creates additional hurdles for scientists, especially when 
attempting to combine multiple data sets to gain statistical power. Furthermore, it 
creates significant delays in research and requires large amounts of resources, which 
impedes the democratization of data access. As a result, advances in medicine will 
significantly be impacted if new privacy-preserving frameworks that comply with 
laws and policies are not developed and implemented.

Homomorphic encryption (HE) is one of the cryptographic tools that enables direct 
computations of functions on encrypted data in the public cloud. Homomorphic 
encryption has emerged as a useful approach to keep the data secure at rest, at transit, 
and during analysis. But, this approach also has thus far presented severe bottlenecks in 
its applicability, scalability, and performance [8, 9]. However, recent advances in algo-
rithm designs and computing power have enabled an increase in the use of homomor-
phic encryption in genomics. For example, it has been shown that privacy-enhancing 
genome-wide association studies (GWAS) can be possible [10–13]. It has also been 
shown that secure genotype imputation is feasible and scalable using homomorphic 
encryption [14–16]. Homomorphic encryption was also used for genomic variant que-
rying [17], regression analysis for rare disease variants [18], and inference using genetic 
variants in machine learning applications [19]. These methods have added tremendous 
algorithmic advances to the field and paved the way for more practical privacy-pre-
serving analysis of genomes. However, their use in genotype-phenotype database set-
tings has been limited. This is primarily attributed to two factors. Firstly, homomorphic 
encryption relies on public key cryptography, which is designed for client-server scenar-
ios where the client owns the dataset and delegates computation to the cloud. However, 
in the context of genotype-phenotype databases, the data owner encrypts the data while 
multiple researchers access and analyze it. Secondly, the computational burden associ-
ated with homomorphic encryption makes it infeasible for applications involving large 
sample sizes. Both the storage size of encrypted data (i.e., ciphertexts) and the computa-
tion times for homomorphic encryption are several orders of magnitude greater than 
those for the original plaintexts [20].
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Here, we developed Secure Queriable Database (SQUiD), a scalable framework 
designed to store and query genotype-phenotype databases in an ultra-secure cloud-
based setting using homomorphic encryption. In our approach, we incorporate several 
key components: a ciphertext packing storage method to minimize the required stor-
age space for encrypted data, a set of optimizations we developed to reduce query pro-
cessing time, and an innovative cryptographic primitive (public key-switching) to enable 
homomorphic encryption for multiple users. We demonstrate that SQUiD is capable of 
efficiently executing various types of queries on large scale genotype-phenotype data-
sets, all the while maintaining the encryption of the data in the cloud. Specifically, it 
can perform tasks such as counting the number of patients in a filtered cohort, com-
puting the minor allele frequency (MAF) of genetic variants in a cohort, calculating 
polygenic risk scores (PRS) for patients, and generating a cohort of genetically similar 
patients in remarkably short timeframes. Our findings highlight the potential of SQUiD 
as a valuable tool for secure, timely, and efficient analysis and interpretation of genetic 
and phenotypic data. At a time when data breaches are becoming increasingly common 
in healthcare settings, where data is a commodity, SQUiD provides a key resource to 
safeguarding patient privacy and enabling data providers to adhere to evolving laws and 
regulations, while ensuring the democratization of data.

Results
Our conceptual framework allows ultra‑secure interactions with encrypted 

genotype‑phenotype databases

Our conceptual framework is focused on solving real-world security challenges encoun-
tered in the storage and querying large-scale genotype-phenotype datasets. These chal-
lenges involve safeguarding the confidential information contained within such data 
from third party cloud providers and outside adversaries. Our framework is based on 
a scenario that involves three parties: the data owner, the researcher(s), and the public 
cloud. The data owner, who in many cases could be an organization such as the National 
Institutes of Health (NIH), possesses a vast amount of genotype-phenotype data that can 
be used for various analyses. Due to the large size of this data and the limited comput-
ing power and resources, the data owner encrypts the data and stores it in the public 
cloud. Their role is limited to authenticating clients who have permission to access the 
encrypted data, and they do not participate in the computation phase. The client, typi-
cally a researcher, seeks to perform computations on the data to obtain results. How-
ever, due to the large size of the data and the limitations of their computing power, it 
is not feasible for them to download, decrypt, and analyze the data locally. The client, 
therefore, interacts with the encrypted data deposited to the cloud. An overview of each 
party’s role in the architecture of SQUiD is visualized in Fig. 1.

The cloud server does not have knowledge of the information contained in the data 
because all data stored in the public cloud is encrypted. Computations are performed 
directly on this encrypted data without decryption using homomorphic encryption. 
In homomorphic encryption  [21–23], data, referred to as plaintext, is encrypted into 
ciphertexts. Addition and multiplication can be performed on ciphertexts such that 
two ciphertexts can be added or multiplied to produce a new ciphertext, which can be 
decrypted to the sum or product of the corresponding plaintexts. In our scenario, the 
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complex functions behind our queries are sequences of homomorphic additions and 
multiplications which the cloud server performs on the encrypted genotype-pheno-
type data. The outputs of these functions will remain encrypted and are only decrypted 
after the outputs are sent back to the client. Operations on encrypted data are possible 
because plaintexts and ciphertexts are expressed as polynomials in HE. The algebraic 
structures of these polynomials are exploited to enable the computation on encrypted 
data (see Additional file  1: Supplementary Material for more details). Importantly, 
retrieving the plaintext polynomial from the ciphertext polynomials without the secret 
key is extremely difficult. This difficulty is equivalent to the difficulty of solving the ring 
learning with errors (RLWE) problem, which is known to be computationally hard under 
suitable parameters [24].

Using homomorphic encryption with appropriate parameters ensures that the sensi-
tive information is protected while computations are being performed and the output 
is provided to the client in the encrypted form. Figure 2 describes the four key compo-
nents of our framework: encrypted data storage, access authorization, query capabilities, 
and the API for user-friendly interactions with the database. Unfortunately, this sce-
nario cannot be realized with traditional homomorphic encryption, which is based on a 

Fig. 1  An architecture overview of SQUiD. Initially, the data owner uploads their encrypted genotype 
and phenotype data to the public cloud. Within the cloud, only authorized researchers are permitted to 
securely query the data. Authorization is granted through possession of a key-switching key, which is stored 
in the key-switching store. When a researcher initiates a query on the databases, the database responds 
by encrypting the query result under the data owner’s public key. Subsequently, the key-switching store 
transforms this encrypted result to be under the querier’s key. The encrypted result is then sent back to the 
querier, who can decrypt it using their own secret key
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two-party (data owner and public cloud) system. In a traditional two-party system, the 
data owner encrypts the data with their public key and decrypts the results with their 
private key. Thus, the researcher cannot query and decrypt the results since they do not 
(and should not) have access to the data owner’s private key. To overcome this challenge, 
we adopted the established concept of the proxy re-encryption system [25] to develop 
a theoretical realization and practical implementation of it within the framework of 
homomorphic encryption. This adaptation, which we refer to as the public key-switch-
ing technique [26–28], enables secure multi-client queries on encrypted data without 
the need for exchanging secret keys, specifically addressing the needs of our application 
in the biomedical domain.

The public key-switching operation serves as a cryptographic primitive facilitating 
the conversion of ciphertexts encrypted under one secret key to ciphertexts encrypted 
under a second secret key, without the need to decrypt the ciphertexts to plaintexts or 
possess access to the second secret key. Precisely, in key-switching, the original cipher-
text needs to be homomorphically decrypted within the ciphertext space of the second 
secret key, which requires a key-switching key ksk, i.e., encryption of the first secret key 
under the second secret key. Since the entire key-switching procedure together with 
ksk occurs within an encrypted space, the underlying messages remain secure without 

Fig. 2  A Data storage. The owner vertically packs their data to reduce storage costs, then encrypts their data 
with a public key, and then uploads the data to the public cloud. B Authorization. The onboarding process 
for a new researcher starts with the creation of their public and private key. The researcher sends their public 
key to the data owner for authorization. The owner authorizes the researcher by creating a key-switching 
key to switch the encryption of data to the researcher’s key and uploading this key to the key-switching key 
store in the public cloud. The data owner can revoke a researcher’s access by removing the key-switching 
key from the store. C Query. An authorized researcher can submit one of four queries to the public cloud, 
which performs the necessary operations homomorphically on encrypted data under the data owner’s key. 
The result is then re-encrypted under the researcher’s public key and sent back for decryption. D API. We 
created a command-line API for researchers to use SQUiD easily. It generates a public and private key for the 
researcher, sends the public key to the data owner for authorization, sends queries to the server, and decrypts 
any encrypted results received via email or through a returned file
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knowledge of either the first or the second secret key. Moreover, in public key-switch-
ing, ksk is generated by encrypting the first secret key with a public key, which does not 
require knowledge of the second secret key. In our scenario, this means the data owner 
can use their secret key for this operation without needing to access any of the clients’ 
secret keys. This capability holds immense value in establishing secure interactions with 
an encrypted database. For example, in SQUiD, the encrypted database can compute a 
researcher’s query under the encryption of the owner’s key, convert the computed result 
from an encryption under the owner’s key to under the public key of the researcher, and 
send this encrypted result to the researcher. Importantly, this conversion takes place 
without the need to decrypt the query result or disclose any information about it to the 
cloud. The researcher can effectuate this conversion by solely providing their public key, 
thereby circumventing any security risks associated with sharing their secret key.

When granting access to a new researcher, both the data owner and the researcher 
collaborate to create a public key-switching key, which is subsequently added to the key-
switching store in the public cloud (Fig. 2B). The key-switching store offers two signifi-
cant advantages. Firstly, it allows the data owner to remain offline during any query, as 
the researcher exclusively interacts with the public cloud where the pre-calculated and 
stored public key-switching keys reside. Secondly, the data owner retains control over 
data access by managing the inclusion or exclusion of researchers’ public key-switch-
ing keys within the store, thus ensuring the ability to govern data access. We show that 
performance overhead from generating a key-switching key and key-switching a cipher-
text under the encryption of one key to another to be less than a second (Additional 
file 1: Fig. S1). The public key-switching key of each authorized researcher is stored in a 
dedicated key-switching store that dynamically expands to accommodate the number of 
authorized researchers. We show that the extra storage required for the key-switching 
store is minimal, around 55 MB per researcher (see Additional file 1: Fig. S2 and Addi-
tional file 1: Supplementary Material for an explanation why it is larger than a regular 
key storage).

Vertical packing allows efficient storage of encrypted large genotype‑phenotype 

databases

We designed SQUiD to handle sensitive genotype-phenotype data from a large number 
of patients. SQUiD is specifically tailored to ingest data that has already undergone qual-
ity control. Here, we represent the data as a table with columns for basic attributes like 
age, sex, gender, etc.; genotypes for single-nucleotide polymorphisms (SNPs); and the 
phenotype or disease status of the patients, and rows for each patient in the database 
(Fig.  2A). While each entry in the table needs to be an integer for the homomorphic 
encryption libraries we used, continuous phenotypes can be discretized into integers 
via scaling (see Additional file 1: Supplementary Material for more details). The encryp-
tion of this data introduces additional storage requirements compared to its original 
unencrypted form. Consequently, the storage expenses associated with storing large 
genotype-phenotype databases in their encrypted state can be substantial. In order to 
optimize storage within the SQUiD framework, we adopt a vertical packing approach for 
our data organization (see the “Methods” section). This method involves storing the gen-
otypes of multiple patients for a single SNP within a single ciphertext. Vertical packing 



Page 7 of 27Blindenbach et al. Genome Biology          (2024) 25:314 	

in homomorphic encryption is a method where multiple pieces of data are combined 
into a single, larger unit before encryption. This allows multiple calculations to be per-
formed simultaneously on all the packed data within one operation, rather than process-
ing each piece of data individually in a single instruction, multiple data (SIMD) fashion 
(see the “Methods” section for details) [29]. By vertically packing our data (Fig. 2A), we 
effectively reduce the number of ciphertexts necessary to accommodate a substantial 
volume of data, thereby minimizing the associated storage costs. Such packing still ena-
bles homomorphic updates (addition of new patients/SNPs/attributes) to the encrypted 
database without the need for decryption (see the “Methods” section for details).

We benchmarked the storage requirements of SQUiD on four different types/num-
bers of SNPs: ClinVar SNPs, Illumina Human1M-Duo v3.0 DNA Analysis BeadChip 
SNPs, Whole Exome Sequencing (WES) SNPs, and Whole Genome Sequencing (WGS) 
SNPs. These SNPs can be stored either at a per-chromosome level or genome-wide in 
SQUiD. Clinvar contains approximately 70,000 SNPs, and Illumina BeadChip arrays 
contain approximately 1,072,820 SNPs. We estimated that around 8.2 million and 84 
million SNPs would be observed in exomes and whole genomes at a population level, 
respectively, by using the data from 1000 Genomes Project [30]. We have benchmarked 
the packed storage of SQUiD against an unpacked homomorphic encryption storage, 
a storage encrypted with the industry standard AES-128-CBC, and a plaintext stor-
age that stores SNPs as single bytes for the various SNP sets (Fig.  3). We found that 
the storage cost for SQUiD is 49,960x better than the unpacked homomorphic storage 
cost (Fig.  3). This efficiency is achieved because a single packed ciphertext in SQUiD 
can store data for up to 49,960 patients, whereas an unpacked ciphertext can only store 
data for one. Furthermore, vertical packing reduces the time for encryption by 49,960 
fold compared to unpacked homomorphic encryption as fewer ciphertexts need to be 

Fig. 3  Plots showing the storage space required to store the ClinVar, Illumina Beadchip, WES, and WGS SNP 
genotypes with different schemes. The number of SNPs for WES and WGS is approximated using the 1000 
Genomes Project
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encrypted (Additional file 1: Fig. S3). Vertical packing also improves query performance 
(Additional file 1: Fig. S4), because HE operations on ciphertexts compute these opera-
tions pairwise (i.e., SIMD-like) on the vertically packed data. The query performance of 
the unpacked solution for the count, MAF, PRS, and similarity queries quickly becomes 
impractical and is outperformed by the packed solution in databases with as few as 10 
patients for the count and MAF queries and just 1 patient for the PRS and similarity 
queries (Additional file 1: Fig. S4).

Enabling secure, scalable, and fast analysis of genotypes and phenotypes

We have devised four encrypted query functionalities within the SQUiD framework. 
This modular design allows for seamless implementation of additional functionalities 
to accommodate diverse analysis requirements. Our queries include count, MAF, PRS, 
and similarity. Figure  2C depicts how querying works under the public key-switching 
framework.

Count queries within the SQUiD framework return the number of patients satisfying 
specific filters or equality checks. For example, a count query could count the number 
of patients with type-2 diabetes (T2D), whose SNP on gene TCF7L2 has a heterozygous 
alternative allele. MAF queries are employed to compute the MAF for a given target 
SNP within a filtered patient cohort. For instance, SQUiD can compute two MAF que-
ries: one for a target SNP on the TCF7L2 gene within a cohort of patients with T2D and 
another within a cohort of patients without T2D to study correlations between SNPs 
on the TCF7L2 gene and T2D. We can further add many different filters to build the 
cohort such as constraining it to patients with homozygous SNPs on a gene of interest. 
PRS queries involve the calculation and return of the PRS for all patients given a list of 
GWAS SNPs and their coefficients. PRS queries require only the coefficients and SNPs 
to be supplied post training such as those found on the PGS catalog [31]. Finally, similar-
ity queries take a target patient’s encrypted genotype as input, build a cohort of geneti-
cally similar patients in the database through a scoring function like the squared L2
-norm, and output the number of similar patients with and without a particular disease 
of interest (see the “Methods” section and Additional file 1: Supplementary Material). To 
evaluate the performance of each query, we conducted benchmarking against a plain-
text implementation. The plaintext implementation keeps the genotype-phenotype data 
encrypted at rest (as mandated by the policies) and decrypts the necessary components 
of the data to compute the query in plaintext, while SQUiD keeps the data encrypted 
both at rest and during computation, enabling much stronger security as the data no 
longer has visibility to the computing party. This plaintext implementation models the 
current data access guidelines set by initiatives such as the dbGaP and UK Biobank 
where researchers download encrypted data, decrypt the data locally, and then analyze 
the data in plaintext [32].

We implemented SQUiD using the HE library, HElib [33], and benchmarked SQUiD 
on an n2-standard-64 Google Cloud instance with an Intel Xeon Gold 6268 processor 
running at 2.8 GHz and 256 GB of memory (see Additional file 1: Supplementary Mate-
rial for more details on the experimental setup and HE parameters). On a dataset with 
499,600 patients, SQUiD can perform a count query with 2 filters in 4 min (0.004 s in 
plaintext), a MAF query with 2 filters in 5 min (0.004 s in plaintext), a PRS query with 
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1024 effect SNPs in 2 min (0.59 s in plaintext), and a similarity query with 1024 SNPs in 
10 h (2.7 s in plaintext) (Fig. 4).

We investigated the overhead of the HE library used in SQUiD and the overhead of 
the algorithms developed in SQUiD by comparing the query times against a solution 
that is a direct translation of SQUID algorithms without using the HE library (denoted 
as “SQUiD without HE”). SQUiD without HE computes the plaintext versions of the 
SQUiD queries by converting the HE library functions to their plaintext counterparts 
and then using these functions in the same way that SQUiD does. We found that the 
SQUiD without HE solution has a 20x overhead for a count and MAF queries with 2 
filters, 2.5x overhead for a PRS query with 1024 effect SNPs (k), and a 180x overhead for 
a similarity query with 1024 SNPs compared to the plaintext solution (Additional file 1: 
Fig. S5).

We also show that our queries are highly parallelizable because of their linear struc-
ture. Each query involves computing a filter, a linear combination, or an L2 similarity 
for a set of SNPs across patients. Since these operations are performed for each patient, 
SQUiD achieves parallelism by chunking the database rows and processing these chunks 
concurrently. Our benchmarking in a multi-threaded environment shows that query 
performance scales linearly with the number of cores used (Fig. 5). On large databases 
with millions of patients, this scaling ensures reasonable query performance. To demon-
strate this, we also ran each query with 50 threads on a database with 9,992,000 patients 
and found that a count query with 2 filters took 3 min, a MAF query with 2 filters took 
4 min, a PRS query with 1024 effect SNPs took 5 min, and a similarity query with 1024 
SNPs took 4 h (Additional file 1: Fig. S6).

Our results show that all the functionalities implemented in SQUiD exhibit linear 
scaling relative to the size of their inputs. Specifically, the count and MAF queries 
scale linearly with the number of filters with a slope of 0.62, the PRS query scales lin-
early with the number of SNPs with a slope of 0.001, and the similarity query scales 
linearly with the number of SNPs given for the target patient with a slope of 0.068 

Fig. 4  A, B, C, D For each query, the plots on the right show the query time by varying the number of 
filters for the count and MAF query, by varying the number of SNPs and effect sizes (k) for the PRS query, 
and by varying the number of SNPs for the similarity query. The query time for SQUiD and the query time 
of a plaintext solution are shown for comparison. The plaintext solution works on a database encrypted 
with AES. For each plaintext query, the necessary components for the query are decrypted and then 
computed on. A Count query. The count query returns the number of patients that pass a given filter 
in the query (patients who pass the filter are highlighted in green, with darker green cells indicating 
passing a condition). A black line of best fit for a count query with 2 filters is given as the equation 
time (s) = 0.00025(# of patients)+ 82.71 . Due to the strict linear scaling, the performance of our query can 
easily be interpolated by this line of best fit. B MAF Query. The MAF query creates a filtered cohort of patients 
(patients who pass the filter are highlighted in green, with darker green cells indicating passing a condition) 
and computes the MAF of a target SNP for that cohort (purple SNPs). A black line of best fit for a MAF query 
with 2 filters is given as time (s) = 0.00025(# of patients)+ 170 . C PRS query. The PRS query returns the 
PRS score of all patients for a pre-determined PRS SNP set and their effect sizes. A black line of best fit for a 
prs query with 1024 effect SNPs is given as time (s) = 0.00019(# of patients)+ 2.6 . D Similarity query. The 
similarity query returns the number of patients with and without a disease from a cohort of patients similar 
to a target patient (patients highlighted in green). The target patient’s genome is encrypted with the owner’s 
public key when it is sent to the public cloud. A black line of best fit for a similarity query with 1024 SNPs is 
given as time (s) = 0.073(# of patients)+ 1800

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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(Fig. 4). Our slopes consistently indicate a slow growth in runtime. Notably, the runt-
ime of all protocols is proportional to the number of patients in the database and 
independent of the total number of SNPs in the database (Additional file 1: Fig. S7). 
A plaintext implementation of our protocols would also scale linearly with the num-
ber of patients in the database and the number of filters and SNPs involved in the 
query. Thus, SQUiD achieves optimal linear scaling as expected from a plaintext 
implementation, which signifies its ability to efficiently adapt to larger datasets in the 
future. Furthermore, with the expected decrease in the price of cloud computing in 
the future, the steady runtime observed for all queries ensures that increasing the size 
of the databases beyond the limits benchmarked in this study will yield steady perfor-
mance outcomes, enabling real-world applications of SQUiD with biobank-scale data. 
We also show that the SQUiD’s communication cost for all queries except PRS query 
is constant regardless of the number of patients in the database while communication 
cost increases with the number of patients for all query types in plaintext (Additional 
file 1: Fig. S8 and S9). Overall, the communication is minimal. Comparable to an ins-
tagram post which has a maximum size of 4.3 MB (1080 by 1350 pixels) [34], most of 
our queries use less than 50 MB on databases with 100,000 patients.

Fig. 5  Plots of count, MAF, PRS, and similarity query time by the number filters, effect SNPs (k), and SNPs 
varying the number of threads. We benchmarked the time for each query on a database with 49,960 patients 
using 2, 4, 8, and 16 filters for the count and MAF queries, and 1,024, 4,096, and 16,384 SNPs for the PRS and 
similarity queries
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We also developed an API and a command line interface (CLI) to facilitate interaction 
with SQUiD, thereby enhancing its usability for researchers (Additional file 1: Fig. S10). 
The API and CLI enable researchers to execute various queries and perform essential 
functions through simple commands. For instance, researchers can generate private and 
public keys required for encryption and authorization, send the public key to the data 
owner, execute all desired queries (See Additional file 1: Table S2 for query parameters), 
and decrypt the returned query results. The API simplifies the deployment process for 
researchers who are not experts in privacy and security when utilizing SQUiD.

SQUiD can reproduce known genotype‑phenotype relationships in UK Biobank

We studied the relationship between patients with T2D and a control group in the UK 
Biobank dataset to assess the accuracy of the MAF and count queries in SQUiD. Firstly, 
we calculated the MAFs for the top five SNPs with the largest difference between T2D 
patients and the control group patients (Fig. 6A). We compared the MAFs computed by 
SQUiD with the MAFs computed in plaintext to show there is no difference between 
them. Secondly, for these same five SNPs, we computed a chi-square statistic by using 
the allele counts for the control and case group (T2D in our case) [12]. We used the 
count query in SQUiD to get the allele counts and then computed the chi-square sta-
tistic in plaintext. The chi-square scores obtained from SQUiD queries are identical to 
the plaintext computation results (Fig. 6B). Note that SQUiD does not directly execute 
GWAS, but  it has the capability to generate cohorts with specific attributes. We have 
shown that it can create accurate cohorts that will result in accurate GWAS (Fig. 6).

We further evaluated the accuracy of SQUiD by replicating the sparse PRS calculations 
for standing height and T2D performed in the UK Biobank PRS study [35] using both 
plaintext calculations and the SQUiD PRS query. The standing height and T2D PRS use 
51,209 and 183,830 SNPs, respectively. They are the traits with the most number of SNPs 
involved in PRS calculations in the UK Biobank. We performed these calculations for 
20,000 randomly selected patients in the UK Biobank. Our analysis revealed no observ-
able difference in the PRS distribution and scores between plaintext and SQUiD queries 
(Fig. 7). Notably, the sole discrepancy between the calculations arose from a marginal 
loss in precision. To accommodate the requirements of using integers in SNP effect sizes 
in SQUiD PRS queries, the effect sizes were multiplied by 1000 and converted to inte-
gers. However, the resulting precision loss was minimal (Fig. 7B, C).

Discussion
We introduce SQUiD, a novel, secure, and user-friendly queryable genotype-phenotype 
database implemented using homomorphic encryption. We envision SQUiD as a valu-
able tool for data owners, including hospitals, non-profit academic research institutions, 
and government health agencies, offering them a secure means to store genotype-phe-
notype data in the cloud while enabling authorized researchers to securely analyze this 
data. We propose that our system has the potential to replace existing genotype-phe-
notype databases, delivering enhanced security measures without compromising func-
tionality. By employing homomorphic encryption, SQUiD offers a robust, scalable, and 
practical solution to mitigate privacy risks associated with sensitive genetic and phe-
notypic data. We demonstrate this by showing that SQUiD can scale with increasing 
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numbers of patients and SNPs in a genotype-phenotype database, by performing a sim-
ple study on UKBB data, as well as by replicating PRS calculations in UKBB [35]. All 
our query protocols (count query, MAF query, PRS query, and similarity query) and 
encryption protocols (setup of the database) were run on single-threads unless other-
wise indicated.

SQUiD leverages homomorphic encryption, which, to date, presents three key chal-
lenges. Firstly, traditional homomorphic encryption was designed for a two-party set-
ting involving a server and a client. Secondly, it is known to incur a high storage cost. 
Lastly, analysis with homomorphic encryption tends to be slow. To overcome the first 
challenge, we adopted the established concept of the proxy re-encryption system  [25] 
and adapted it to develop a theoretical and practical implementation within the frame-
work of homomorphic encryption. This adaptation, which we refer to as the public key-
switching technique, enables secure multi-client queries on encrypted data, specifically 
addressing the needs of our application in the biomedical domain.

Furthermore, we demonstrate a significant improvement in storage efficiency through 
the application of a well-known vertical packing storage method, achieving a storage 
enhancement of 49,960 times compared to a naive homomorphic encryption solution. 
While storing SNP genotypes using homomorphic encryption increases storage costs 
relative to state-of-the-art encryption methods like AES, this approach is indispensable 
as homomorphic encryption allows execution of functions on encrypted data. While 
our queries demonstrate slower performance compared to plaintext solutions, we con-
sider the trade-off between security and performance to be within acceptable limits. 
Additionally, implementing multi-threading significantly enhances performance. This 

Fig. 7  A Boxplots of the PRS score distributions of UK Biobank patients for standing height and type 
2 diabetes (T2D) calculated with SQUiD (orange) vs plaintext (blue). B A scatter plot of the height PRS 
calculated by SQUiD vs. plaintext, where each point represents a patient. The black line is a line of best fit with 
an R2 of 0.9999. C The same plot as B for T2D with an R2 value of 0.9985
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performance overhead is unlikely to significantly impact the usability and utility of the 
framework for researchers. This is because the alternative is to download a large data-
base and analyze the data locally, which is a much more time-consuming and resource-
intensive process. Therefore, we believe that our framework offers an optimal balance of 
security and performance.

Although encrypted database systems do exist, to the best of our knowledge, none of 
them offer the same level of security guarantees and functionality as SQUiD. A devel-
oped secure database framework named CryptDB [36] offers efficient secure data stor-
age and query performance. However, it does not offer the functionalities provided by 
SQUiD for two main reasons. Firstly, this framework is unable to compute the same 
set of queries as SQUiD. For instance, CryptDB lacks the ability to add and multiply 
encrypted database items, a necessary requirement for computing the linear combina-
tions in PRS queries. Secondly, and more critically, CryptDB exhibits significant infor-
mation leakage during equality checks used in the filtering process in count and MAF 
queries. Specifically, CryptDB exposes the count of unique items within the columns 
used for the equality checks. For genotype-phenotype databases that store SNPs with 
just three possible genotypes with known allele frequencies, CryptDB would expose the 
patients with the same genotypes for each SNP. This information could be combined 
with the known and well-studied population frequencies of each SNP to devise a simple 
attack that reconstructs the genotype values for each patient in the database, resulting in 
a complete breach of security. Furthermore, while databases that keep data encrypted at 
rest with AES can answer the same queries as SQUiD, they cannot perform these que-
ries as securely as SQUiD does. For any query, these databases must first decrypt the 
relevant data to compute the query, exposing the data to potential attacks. In contrast, 
SQUiD can perform all queries without the need for decryption.

Privacy-preserving MAF calculations using homomorphic encryption were proposed 
before [37]. Notably, SQUiD’s MAF query differs from this approach as it computes the 
MAF within a filtered patient cohort, where the filtering is done via protocols developed 
in this work. For a detailed mathematical exposition of these distinctions, refer to Addi-
tional file 1: Supplementary Material.

We compared our patient similarity queries to existing private patient similarity que-
ries (SPQ). Many existing SPQ protocols such as Wang et  al. [18] privately compute 
patient similarity under the secure multiparty computation security assumptions,  (i.e., 
non-colluding parties). Since SQUiD employs homomorphic encryption, no assump-
tions about collusion between parties are necessary. Additionally, our query process 
involves a single round of communication, with the querying researcher sending a query 
to the cloud and receiving a prompt response. In contrast, the protocol outlined in [18] 
necessitates an interactive protocol with multiple rounds.

We also empirically compared SQUiD to another study [38] due to the similar secu-
rity settings. This study proposes a partial homomorphic encryption algorithm that 
supports only ciphertext addition and scalar multiplication operations for computing 
patient similarity using a squared L2-norm. We implemented the euclidean distance 
(equivalent to the squared L2-norm protocol) from the study  [38] to the best of our 
understanding for comparison purposes. Additional file 1: Fig. S11 shows that SQUiD 
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can compute the squared L2-norm faster for larger datasets with an approximately 2x 
speed up for datasets with 49,960 patients.

We envision three use cases for this framework: (1) funding agencies such as NIH 
can employ this framework to disseminate insights derived from the data currently 
available through the NIMH Data Archive (NDA) or Database of Genotypes and Phe-
notypes (dbGAP), (2) multi-site consortia can employ this framework to disseminate 
data to their members while keeping the data secure in cloud storage, (3) learning 
health systems can employ this framework to disseminate data to their researchers 
while keeping the data secure in cloud storage. Our secure framework is designed to 
enable users to form specific patient cohorts based on desired characteristics. Within 
this system, users can also determine the distribution of PRS for a particular disease 
across various patient populations. For example, one can explore the PRS distribution 
for schizophrenia among patients diagnosed with bipolar disorder. Additionally, the 
framework allows for the analysis of disease outcomes in patients who share genetic 
similarities with a specific patient of interest, facilitating more personalized and tar-
geted approaches to healthcare and research.

We designed SQUiD with ease of use in mind for both researchers and data owners. 
Data owners are only required to provide a VCF file for the genotypes and a CSV file for 
the phenotype data. SQUiD then handles the packing, encryption, and uploading of this 
data to a public cloud platform. The SQUiD codebase includes a cloud-deployable API 
framework, allowing researchers to query the data through API calls seamlessly.

SQUiD’s design is scalable to support multiple data owners. In a multi-owner sys-
tem, each data owner independently prepares, encrypts, and uploads their data to the 
public cloud. Each data owner’s information is stored in a separate encrypted data-
base along with a corresponding key store. When a researcher wishes to query the 
data, they send their public key to each data owner. The data owners then generate a 
public key-switching key using their secret key and store this in their key-switching 
store. The researcher’s query is processed in the public cloud, where it is evaluated 
across the encrypted databases. The results are key-switched using the respective 
data owner’s key-switching store, ensuring that the final query results are encrypted 
under the researcher’s public key. These results are aggregated and sent back to the 
researcher, who can then decrypt them to obtain the final output.

This multi-owner implementation introduces additional storage, as the public cloud 
must store multiple key-switching stores for each data owner. It also needs to main-
tain evaluation keys (relinearization keys, rotation keys, and bootstrapping keys) for 
each data owner. Despite this, the process ensures the privacy of each data owner is 
maintained, and the researcher can securely access aggregated results without com-
promising individual data security. There are also approaches that do not require 
multiple evaluation keys for each owner [39], however, they are not tailored to the 
specific needs of genotype-phenotype data.

SQUiD can handle missing data. For count and MAF queries, SQUiD defaults to 
excluding patients with missing values from the cohort being analyzed. For the PRS 
and similarity queries, any column with missing SNPs will be excluded from the PRS 
and similarity query calculation.
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Conclusions
SQUiD presents an innovative and impactful solution for a world grappling with escalat-
ing concerns surrounding security and privacy of genetic and clinical data. By circum-
venting the challenges posed by the ever-changing, heterogeneous landscape of data 
protection laws, SQUiD offers a robust framework to safeguard sensitive information. 
Moreover, we firmly believe that SQUiD has the potential to enhance patient trust by 
ensuring the security and controlled utilization of their data for specific research pur-
poses and thus has the potential to increase participation in genetic research. Lastly, 
although this study focused on genotype-phenotype analyses for proof of principle, 
SQUiD’s modular design allows for the integration of other discrete data modalities and 
analytic approaches, as the need arises. This adaptability will be critical at a time when 
precision medicine research is rapidly expanding to encompass more complex molecular 
and clinical datasets.

Methods
Security and threat models

Our security assumption is based on the current data-sharing policies within many pub-
lic and private entities, that is, the data owner and authorized researchers are mutually 
trusted. Thus, authorized researchers are allowed to query the genotype-phenotype data 
that do not threaten the confidentiality of patients according to the data use agreements. 
The inherent data leakage from query results and potential inference attacks from 
authorized researchers are therefore not considered.

Meanwhile, genotypes and phenotypes as well as a subset of the queries are protected 
from the public cloud and attackers. More precisely, we consider the following three 
threat models for database management [40, 41]:

–	 Snapshot attackers that obtain a snapshot of the database
–	 Persistent passive attackers that compromise the cloud server to obtain not only the 

database but also queries and all server’s operations
–	 Active attackers that fully compromise the server to deviate from pre-designed pro-

tocols for queries

In our SQUiD construction, snapshot attackers receive ciphertexts of the Braker-
ski-Gentry-Vaikuntanathan (BGV) homomorphic encryption scheme. We use the 
security level estimator from HElib  [33, 42] to choose BGV parameters that provide a 
128-bit security level against known attacks. Consequently, the security towards snap-
shot attackers inherits from BGV’s IND-CPA security, i.e., the ciphertexts are almost 
indistinguishable from random characters.

For persistent passive attackers, there are many ways that querying encrypted data-
bases can result in private information leakage  [43–46]. Most prominent ones include 
leakage through (1) access pattern, which determines if certain records are consist-
ently accessed, and (2) search pattern, which indicates if and when an encrypted query 
is repeated. Many cryptosystems, including property-preserving encryption (PPE) [47, 
48] and searchable encryption (SE) [49, 50], fail to protect against these types of infor-
mation leaks. This is primarily due to their inherent functionality, which inadvertently 
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discloses properties of datasets, thereby compromising privacy. However, homomorphic 
encryption schemes such as BGV provide a solution that does not leak access and search 
patterns [51]. Using HE to encrypt databases propels algorithms that have to touch all 
the relevant records in the dataset for a single query. For example, to find out whether 
an encrypted input is in the encrypted database, the input needs to be compared with 
every single encrypted value in the database homomorphically. This prevents access pat-
tern leakages since the access pattern remains uniform for all queries. In addition, search 
pattern leakages are prevented due to the IND-CPA security under carefully selected 
parameters, since encrypted queries are indistinguishable from one another, regardless 
of their contents [51].

It is worth mentioning that persistent passive attackers do not learn additional infor-
mation about the database from knowledge of the server’s computation patterns. Pre-
cisely, when an authorized researcher sends a query f, the server performs a series of 
operations on the encrypted database Enc(m) to obtain Enc(f (m)) . The function f is in 
plaintext for Count, MAF and PRS queries and contains ciphertexts for similarity que-
ries. In all these cases, the computation pattern for the server is predefined and contains 
operations such as homomorphic additions, multiplications, and key switching. As such, 
inference attacks from persistent passive attackers are also prevented, as only computa-
tional patterns of different functions are revealed but not any computation result f(m).

While the problem of defending against active attackers is challenging and still 
unsolved  [40, 52], our SQUiD construction provides reasonable mitigation towards 
active attackers. Namely, active attackers can deviate from pre-determined operations 
in SQUiD and therefore send wrong computation results to authorized researchers, but 
they can not learn information about the database.

Homomorphic encryption

Encryption is a procedure that maps the plaintext data into its ciphertext, such that 
the plaintext can not be deduced from the ciphertext without knowing the secret key. 
Homomorphic encryption is a class of encryption schemes with an additional property: 
computations can be performed over ciphertexts without knowing the secret key.

Figure 8 visualizes this property in a commutative diagram, which enables secure com-
putation outsourcing.

To compute a function f on plaintexts m1, . . . ,mt without revealing them, plaintexts 
are encrypted and corresponding ciphertexts Enc(m1), . . . ,Enc(mt) are sent to the 
public cloud. Then, a function f̃  , which corresponds to the HE-friendly version of the 
desired function f, is evaluated among the ciphertexts homomorphically. As a result, a 
ciphertext of f (m1, . . . ,mt) is derived, which contains the evaluation result equivalent 

Fig. 8  The homomorphic evaluation of a function f on ciphertexts
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to that of a plain evaluation. Therefore, the decryption of the final ciphertext outputs the 
desired evaluation result.

HE ciphertexts contain a noise component, whose value grows with homomorphic 
operations. This is controlled by pre-fixed HE parameters, which is also used to set a 
noise budget. If the number of operations in an algorithm is too large such that the noise 
consumption exceeds the budget, then the result can no longer be decrypted correctly. 
To avoid this, a bootstrapping operation is introduced to refresh the ciphertexts, ena-
bling the fully homomorphic encryption (FHE) schemes that support evaluations of 
arbitrary circuits for different operations including multiplications and additions (i.e., 
arbitrary f)  [53]. Detailed realizations of homomorphic operations are included in the 
supplementary material.

Brakerski‑Gentry‑Vaikuntanathan scheme (BGV)

The BGV scheme is an FHE scheme that relies on the hardness of the ring learning with 
error (RLWE) problem [54]. Its basic building blocks are homomorphic addition ADD 
and multiplication MULT. Since any computable function can be realized with addi-
tions and multiplications, the homomorphic evaluation of any computable f can be real-
ized with ADDs and MULTs. Bootstrapping in BGV is a very costly operation [55, 56]. 
It is, therefore, common to use BGV in the leveled manner, i.e., to choose the HE noise 
parameter with large noise capacity such that computations can be performed without 
bootstrapping. Our study uses the leveled version of BGV.

BGV allows efficient computations in the amortized sense. It supports single instruc-
tion, multiple data (SIMD) operations, which allows multiple values to be packed into 
one BGV ciphertext, enabling computations over a single ciphertext to be performed on 
all packed values in an efficient manner [57]. Details of the SIMD packing are included 
in the supplementary material.

Public key‑switching

In general, HE binary operations only support input ciphertexts that are encrypted 
under the same key. Therefore, in the scenario of multiple users each holding their own 
keys, there is a natural need to convert a ciphertext encrypted under one key to another 
ciphertext that encrypts the same message under a different key. A naive approach is to 
decrypt and re-encrypt with a different key, but this exposes the original secret key and 
the message to the party that performs this procedure. To prevent such leakages, the 
above procedure can be done homomorphically such that the evaluation party can not 
access the message in the clear. Such a technique is called key switching. Mathematically, 
when converting the key system from (pk, sk) to (pk∗, sk∗) , the evaluation party does not 
need to know sk , but a key-switching key ksk(sk→sk∗) which leaks no information about 
secret keys.

Our scenario exploits the key-switching key ksk(sk→sk∗) . While the traditional key-
switching key generation uses both sk and sk∗ , only sk and pk∗ are needed in our 
design; hence, it is called public key-switching. This design preserves the confiden-
tiality of sk∗ as it does not need to be shared to compute the key-switching key. In 
our scenario, the secret key of the authorized researchers does not need to be sent to 



Page 20 of 27Blindenbach et al. Genome Biology          (2024) 25:314 

the data owner to generate the key-switching key. Please see supplementary material 
for the mathematical details of the realization of public key-switching with BGV and 
how we control the increasing noise.

Database construction with vertical packing

The dataset in SQUiD is represented as a matrix M = {m(i,j)|1 ≤ i ≤ r, 1 ≤ j ≤ k} , 
where r is the number of patients, k is the number of attributes (features), and the 
value in position (i,  j) corresponds to the j-th feature of the i-th patient (e.g., the 
genotype of j-th SNP of i-th patient). We use the term vertical or horizontal for 
the direction in the matrix, which corresponds to an attribute for all patients or all 
attributes for a single patient, respectively.

As we explained earlier, BGV supports packing multiple messages into one cipher-
text. SQUiD packs elements vertically: let ℓ denote the packing capacity in a cipher-
text, then the r elements in the jth column are encrypted into ⌈r/ℓ⌉ ciphertexts

where 1 ≤ s ≤ ⌈r/ℓ⌉ and mi,j is considered as 0 for i > r . Overall, entire dataset is 
encrypted into C = {ct(s,j) | 1 ≤ s ≤ ⌈r/ℓ⌉, 1 ≤ j ≤ k}.

The update, insert, and delete operations on a vertically packed encrypted data-
base vary slightly from their typical implementations.

–	 Update: To update a single value m′ at index i, j, a new encryption of ct(s,j) where 
s = ⌈i/ℓ⌉ needs to be uploaded where 

–	 Insert: To insert a new row at r + 1 , if ciphertexts are not fully packed (i.e., ℓ  | r ), 
then the last row of packed ciphertexts contains zeros at row index r + 1 , which 
are updated. Otherwise, the following k fresh ciphertexts are added, forming the 
last row of C. 

–	 Delete: To delete an entry at index i,  j, a plaintext, which encodes zero at the 
i mod ℓ-th slot and one elsewhere is multiplied with ct(⌈i/ℓ⌉,j).

Note that update and insert operations both upload new ciphertexts with low noise, 
but the delete operation increases the noise with a plaintext-ciphertext multipli-
cation. To bound the noise growth, we set a number α for the maximum times of 
consecutive delete operations. On the (α + 1)-th time to delete an entry, an update 
should be performed instead, after which α deletes are again allowed. For SQUID 
with our experimental parameters, the value α is taken to be 5.

ct(s,j) = Enc {m(ℓ·s+1,j),m(ℓ·s+2,j), · · · ,m(ℓ·(s+1),j)}

ct(s,j) = Enc
(

{m(ℓ·s+1,j),m(ℓ·s+2,j), · · · ,m
′, · · · ,m(ℓ·(s+1),j)}

)

{

ct(s+1,j) = Enc
(

{m(ℓ·r+1,j), 0, · · · , 0}
)

, 1 ≤ j ≤ k
}
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Functionalities

In this section, we describe the supported functionalities of SQUiD and the evalua-
tion procedures using homomorphic encryption.

Count queries

The first category of queries is to count the number of patients whose attributes satisfy 
certain conjunctive (AND) and/or disjunctive (OR) relations. Its evaluation contains 
two stages, filtering and vertical aggregation.

Filtering  Suppose the researcher specifies τ > 1 selection criteria (either in plaintext or 
ciphertext) and their relation (AND and/or OR). The filtering stage outputs a predicate 
vector p composed of r encrypted binary numbers. If the element p[i] decrypts to 1, then 
the patient i is in this pre-defined cohort.

First, we explain how to homomorphically check a single selection criterion, which 
amounts to performing a homomorphic equality test between the given value in a 
query and a value in the matrix. The key idea is to find a polynomial representation, 
which can be evaluated as a sequence of homomorphic additions and multiplications.

Without loss of generality, we consider the inputs of EQTest as genotype values in 
{−1, 0, 1, 2} where −1 indicates a missing SNP, and denote them as u and v. As shown 
in Table 1, this function determines a unique truth table.

We derive the polynomial representation of EQTest(u,  v) as follows. Let v be an 
encrypted matrix value, and u be the query value, which can be either in the clear 
or encrypted depending on the researcher. If u is provided in the clear, then we can 
interpolate the u-th column of the truth Table 1 into a degree-3 polynomial Fu with 
input variable v. If u is also encrypted, then we precompute a polynomial F of degree 
5 that maps 0 to 1 and {±1,±2, 3} to 0, whose input variable is u− v ∈ {0,±1,±2, 3} . 
Note that we do not consider the case where both u and v are missing because it is 
assumed that the query value would never look for missing SNPs.

Second, we explain how to homomorphically combine the results of multiple equal-
ity checks using AND  and  OR. Let {(uk , vk)}τk=1 be the set of (encrypted or unen-
crypted) queries and (encrypted) matrix values, then for each patient i we compute 

Function EQTest ⇐⇒ Polynomial ⇐⇒ Sequence of ADDs andMULTs

Table 1  The truth table of EQtest(u, v) for SNPs. We assume that the query value u is not missing 
( u  = −1)

u
v 0 1 2

−1 0 0 0

0 1 0 0

1 0 1 0

2 0 0 1
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the expression homomorphically as Eq. 1, where d and b are constants in Table 2. The 
evaluation decrypts to 1 if the data of the patient i matches the selecting criteria, and 
0 otherwise.

Vertical aggregation  Suppose each ciphertext provides ℓ SIMD slots, then the predicate 
vector for r patients is batched into ⌈r/ℓ⌉ ciphertexts. The procedure of summing over 
these batched messages is a vertical aggregation.

Our design fully exploits the advantages of parallel computing. Namely, we perform 
O(r/ℓ) homomorphic additions with additive depth O(log (r/ℓ)) to obtain one cipher-
text, whose ℓ slots are then aggregated with O(log ℓ) homomorphic rotations and 
additions. To support larger databases sizes, not all ℓ slots might be aggregated as the 
aggregated value would overflow the ring in the BGV scheme. In these cases, it is up to 
the client to aggregate the remaining slots. Please see supplementary material for details 
of homomorphic addition and rotations with BGV.

PRS queries

The second category of queries is to obtain polygenic risk scores of all the patients.

Definition 1  The polygenic risk score (PRS) of a patient is a linear combination of val-
ues of attributes in a subset S. For given coefficients (i.e., effect sizes) {βj}j∈S , the PRS 
for patient i is fi =

∑

j∈S βj ·m(i,j) , where m(i,j) is the genotype of the j-th SNP for i-th 
patient.

The PRS for each patient can be calculated with homomorphic multiplication and 
additions. Please see supplementary material for details of homomorphic addition and 
multiplications with BGV.

Horizontal aggregation  PRS queries aggregate information horizontally. We use paral-
lel computing to minimize the execution time, and as can be seen from the “Results” sec-
tion, answering PRS queries is relatively fast.

MAF queries

The third category of queries is to calculate the minor allele frequency for a target SNP of 
a filtered cohort of patients.

(1)xi = d +

τ
∏

k=1

[b+ EQTest(uk , vk)]

Table 2  Constants in circuit (1) [58]

Query type b d

Conjunction 0 0

Disjunction 1 1
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Definition 2  Minor allele frequency (MAF) is the frequency at which the minor allele 
occurs in a given population or a cohort. Let p be the predicate vector for r patients, 
where p[i] indicates whether the patient i is in the cohort. Then, for the dataset 
M = {m(i,j)} , the MAF for SNP j with p is

As the homomorphic division and minimum comparisons are currently expen-
sive operations, the cloud instead computes the numerator and denominator homo-
morphically and then returns the results to the clients for decryption, division, and 
the minumum operation.

Similarity queries

The fourth category of queries determines whether a specific individual (denoted as 
d) is genetically similar to patients with a certain disease or those without. There are 
two similarity metrics for researchers to choose from.

Definition 3  Suppose the database stores k attributes and the last attribute is the 
disease. 

1.	 The L2-distance similarity score SL2(i, d) is defined as 

2.	 The Jaccard similarity score SJcd(i, d) is defined as 

 where EQTest(·, ·) equals to 1 if two inputs are equal and 0 otherwise.

In other words, the similarity score S(·)(i, d) horizontally aggregates the result of the 
squared difference or EQTest.

As a result of this query, the researcher will receive two encrypted values r1, r2 from 
the cloud. The value r1 is the number of patients that are genetically similar to the tar-
get d with this disease, r2 is the number of patients that are genetically similar to the 
target d and do not have the disease.

These two values are homomorphically computed as follows. 

1.	 Similar to the filtering method in “Filtering” section, the cloud computes a predicate 
p for patients with this disease.

AF(p, j) =

(

r
∑

i=1

m(i,j) · p[i]

)

/

(

2

r
∑

i=1

p[i]

)

,

MAF(p, j) = min(AF(p, j), 1− AF(p, j)).

SL2(i, d) =

k−1
∑

j=1

(m(i,j) − dj)
2.

SJcd(i, d) =

k−1
∑

j=1

EQTest(m(i,j), dj),
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2.	 To count similar patients, the cloud computes the similarity score S(·)(i, d) between 
the target d and patient i. Then the cloud homomorphically checks if S(·)(i, d) is 
greater than the pre-determined threshold t, which is done by evaluating the interpo-
lation polynomial of degree Range(S(·)(i, d))− 1 . In our implementation, we use the 
Paterson-Stockmeyer method [59], a well-established technique [60–63], to evaluate 
polynomials efficiently. As such, we get a predicate ps.

3.	 Multiplying the two predicates p and ps component-wise realizes the AND relation 
and leads to another vector, whose vertical aggregation gives r1.

4.	 Multiplying the inverse predicate ¬p and predicate ps component-wise realizes the 
AND relation and leads to another vector, whose vertical aggregation gives r2.
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