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Abstract 

Background: Long-read technologies from Pacific Biosciences (PacBio) and Oxford 
Nanopore Technologies (ONT) have transformed genomics research by provid-
ing diverse data types like HiFi, Duplex, and ultra-long ONT. Despite recent strides 
in achieving haplotype-phased gapless genome assemblies using long-read tech-
nologies, concerns persist regarding the representation of genetic diversity, prompt-
ing the development of pangenome references. However, pangenome studies face 
challenges related to data types, volumes, and cost considerations for each assembled 
genome, while striving to maintain sensitivity. The absence of comprehensive guid-
ance on optimal data selection exacerbates these challenges.

Results: Our study evaluates recommended data types and volumes required 
to establish a robust de novo genome assembly pipeline for population-level pange-
nome projects, extensively examining performance between ONT’s Duplex and PacBio 
HiFi datasets in the context of achieving high-quality phased genomes with enhanced 
contiguity and completeness. The results show that achieving chromosome-level 
haplotype-resolved assembly requires 20 × high-quality long reads such as PacBio HiFi 
or ONT Duplex, combined with 15–20 × of ultra-long ONT per haplotype and 10 × of 
long-range data such as Omni-C or Hi-C. High-quality long reads from both platforms 
yield assemblies with comparable contiguity, with HiFi excelling in phasing accuracies, 
while Duplex generates more T2T contigs.

Conclusion: Our study provides insights into optimal data types and volumes 
for robust de novo genome assembly in population-level pangenome projects. Reas-
sessing the recommended data types and volumes in this study and aligning them 
with practical economic limitations are vital to the pangenome research community, 
contributing to their efforts and pushing genomic studies with broader impacts.
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Background
A high-quality and complete human reference genome is the fundamental bedrock sup-
porting genetic studies of human diseases and population structures. Over the past two 
decades, the human reference genome employed in genetic studies has been meticu-
lously crafted from genomic segments sourced from thousands of individuals [1, 2]. 
Despite efforts to assemble high-quality, gapless genomes such as T2T-CHM13 [3], T2T-
YAO [4], CN1 [5], I002C [6], or HG002 [7], such references raise concerns regarding 
their abilities to represent genetic variations across diverse human populations accu-
rately. The prevailing consensus is that no singular reference sequence can adequately 
encapsulate the complex genomic diversity across global populations [8]. This under-
standing highlights the crucial need for high-quality reference genome panels that accu-
rately resolve haplotypes, presenting the complex genetic variations observed within 
distinct populations [9–11]. In parallel, there is a growing trend to shift from a singu-
lar reference to a pangenomic approach, which supports a broader range of genomic 
diversity, acknowledging the complexities within and across diverse human populations 
[12–15]. This shift is supported by the rapid development of computational tools for 
pangenome construction and analysis [16–21].

Haplotype-resolved genome sequences are the building blocks for pangenome con-
struction. However, despite the contradictory nature of cost and sensitivity, both of 
which play vital roles in pangenomic projects, most recent studies [14, 15] lack com-
prehensive evaluation and guidelines related to the optimal data types and volumes 
required, mostly relying on the propositions of assembly tool authors for volume and 
data type requirements.

At the forefront of long-read technology (LRT) innovation, Pacific Biosciences 
(PacBio) and Oxford Nanopore Technologies (ONT) stand out as the primary driving 
forces, spearheading advancements in this field through their groundbreaking contri-
butions. PacBio’s long reads (LR) have excelled in read quality, while ONT has lever-
aged its competitive edge in providing substantial read lengths at a lower cost [22]. To 
address the disparity between read quality and length, ONT has recently introduced a 
novel technique termed “Duplex,” capable of achieving a quality level of Q30, thereby 
bridging the gap between read quality and read length (https:// nanop orete ch. com/ 
about- us/ news/ oxford- nanop ore- tech- update- new- duplex- method- q30- nanop ore- sin-
gle- molec ule- reads-0). Recent comparisons suggest that the two platforms exhibit simi-
lar performance in structural variation (SV) analysis [23, 24]. Details on the current LR 
sequencing platforms, LR mapping, variant calling, and genome assembly approaches 
are discussed elsewhere [25]. However, HiFi vs Duplex performance in genome assembly 
has not been properly evaluated and compared.

In this study, we evaluated different data types and the minimum data volume 
required to establish a robust pipeline of genome assembly for population-level pange-
nome projects. Specifically, we conducted a performance comparison between ONT’s 
Duplex dataset and PacBio HiFi dataset. In this comparison, we extensively examined 
the performance of these datasets in the context of genome assembly, scrutinizing their 
effectiveness in achieving high-quality phased genomes with enhanced contiguity and 
completeness. Given the swift advancements in long-read technologies (LRT), it is 
prudent to reassess the recommended data types and volumes outlined in this study, 

https://nanoporetech.com/about-us/news/oxford-nanopore-tech-update-new-duplex-method-q30-nanopore-single-molecule-reads-0
https://nanoporetech.com/about-us/news/oxford-nanopore-tech-update-new-duplex-method-q30-nanopore-single-molecule-reads-0
https://nanoporetech.com/about-us/news/oxford-nanopore-tech-update-new-duplex-method-q30-nanopore-single-molecule-reads-0
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aligning them with the practical economic limitations within the scope of your research 
endeavors.

Results
DNA sequencing

The I002C data used for this research are generated as a part of an ongoing effort to 
generate telomere-2-telomere diploid assembly of a male Singaporean of Indian ancestry 
I002C [6]. Through sequencing on various platforms, we obtained the following data-
set for the child sample: 152.97 Gb (~ 50.99 ×) PacBio HiFi data, 193.66 Gb (~ 64.55 ×) 
ONT Duplex data, 441.07 Gb (~ 147 ×) ONT Ultralong data (ULONT) and 222.21 Gb 
(~ 74.07 ×) Omni-C data. For the paternal sample, 107.69 Gb (~ 35.90 ×), and maternal 
sample, 112.48 Gb (~ 37.49 ×), MGI paired-end data was sequenced (Table 1). A similar 
volume of publicly available HG002 dataset was utilized in this study (Table 1). On aver-
age, the Duplex reads were twice as long as the HiFi reads, yet they maintained a compa-
rable level of read quality (Fig. 1).

Coverage saturation analysis of population‑scalede novoassembly

To leverage the potential of long reads, for genome assembly we utilized high-quality 
long reads (HQLR) such as HiFi and Duplex, which are 10  kb or longer and ULONT 
reads of at least 100  kb (Additional file  2: Table  S1). We examined the importance of 
diverse data types and offered general observations on the sequencing depth or data vol-
ume required for genome assembly and its analyses at scale.

Data down‑sampling

We generated varying coverage depths by randomly down-sampling different data types, 
considering a haploid genome size of 3 Gbp (Additional file 2: Table S2–S4).

i) HiFi and Duplex reads: downsampled datasets at 20 × , 30 × , 35 × , 40 × , and 
45 × coverage

ii) ULONT: downsampled datasets at 10 × , 20 × , 30 × , 40 × , 50 × , and 60 × coverage
iii) Omni-C/Hi-C: downsampled datasets at 10 × , 20 × , and 30 × coverage

Due to the longer length of Duplex reads, achieving the same sequencing depth 
requires, on average, twice as many HiFi reads as Duplex reads at any given coverage 
level, as demonstrated in Additional file 1: Fig. S1.

Evaluation of assembly results in terms of sequence saturation

To evaluate the impact of sequencing coverage on assembling performance and identify 
the coverage saturation point where assembly contiguity begins to plateau, we utilized 
hifiasm [26–28] to assemble HiFi/Duplex data independently (HQLR_Only) and in con-
junction with ULONT data across varying coverage depths. The assembly results show a 
clear positive correlation between the augmentation of data coverage (HiFi/Duplex) and 
assembly performance for both primary assemblies (Additional file  1: Fig. S2), repre-
senting a mosaic of the two haplotypes and the two haplotypes derived from the phased 
assembly (Fig. 2).
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At any given coverage, the assembled genome size aligns well with expected genome 
sizes (2.9 Gb paternal, 3 Gb maternal, and 3.1 Gb primary assembly). The inflated assem-
bled genome size positively correlated with the duplication rate (Rdup). As the data cov-
erage increases, key assembly contiguity features such as NG50, Longest contig length, 
and Telomere-2-Telomere [T2T] contigs exhibit an upward trend, while the “No_of_
Sequences” demonstrate a downward trajectory. Assembly contiguity reaches plateaus 
when the HQLR-only (HiFi/Duplex) coverage exceeds 35 × (Fig. 2).

Furthermore, in combination with ULONT data, even as low as 10 × ULONT along 
with 35 × of HQLR plateau coverage significantly enhances assembly contiguity com-
pared to that of 45 × HQLR-only assembly. The inclusion of ULONT data notably 
improves the assembly of telomere-to-telomere contigs. Assembly contiguity reaches 
a plateau with ULONT coverage exceeding 30 × . We observed a similar trend for pri-
mary assemblies (Additional file 1: Fig. S2). The detailed assembly statistics are provided 

Fig. 1 Comparison of read length and quality (Phred scale) between PacBio HiFi and ONT Duplex reads. 
A Distribution of read length vs quality of HiFi and Duplex reads with vertical dotted lines indicating the 
average lengths: 17 kbp for HiFi and 29.5 kbp for Duplex reads. On average, more than 50% of both Duplex 
and HiFi reads have quality scores ≥ Q30, a general cutoff for high-quality reads, indicated by the horizontal 
dotted line. B Comparison of read quality among ONT Simplex, ONT Duplex, and PacBio HiFi, with vertical 
dotted lines representing average quality scores: Q16 for Simplex, Q29 for Duplex, and Q32 for HiFi reads. 
C Percentage of reads with a quality score of Q30 and higher (dotted line). On average, 63% of HiFi reads and 
57% of Duplex reads have a quality score of Q30 and higher
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in the Additional Materials (Additional file  2: Table  S5–S10). Hereafter, in the figures 
and tables, “HQLR + ULONT” denotes HQLR (HiFi/Duplex) coverage of 35 × , repre-
senting the HQLR-only plateau coverage, combined with various ULONT coverages. 
Similarly, “HQLR + ULONT + Omni-C” signifies 35 × HQLR coverage combined with 
30 × ULONT coverage, representing the ULONT plateau coverage, along with different 
levels of Omni-C (I002C)/Hi-C (HG002) coverage.

Improvement of phasing with Omni‑C/Hi‑C

The hifiasm tool is capable of producing pseudo-haplotypes or a dual assembly using 
HiFi/Duplex data alone (Fig. 3a) or in conjunction with ULONT (Fig. 3b). This process 
efficiently captures the heterozygous variances across the two haplotypes. HiFi-only 
assemblies demonstrate relatively fewer switch errors due to their higher quality com-
pared to Duplex-only assemblies. Conversely, the longer read lengths of Duplex data 
contribute to achieving superior global phasing (hamming) compared to HiFi reads 
(Additional file  1: Fig. S3). Due to their lengths, ULONT reads additionally improve 
phasing [29]. However, even with ULONT reads, assemblers generate contigs with short 
phase blocks that often show increased phasing errors (Fig. 3b).

Incorporating even low coverage of long-range chromatin interaction data like Omni-
C/Hi-C, such as 10 × , results in a notable reduction in globally incorrectly phased vari-
ants (measured by hamming error), leveraging the long-range chromatin interaction 
information provided by Omni-C/Hi-C (Additional file  1: Fig. S3). Even though long-
range interaction data can produce full-length phased contigs from different chromo-
somes, maternal and paternal origin contigs can be mixed in one haplotype (Fig.  3c). 
This intrinsic ambiguity in long-range interaction data phasing is attributed to the chal-
lenge of identifying markers that define paternal and maternal origin, a task not easily 
achievable with offspring data alone, except in the case of XY chromosomes. Despite this 
improvement, switch errors, which measure the local inaccuracies of heterozygous vari-
ants, remain largely unaffected due to the limitations in the information offered by long-
range chromatin interaction data. Besides its phasing capability, Omni-C/Hi-C data can 
also be utilized for scaffolding. Omni-C coverage saturation concerning phasing can be 
observed at 10 × (Additional file 1: Fig. S4). Since hifiasm does not leverage long-range 
data for scaffolding to enhance contiguity (Additional file  1: Fig. S4), higher coverage 
may prove advantageous for scaffolding processes. Determining the optimal coverage for 
long-range chromatin interaction data (Omni-C/Hi-C) is beyond the scope of this study, 
as discussed elsewhere [30].

Genome completeness and quality

Genome completeness assessed through single-copy gene analysis revealed that assem-
blies from HQLR-only exhibited slightly lower performance with an average of 96.98% 
single copy, 1.40% duplicated, 0.30% fragmented, and 1.31% missing genes (Fig.  4a). 
Meanwhile, assemblies generated with HQLR + ULONT data showed higher com-
pleteness values with 97.53% single copy, 1.18% duplicated, 0.19% fragmented, and 1.10 
missing genes (Fig. 4b). Combined haplotype results show increased coverage resulted 
in marginal improvements in gene completeness, with HQLR-only assemblies reaching 
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saturation around 35 × coverage, and ULONT assemblies around 30–40 × (Fig. 4, Addi-
tional file 2: Table S11–12). Similar results were found for HG002 (Additional file 1: Fig. 
S5) and primary assemblies of both datasets (Additional file  1: Fig. S6–S7, Additional 
file 2: Table S13). Individual haplotypes from haplotype-resolved assemblies do not fol-
low a clear trend of coverage saturation but show noticeable improvements by incorpo-
rating ULONT reads (Fig. 4, Additional file 1: Fig. S5).

The estimated k-mer completeness, which indicates the proportion of reliable k-mers 
from the reads found in the assembly, averaged 95.46% for haplotype-resolved assem-
blies (Fig. 5). In comparison, the primary assemblies averaged a slightly higher rate at 
96.37 (Additional file 1: Fig. S8, Additional file 2: Table S14). This finding aligns with the 
gene completeness analysis results presented in (Fig. 4).

Assembly quality assessed from k-mers as measured by phred scale quality score (QV) 
generally showed improvement with increased coverage for both haplotype-resolved 
assemblies (Fig. 6, Additional file 2: Table S15) and primary assemblies (Additional file 1: 
Fig. S9, Additional file 2: Table S15).

Computational requirements

We conducted comparisons of both the runtime and peak memory consumption of 
assembling steps across various coverage levels for specific data types and assemblies 
resulting from the various combinations of different data types. The computational 
demands are of paramount importance, particularly in studies conducted at population 
scale and those utilizing cloud-based platforms for analysis.

The error correction process is a critical and most time-intensive step taking more 
than half of the total execution time, followed by the graph construction by long read 
assemblers. By default, hifiasm performs three rounds of error correction of input HiFi/
Duplex reads. Consequently, the time and memory requirements exhibit an upward 
trajectory with increasing coverage when assemblies are derived solely from data 
(HQLR_only). In the case of “HQLR + ULONT,” where a fixed amount of HQLR data 
is employed, computational time shows an upward trend with the increased coverage of 
ULONT. At the same time, memory requirements remain stable across coverage levels. 
This stability in memory consumption is attributed to the implementation of ULONT 
data in their algorithm [28].

The incorporation of long-range chromatin interaction data (Omni-C) primarily 
utilized for phasing and resolving graph tangles reveals that both time and memory 
requirements remain more consistent across increased long-range data coverage (Fig. 7, 
Additional file 2: Table S16). However, compared to HQLR and “HQLR + ULONT,” the 
overall increase in memory requirements can be attributed to an additional step required 
to construct unique 31-mers from the initial assembly graph generated from HQLR 
reads for processing long-range data. This step depends on the coverage of HQLR, 
which remains fixed. In contrast, the variable coverage of long-range data has minimal 
influence on memory requirements, making it consistent across different levels of long-
range data coverage. Computation time does not linearly increase with Hi-C coverage. 
Instead of using general-purpose read mappers to align Hi-C reads, hifiasm implements 
k-mer-based alignment to filter Hi-C reads that do not bridge heterozygous alleles or are 
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mapped to homozygous unitigs reducing the computational burden as described in their 
algorithm [27].

Fig. 5 Assessment of k-mer-based genome completeness analysis

Fig. 6 K-mer-based genome quality scores
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Comparison of HiFi and Duplex reads performance inde novoassembly

We conducted a comparison between the new data types regarding their performance 
in genome assembly using the current I002C and publicly available HG002 datasets. 
HG002 Duplex and Revio HiFi data were downloaded from HPRC. The assemblies were 
constructed with the same coverage (i.e., 35 × HiFi/Duplex + 30 × ULONT + 10 × Hi-C 
[HG002]/Omni-C [I002C]) data with default parameters of hifiasm and Verkko [31] 
across three independent replicates. We assigned a rank of 1 to the highest value and 
0 otherwise for each assembly feature. The sum of these ranks was then computed for 
both HiFi and Duplex assemblies to evaluate their performance based on specific cri-
teria, ranging from best to worst (Fig. 8). Overall HiFi assemblies demonstrated lower 
values for metrics such as Rduplication, Number of Sequences, Switch, and Hamming 
errors, indicating superior assembly quality. However, Duplex assemblies achieved 
a higher count of T2T contigs and k-mer completeness. The lower NG50 of hifiasm 
Duplex assemblies may be due to hifiasm’s use of a string graph-based method, which 
struggles with handling contained reads, with read length being the aggravating fac-
tor. Since Duplex reads are, on average, twice as long, this issue is exacerbated. RAFT 
algorithm [32], minimizes this problem. However, the RAFT-hifiasm workflow requires 
RAFT to be executed once and hifiasm three times, making it at least two times slower 
than a single run of hifiasm. This issue is absent in de Bruijn graph-based assemblers like 
Verkko. The quantitative values for assembly features across replicates are available in 
the additional materials (Additional file 1: Fig. S10, Additional file 2: Table S17).

Fig. 7 Computation resources consumed by hifiasm across different data types and coverages
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Discussion
The DNA sequencing landscape is continually evolving, with advancements in sequenc-
ing technologies offering unprecedented opportunities for genomic research. In this 
study, we conducted a comprehensive analysis of sequencing data obtained from 
PacBio HiFi, ONT Duplex, ONT Ultralong (ULONT), and Omni-C data in the con-
text of genome assembly. We aimed to investigate coverage saturation for different data 
types and their implications for various aspects of genome assembly, including phasing, 
genome completeness, and assembly quality.

Our findings provide valuable insights into the optimal sequencing coverage depth 
required for genome assembly in large-scale analyses. Through coverage saturation 
analysis, we observed a positive correlation between sequencing coverage and assem-
bly performance. Notably, assembly contiguity plateaued when the HQLR-only cover-
age exceeded 35 × . Furthermore, the integration of ULONT data significantly enhanced 
assembly contiguity, particularly for assembling telomere-to-telomere contigs, under-
scoring the importance of long-range data in improving assembly contiguity. The assem-
bly contiguity plateaus with ULONT coverage exceeding 30 × .

We did not involve parental information in generating haplotype-resolved assem-
blies. Trio binning using parental data facilitates assembly and increases phasing accu-
racy compared to long-range data phasing [33]. However, it requires additional effort 
in the recruitment process and often parental information is not available. Even with 
high-quality long reads such as HiFi/Duplex and ULONT with substantial coverage, the 
assembled genome still can have higher switch and hamming errors. Our study demon-
strates the efficacy of incorporating long-range chromatin interaction data like Omni-
C/Hi-C to address this issue. By leveraging long-range contact information provided 
by long-range chromatin interaction data, we observed a notable reduction in globally 
incorrectly phased variants. However, challenges persist in accurately identifying the 
parental origin of phased contigs, highlighting the inherent ambiguity in long-range data 
phasing.

Genome completeness and quality assessments revealed marginal improvements with 
increased coverage, with assemblies incorporating ULONT data exhibiting higher com-
pleteness metrics compared to HQLR-only assemblies. Our analysis emphasizes the 
importance of considering both single-copy gene analysis and k-mer completeness for a 
comprehensive assessment of genome quality.

The computational demands associated with genomic analysis are substantial, par-
ticularly in population-scale studies. Our study highlights the time and memory 
requirements associated with the assembly process, emphasizing the need for efficient 
algorithms and computational resources to handle large datasets effectively.

As pioneers in long-read technology (LRT), PacBio and ONT continually refine their 
technologies and develop new advancements to deliver high-quality data at increasingly 
affordable prices. The recent launch of the PacBio Revio platform (https:// www. pacb. 
com/ revio/) stands as a testament to this commitment, elevating HiFi yield by 15 × while 
maintaining impeccable data quality compared to its predecessor, the PacBio Sequel 
II platform. The assembly contiguity achieved with HiFi data exhibits nearly identical 
performance on both the Sequel IIe and Revio platforms [24]. The substantial boost in 
data yield has effectively mitigated affordability concerns in comparison to competition. 

https://www.pacb.com/revio/
https://www.pacb.com/revio/
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Similarly, ONT has unveiled the enhanced R10 flowcell and introduced the innovative 
“Duplex” method, which achieves read quality nearing Q30 by sequencing both the tem-
plate and complement strands of a single molecule. The effectiveness of these cutting-
edge data types has been demonstrated in variant calling [24] and methylation studies 
[34], showcasing their utility and performance across different genomic applications.

A comparative analysis between PacBio HiFi and ONT Duplex data for genome 
assembly shows that HiFi data consistently delivers superior assembly quality, particu-
larly in reducing duplication rates, sequence count, switch errors, and Hamming errors. 
However, Duplex data outperformed in producing a higher number of T2T contigs and 
k-mer completeness. Despite these strengths, both platforms exhibit comparable per-
formance in terms of NG50 and the length of the longest contigs, highlighting that each 
method offers unique benefits depending on the specific assembly objective. These find-
ings are backed by a recent study by Koren et al. [35], who evaluated ONT Duplex data 
for non-human samples and HG002.

Conclusion
Recognizing the dynamic nature of genomic research and the evolution of sequencing 
technologies and analytical methodologies is essential. Through our exploration of vari-
ous sequencing data types and algorithms, we offer several key insights and recommen-
dations for population-level pangenome reference generation efforts. We highlight the 
pivotal role of integrating high-quality data sources such as Pacbio HiFi/ONT Duplex 
and ONT ULONT, alongside long-range contract data like Omni-C, to achieve phased 
telomere-to-telomere level assemblies. In general, HiFi/Duplex coverage of ≥ 20 × com-
plemented with 15–20 × of ULONT per haplotype and 10 × long-range data are essen-
tial requisites for attaining high-quality contiguous and phased assembly. We offer our 
findings as practical guidelines to help users choose sequencing platforms and coverage 
effectively.

Methods
Sample selection and preparation for sequencing

One family (comprising a mother, father, and child) with an Indian ethnic background 
out of 15 families recruited from Singapore as a part of the human genome project was 
selected. The selection criteria for the family were (1) current generation (child sam-
ple) is a male and (2) no genetic diseases with normal phenotype. All the participants 
were provided with informed consent for sample collection and usage including mak-
ing data publicly available via databases. Sample collection and usage were approved by 
SingHealth Centralised Institutional Review Board. Whole blood was collected from the 
family (I002).

Isolation of peripheral blood mononuclear cells (PBMCs)

Ten milliliters of human whole blood samples were collected, and PBMCs were isolated 
using density gradient centrifugation with Ficoll-Paque (GE Healthcare). Blood was 
diluted with 20  ml of phosphate-buffered saline (PBS) and carefully layered over with 
15 ml of Ficoll-Paque solution before centrifugation at 225 g for 30 min at room tem-
perature. The PBMC layer was harvested, washed twice with PBS, and resuspended in 
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complete RPMI 1640 medium (Gibco) supplemented with 20% fetal bovine serum (FBS) 
and 1% penicillin–streptomycin.

Infection with B95‑8 Epstein‑Barr virus (EBV)

PBMCs were infected with the B95-8 strain of EBV by adding virus-containing superna-
tant derived from B95-8-infected marmoset B lymphocytes. The mixture was incubated 
at 37 °C with 5% CO₂ and left untouched for 8 days to facilitate virus entry into the B 
cells.

Cells were cryopreserved in a freezing medium containing 20% FBS and 10% dimethyl 
sulfoxide (DMSO), and stored in liquid nitrogen for long-term preservation.

Long‑read sequencing (LRS) data generation

Pacbio data generation

The high molecular weight (HMW) DNA used for PacBio sequencing was extracted 
using the GentraPuregene kit (Qiagen; #158043) according to the manufacturer’s 
instructions. Briefly, 1 ×  107 frozen cell pellets from the I002C cell line were used as 
input for extraction. All vortexing steps were replaced with gentle inversion throughout 
the process, and 300 µl of Qiagen EB buffer was used for elution. Eluted DNA was incu-
bated at 12 °C with gentle shaking over a period of 7 to 10 days. To avoid shearing the 
high molecular weight DNA, wide bore tips with gentle pipetting were used during han-
dling. DNA was stored at 4 °C to prevent freeze and thaw cycle. Quantity and purity of 
extracted HMW DNA were assessed using triplicate concentration measurements from 
the top, middle, and bottom sections of sample volume, using Qubit dsDNA BR (Broad-
Range) assay (Thermofisher Scientific; Q32853) and NanoDrop 2000 spectrophotometer 
(ThermoFisher Scientific; ND-2000), according to manufacturer’s instructions.

After DNA extraction, DNA fragment lengths were then measured using TapeStation 
4200 (Agilent). Sequencing libraries were created using the SMRTbell Express Template 
Prep Kit 2.0 (PacBio) per the manufacturer’s instructions. Libraries were sequenced on 
a Sequel IIe and Revio System (PacBio). After sequencing, CCS analyses were run using 
SMRTLink software v10 to produce HiFi reads.

ONT data generation

High nolecular weight (HMW) gDNA extraction (Duplex sequencing) We obtained 
12 ×  106 frozen cell pellets from established lymphoblastoid cell line for the child sam-
ple and processed for HMW gDNA extraction using the Monarch HMW DNA Extrac-
tion Kit for Tissue (NEB; T3060). During the extraction, we excluded shaking during all 
incubation steps to preserve gDNA integrity. Quantity, purity, and integrity of extracted 
HMW gDNA were assessed using Qubit dsDNA BR assay (Thermofisher Scientific; 
Q32853), NanoDrop 2000 spectrophotometer (ThermoFisher Scientific; ND-2000), and 
15-h pulsed-field gel electrophoresis runs with the Pippin Pulse system (Sage Science; 
PPI0200), respectively. Quality-assessed HMW gDNA was then used for ligation-based 
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library preparation with the Ligation Sequencing Kit V14 (Oxford Nanopore Technolo-
gies; SQK-LSK114) to generate Duplex sequencing reads.

Ultra‑high molecular weight (UHMW) gDNA extraction (ultra‑long read sequenc‑
ing) We processed 15 ×  106 frozen cell pellets from an established lymphoblastoid 
cell line for the child sample for UHMW gDNA extraction using the Monarch HMW 
DNA Extraction Kit for Tissue, following the extraction steps described in the Ultra-
Long DNA Sequencing Kit V14 (Oxford Nanopore Technologies; SQK-ULK114) pro-
tocol. Quality assessment of UHMW gDNA was performed similarly to HMW gDNA 
extraction. Quality-assessed UHMW gDNA was then used for transposase-based library 
preparation and purification with the Ultra-Long DNA Sequencing Kit V14 for the gen-
eration of ultra-long sequencing reads.

Library preparation and PromethION sequencing (Duplex and high duplex) We 
sheared 3 µg to 7.5 µg of extracted HMW gDNA to a target size of 55 kb to 60 kb and 
performed size-selective precipitation to remove DNA sizes < 25 kb. Repaired and end-
prepped DNA was then used for library construction with SQK-LSK114 for both duplex 
and high duplex sequencing approaches. For standard duplex runs, libraries were loaded 
at 6 fmol to 7 fmol per load, while for high duplex runs, 7 fmol to 55 fmol of librar-
ies were loaded and sequenced on PromethION 24 (Oxford Nanopore; PCA100024), 
R10.4.1 flowcells (Oxford Nanopore) FLO-PRO114M and FLO-PRO114HD respectively.

Library preparation and PromethION sequencing (ultra‑long, UL) We used 40  µg to 
45  µg of UHMW gDNA for ultra-long read library preparation using SQK-ULK114. 
Final UL libraries were sequenced on PromethION 24 using FLO-PRO114M flowcells 
with nuclease flushes performed at 23-h intervals.

The detailed steps of the entire procedure are outlined in the Additional Materials.

Omni‑C data generation

The Dovetail Omni-C library was prepared using the Dovetail Omni-C™ Proximity 
Ligation Assay kit (Dovetail Genomics, Scotts Valley, CA, USA), according to the man-
ufacturer’s protocol (version 1.2). Briefly, after sample crosslinking with DSG and for-
maldehyde, chromatin was digested using a sequence-independent endonuclease and 
bound to chromatin capture beads. Proximity ligation was performed using a biotin-
labeled bridge between the ends of the digested DNA. After reversal crosslinking, the 
DNA was purified and followed by library preparation. Finally, the biotinylated mole-
cules were captured and amplified before sequencing on the Novaseq 6000 and HiSeq 
4000 instruments (Illumina, San Diego, CA, USA) in paired-end mode.

Data analysis

All commands employed in the analysis are comprehensively listed in the Additional 
Materials file, providing readers with detailed procedures undertaken in this study.
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Reads downsampling

To evaluate coverage saturation for both assembly contiguity and phasing efficiency, 
we downsampled the reads to various coverages. Reads were randomly subsampled to 
achieve the desired coverage utilizing Rasusa v0.7.1 [36], considering a genome size esti-
mation of 3 gigabases (3 gb).

De novoassembly and assessment

The choice of assembler is critical for the evaluation process. We selected the assembler 
for coverage saturation analysis on the following criteria:

1) Ability to support different types of long reads
2) Native capability to generate haplotype-separated assemblies using a single data type 

and/or with additional data such as trio or long-range contact information
3) Computational demands
4) Active maintenance of the tool

Currently, the two most popular hybrid assemblers that support high-quality data, 
such as HiFi/Duplex, in addition to ultra-long (UL) reads, along with trio or long-range 
reads, to generate telomere-to-telomere haplotype-separated assemblies, are hifiasm 
[26–28] and Verkko [31]. However, when tested with the same dataset and computa-
tional configuration, Verkko’s runtime was more than twice that of hifiasm (Additional 
file 1: Fig. S11, Additional file 2: Table S18). Furthermore, like other ONT assemblers, 
Verkko cannot produce haplotype-resolved assemblies using only Duplex or HiFi data 
unless the reads are first binned by haplotype for individual assembly or a diploid 
assembly is recovered from a haploid assembly using tools like HapDup. The recently 
published ONT assembler PECAT [37] can generate haplotype-wise assemblies from 
Duplex data alone. Still, it does not support the integration of additional datasets like 
ULONT or long-range interaction data. Given these limitations and insights from previ-
ous benchmark studies [38, 39], we selected hifiasm as the assembler to evaluate cover-
age saturation.

Assembly statistics

Assembly contiguity metrics were computed utilizing minigraph v0.20 [18] and paftools 
v2.26-r1175 [40].

Phasing statistics

The phasing efficiency of an assembly was evaluated in terms of switch error and Ham-
ming error rates with Yak v0.1-r69-dirty [41] using parental short reads. Switch error 
quantifies the frequency of adjacent phased variants incorrectly transitioning between 
maternal and paternal haplotypes. Meanwhile, the Hamming error rate denotes the total 
misphased variants within each assembled contig. Phasing statistics were generated for 
both the haplotypes separately.
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Assembly completeness and quality

To evaluate the impact of coverage variations on the completeness, we employed com-
pleasm v0.2.2 [42] to obtain the BUSCO assessment results. Concurrently, we applied a 
k-mer-based approach for assembly completeness evaluation, using the KMC tool v3.2.1 
[43]. Identifying reliable k-mers within the reads followed a previously outlined method-
ology [44]. The assembly completeness was computed as the fraction of reliable k-mers 
in the read set that also appeared in the assembly. Assembly QV was estimated using 
Yak.
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