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Abstract 

Spatial epigenomic technologies enable simultaneous capture of spatial location 
and chromatin accessibility of cells within tissue slices. Identifying peaks that display 
spatial variation and cellular heterogeneity is the key analytic task for characterizing 
the spatial chromatin accessibility landscape of complex tissues. Here, we propose 
an efficient and iterative model, Descart, for spatially variable peaks identification based 
on the graph of inter-cellular correlations. Through the comprehensive benchmarking, 
we demonstrate the superiority of Descart in revealing cellular heterogeneity and cap-
turing tissue structure. Utilizing the graph of inter-cellular correlations, Descart shows 
its potential to denoise data, identify peak modules, and detect gene-peak interactions.
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Background
Spatial molecular profiling enables the measurement of biomolecules within intact tissue 
sections, facilitating the construction of spatially resolved cell atlas [1, 2], analysis of cel-
lular communication [3, 4], and exploration of the cancer tumor microenvironment [5]. 
Recent innovations in spatial sequencing technologies have integrated spatial barcod-
ing schemes with assays for transposase-accessible chromatin using sequencing (ATAC-
seq), allowing for the capture of spatial epigenetic information at the tissue level [6, 7]. 
Moreover, spatial multi-omics sequencing enables the detection of connections between 
chromatin accessibility and gene expression in the spatial context and provides valuable 
insights into spatiotemporal gene regulatory mechanisms of complex tissues [8, 9].

A key analytic task in spatial sequencing data is to identify spatially variable (SV) fea-
tures that display spatial patterns of chromatin accessibility or gene expression [10]. 
Numerous methods [11–19] specifically developed for spatial RNA-seq (spRNA-seq) 
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data have achieved notable success in identifying SV genes [20, 21], while there is still a 
lack of methods tailored for modeling spatial ATAC-seq data [21] (spATAC-seq). Given 
the characteristic of higher sparsity in spATAC-seq data, the accessibility pattern of fea-
tures (peaks in common scenarios) in a single slice is more discrete than spRNA-seq 
data, rendering the assumptions underlying spRNA-seq data-based methods inapplica-
ble to spATAC-seq data. Furthermore, since the dimensionality of spATAC-seq data (the 
number of peaks) is an order of magnitude larger than the number of genes, methods 
designed for spRNA-seq data, which typically model, evaluate, and rank genes individu-
ally, are notably inefficient for spATAC-seq and require even several hours for computa-
tion. On the other hand, several methods for identifying peaks with high heterogeneity, 
as used for single-cell ATAC-seq (scATAC-seq), such as selecting peaks with the highest 
degree of accessibility (commonly used in scATAC data analysis) [22–26], a correlation-
based method named Cofea [27], and specific functions provided in analytic pipelines 
[28, 29], ignore spatial information and thus cannot capture the spatial variations. Intui-
tively, the above two types of approaches fail to take full advantage of the intrinsic infor-
mation from spatial distribution and data matrices, suggesting the pressing demand for 
methods to identify SV peaks. Besides this, other crucial analytic tasks, such as spatially 
peak module identification, gene-peak interaction detection, and data imputation, also 
lack the tailored modeling for spATAC-seq data.

To fill these gaps, we present Descart, a graph-based model, for DEtection of Spatial 
Chromatin Accessibility patteRns with inTer-cellular correlations. Leveraging the graph 
of inter-cellular correlations, Descart adeptly evaluates and identifies SV peaks by ana-
lyzing the self-correlations of peaks within the graph. To navigate the inherent challenge 
of highly dispersed accessibility patterns in spATAC-seq data, Descart incorporates 
chromatin accessibility information with spatial locations during graph construction and 
iteratively updates the graph to capture the intricate relationships between neighboring 
cells. Based on comprehensive benchmarking on 16 slices from 4 datasets, we demon-
strate the superiority of Descart in identifying SV peaks that reveal cellular heteroge-
neity and tissue structure. Beyond its analytic advantages, Descart also surpasses other 
methods with spatial assumptions in computational efficiency. By leveraging neighbor-
ing relationships of the graph, Descart can impute data through signals from adjacent 
cells, thereby enhancing the accuracy of downstream analyses. Utilizing the inter-corre-
lation of features within the graph, Descart enables the capture of inherent relationships 
between features: when applied to spATAC-seq data, Descart can obtain a peak-peak 
correlation matrix, facilitating peak module identification; when applied to spatial multi-
omics data, Descart can produce a gene-peak correlation matrix, enabling the detection 
of gene-peak interaction and facilitating the discovery of gene regulatory networks.

Results
The Descart model

The Descart model aims to identify informative peaks that simultaneously character-
ize cell heterogeneity at cellular level and spatial continuity at tissue level (Fig. 1). Given 
a peak-by-spot matrix with spatial locations of spots (also can be replaced by cells), 
Descart evaluates and ranks peaks based on the graph of inter-cellular correlations, 
which are integrated from both spatial and chromatin accessibility information. More 
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specifically, the procedure of Descart can be divided in to five main steps: (i) construct-
ing a spatial graph based on spatial locations of spots; (ii) performing principal compo-
nent analysis (PCA) transformation on the peak-by-spot matrix with 50,000 (a default 
value that can be customized by users) selected peaks to obtain the latent embeddings 
of spots; (iii) constructing a graph of chromatin accessibility based on the latent embed-
dings and integrating the edge weight matrix of this graph with the edge weight matrix 
of the spatial graph to obtain a graph of inter-cellular correlations; (iv) utilizing the self-
correlation of each peak within the graph to calculate the importance score; (v) evalu-
ating and ranking all peaks based on importance scores and then feeding the current 
ranking back into step (ii). Descart iteratively performs steps (ii) through (v) until the 
obtained ranking of peaks undergoes minimal changes (4 iterations as default), and in 
step (ii) of the initial iteration, Descart directly selects peaks based on their decreasing 
order of accessible degree. The concept of modeling employed here is akin to Moran’s I 
[30], a statistical measure frequently applied to spRNA-seq data [17–19]. Descart, how-
ever, tailors its modeling specifically to the characteristics of spATAC-seq data, integrat-
ing spatial information with chromatin accessibility data into a cohesive framework. 
The technical details of Descart are provided in the “Methods” section. When applying 
Descart, researchers could designate a specific number or a predetermined proportion of 
peaks as SV peaks, based on the ranking or importance scores of peaks. Leveraging the 
graph of inter-cellular correlations, Descart can accomplish data imputation. Besides, 
Descart can generate peak-peak similarity matrix based on the graph of inter-cellular 

Fig. 1  The overview of Descart. Descart first constructs two distinct graphs based on spatial locations 
of spots and the peak-by-spot matrix, that is, the graph of spatial locations and the graph of chromatin 
accessibility. Next, Descart integrates the two graphs to derive the graph of inter-cellular correlations and 
utilizes the self-correlation of each peak within the graph to calculate the importance score. Based on these 
importance scores, Descart ranks all peaks and selects SV peaks. The SV peaks identified in each iteration 
are utilized to feedback and update the graph of chromatin accessibility, thereby refining the accuracy of 
neighborhood relationships among cells. Besides SV peaks identification, Descart can also be applied to data 
imputation, peak module identification, and detection of gene-peak interaction
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correlations and further utilize the similarity matrix for peak module identification. For 
spatial multi-omics data, such as the simultaneous capture of chromatin accessibility 
and gene expression information in a single slice, Descart can obtain a gene-peak simi-
larity matrix in a similar manner, enabling the detection of gene-peak interactions.

Benchmarking performance of Descart using labeled spATAC‑seq data

At the outset, we used the mouse brain dataset [8], which comprises four tissue slices 
with well-annotated domain labels (Additional file  2: Table  S1), to assess the perfor-
mance of Descart in SV peaks identification. Due to the absence of methods specifically 
designed for spATAC-seq data, Descart was benchmarked against two types of pub-
lished methods: methods tailored for spRNA-seq data, including SOMDE [15], Moran’s 
I [17], SpatialDE2 [11], SpatialDE [12], SPARK-X [13], SPARK [31], scGCO [14], Sepal 
[16], and methods designed for scATAC-seq data, including directly selecting peaks 
with high degree of accessibility (commonly used for scATAC-seq data analysis) [22–
26], epiScanpy [28], Signac [29], and Cofea [27] (the “Methods” section). Drawing from 
scIB [32] and our previous work [27], we assessed different methods from two perspec-
tives: the ability to facilitate clustering performance and capture domain-specific signals. 
The evaluation process is detailed in the “Methods” section. For cell clustering perfor-
mance, we employed normalized mutual information (NMI), adjusted Rand index (ARI), 
and adjusted mutual information (AMI) scores as metrics. To evaluate the capture of 
domain-specific signals, we used the overlap proportion (OP) of domain-specific peaks 
with SV peaks as the metric, where OP1, OP2, and OP3 correspond to overlaps iden-
tified by the “tl.rank_features” function in epiScanpy, the “FindAllMarkers” function in 
Signac, and the “tl.diff_test” function in snapATAC2 [33], respectively. Higher scores in 
these metrics indicate better method performance. For a fair comparison, we tested each 
method by selecting 10,000 SV peaks and conducted all tests on a server with 128 GB of 
memory and equipped with 32 units of 13th Gen Intel(R) Core(TM) i9-13900 K to simu-
late typical personal computing conditions. The rationale for using a fixed number of 
10,000 SV peaks for benchmark is twofold: disparate numbers of SV peaks identified by 
different methods complicate fair comparisons; 10,000, a common number in scATAC-
seq or spATAC-seq analyses, prevent downstream clustering performance from reaching 
threshold levels that could bias comparisons (Additional file 1: Note S1 and Additional 
file 1: Fig. S1a). SPARK and SpatialDE2 encountered memory overflow errors during the 
process, and scGCO did not converge even after 24 h. Given that the mouse brain data-
set represents the smallest scale within our collected data, we decided not to include 
these two methods in further comparisons. The benchmark results for other methods 
are depicted in Fig. 2a (with pre-processed results in Additional file 1: Fig. S2, S3, and 
S4). Descart not only gets the highest in overall scores but also excels in all metrics of 
cell clustering and uncovering domain-specific signals, indicating the superiority in 
identifying SV peaks rich in the capture of cellular heterogeneity and tissue structure. 
Furthermore, we provided clustering results of different methods when using SV peak 
counts of 3000 and 30,000, with Descart still performing exceptionally well as measured 
by the NMI metric (Additional file 1: Note S2 and Additional file 1: Fig. S1b). Besides, 
due to lacking the incorporation of spatial information, methods based on scATAC-seq 
data perform significantly worse in uncovering domain-specific signals, leading to lower 
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Fig. 2  Benchmarking performance of SV peaks identification on the mouse brain dataset. a Overview for 
benchmarking results of different methods from three perspectives, that is, the ability to facilitate clustering 
performance and capture domain-specific signals (see the “Methods” section for further visualization details). 
b Running time of different methods. c, d Overlapped proportion of SV peaks identified by Descart and 
baseline methods with domain-specific peaks related to overall domains (c) or each domain (d). Using 
the “tl.rank_features” function in epiScanpy, we defined the top 100 peaks with the lowest p-values in 
each domain as domain-specific peaks. e Visualization of domains within the tissue space (left) and the 
corresponding histological image (right). f Top-ranked SV peak identified by each method on the E13_5-S1 
slice, with the raw count values visualized in the tissue space. g Clustering performance using SV peaks 
identified by Descart and its variants. ATAC-seq-only and spatial-only represents the variants of Descart 
that only utilizes the graph of chromatin accessibility and the graph of spatial locations, respectively. h, i 
Clustering performance using SV peaks identified by Descart with a different number of iteration (h), different 
strategies for peak selection at the initial stage (h), and different multiples of standard distance (i). Clustering 
performance is evaluated by NMI scores. In b, g, and i, the error bars denote the 95% confidence interval, and 
the centers of the error bars denote the average value
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overall scores. In terms of computational efficiency, except for HDA, epiScanpy, and Sig-
nac, which evaluate and rank peaks based on simplistic statistical information, Descart is 
over two times more efficient than the other methods (Fig. 2b). This is primarily because 
Descart is a transparent and intuitive method that does not rely on complex assumptions 
and involves fewer than 20 matrix operations in total (Additional file 1: Note S3). Thus, 
Descart demonstrates a significant advantage in both accuracy and computational effi-
ciency in identifying SV peaks from spATAC-seq data. Furthermore, we have collected 
a dataset comprising four slices from various organs of humans and mice, serving as the 
mixed-species A dataset (Additional file  2: Table  S1). The benchmarking procedure is 
generally consistent with that used in the mouse brain dataset. The primary distinction 
lies in the lack of explicit domain labels for these four slices; instead, we utilized reliable 
clustering labels provided by the original publication. Detailed results and analyses of 
this dataset are available in Additional file 1: Note S4, Additional file 1: Fig. S5, S6, S7, 
and S8. SV peaks identified by Descart significantly enhance downstream analysis per-
formance, and the advantages of spatial methods are further amplified due to the labels 
being derived from spatial clustering algorithms.

Next, we conducted an in-depth analysis of the benchmark results, to delve into the 
intrinsic differences between various methods. We performed pairwise comparisons of 
the Spearman’s correlation between the peak ranks evaluated by each method. As shown 
in Additional file 1: Fig. S9, spatial methods generally exhibit higher similarity with other 
spatial methods and lower similarity with non-spatial methods, and the opposite is 
also true for non-spatial methods. When evaluating the overlapped proportion of their 
top important peaks, we found that many spatial methods, such as SPARK-X, Moran’s 
I, and SpatialDE, exhibit a high degree of overlap with HDA and Signac (Additional 
file  1: Fig. S10). This indicates that these spatial methods tend to select highly acces-
sible peaks based on their underlying assumptions. In contrast, Descart shows a lower 
overlap with the peaks identified by other methods, but it consistently demonstrates the 
highest overlap with domain-specific signals across varying numbers of selected peaks 
(Additional file 1: Fig. S11). The detailed analyses are available in Additional file 1: Note 
S5. Taking the E13_5-S1 slice as a case study, we observed that the overall distribution 
of SV peaks identified by Descart shows a higher overlap with domain-specific peaks 
than baseline methods (Fig. 2c). When focusing on individual domains, we found that 
Descart also outperforms baseline methods in capturing cellular heterogeneity across 
various domains, including those with few samples, such as “DPallv” (13 spots) (Fig. 2d). 
Domains where Descart underperforms, such as “Cartilage_4” (2 spots) and “Primary_
brain_1” (6 spots), typically suffered from an extremely low number of spots and the lack 
of spatial continuity, which may lead to excessive noise in identifying domain-specific 
peaks and diminish the informative value for evaluation. Similar trends could also be 
observed in other slices (Additional file 1: Fig. S3 and S4). We then visualized the top-
ranked peak selected by each method, and compared it against the spatial coordinates 
of the domain and the corresponding histological image (Fig. 2e, f and Additional file 1: 
Fig. S12). The top-ranked peak identified by Descart and SOMDE closely corresponds 
to specific tissue regions, while SOMDE, which utilizes self-organizing maps, tends to 
select peaks accessible over larger areas. Moran’s I and SPARK-X only capture accu-
rate SV peaks in half of slices but still perform reasonably well. SpatialDE, following a 
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multivariate Gaussian assumption, might mistakenly identify peaks that are only acces-
sible in adjacent spots as having strong spatial clustering, leading to erroneous SV peak 
identification. Sepal, on the other hand, due to its diffusion model, is not suitable for data 
with extremely low signal-to-noise ratios, which might lead to noise-rich peaks being 
identified as SV peaks. Essentially, this is because spATAC-seq data is sparser compared 
to spRNA-seq data, resulting in distributions of peaks that are unlikely in genes. Meth-
ods based on scATAC-seq data did not show clear spatial patterns in the visualization. 
Given that spATAC-seq data has deeper sequencing depth compared to scATAC-seq 
data, domain-specific peaks generally exhibit high accessibility, but Cofea tends to treat 
these as background peaks, leading to poor performance in related experiments. How-
ever, the significant peaks it identifies still retain rich heterogeneity, leading to satisfac-
tory performance in downstream clustering.

In our final analysis, to dissect the key to superior performances of Descart, we con-
ducted a series of ablation experiments and employed NMI from clustering performance 
as the evaluative standard. The essence of Descart lies in the unique integration of spatial 
and chromatin accessibility information in graph construction. The parameter α deter-
mines the ratio of spatial and chromatin accessibility information; by altering α values, 
we generated different variants of Descart and evaluated Descart against them. The 
most distinctive variants are as follows: one utilizing only spatial information (spatial-
only) and another relying only on chromatin accessibility information (ATAC-seq-only). 
These variants echo strategies applying in prior spRNA-seq methods [18, 19], yet neither 
incorporates a fusion of these elements. As shown in Fig.  2g, the results demonstrate 
that Descart with α between 0 and 1, which integrates both spatial information and 
chromatin accessibility, enhances the accuracy of downstream applications more effec-
tively than any single-element-focused variant. Notably, an α value of 1.5 (the default) 
yielded the best performance, as evidenced by the ablation experiments, thereby con-
firming the superiority of α = 1.5 over other values. Intriguingly, the variant ATAC-seq-
only outperforms that relying only on spatial locations of spots, highlighting the discrete 
nature of spATAC-seq data in space and the introduction of noise when only spatially 
accessible pattern of individual peaks is considered. Nonetheless, the graph constructed 
from spatial locations is indispensable, encapsulating structural information of tissues. 
We also compared the correlation of SV peaks identified by Descart with the two sin-
gle-element-focused variants and found that Descart effectively integrates the results of 
these two variants, thereby enhancing the accuracy of identified SV peaks (Additional 
file 1: Note S6 and Additional file 1: Fig. S13). To mitigate noise, Descart constructs the 
spatial graph using neighbors of spots within five standard deviations, akin to applying 
a low-pass filter to the signal in space, which proved more effective than considering 
only a few neighbors around a spot (Fig. 2h). For efficient and precise graph construction 
based on ATAC-seq matrix information, an iterative strategy was adopted in the initial 
graph construction and updates peaks required for each iteration. As the results shown 
in Fig. 2i, we demonstrated that the strategy can enhance the accuracy of SV peak iden-
tification, and using the HDA peaks in the initial phase can accelerate convergence. By 
comparing the overlapped proportion of SV peaks obtained in each iteration by Descart, 
we found that the results stabilize after 4 iterations; thus, we set the default number 
of iterations to 4 (Additional file 1: Note S7 and Additional file 1: Fig. S14). Details on 
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ablation experiments to other parameters are available in Additional file 1: Note S8 and 
Additional file 1: Fig. S15. Overall, the key to advantages of Descart lies in how to con-
struct the graph of inter-cellular correlations from both spatial and ATAC-seq perspec-
tives, tailored to the specific characteristics of spATAC-seq data.

SV peaks identified by Descart align well with spatial structure of tissues

Besides the mouse brain dataset, we also collected two datasets: (i) a dataset compris-
ing six slices of mouse embryos, served as the mouse embryo dataset, and (ii) a dataset 
consisting of five slices from a mix of human and mouse tissues, served as the mixed-
species B dataset (Additional file 2: Table S1). The absence of well-defined domain labels 
in these datasets precludes us from utilizing the aforementioned benchmarking pro-
cedures for quantitatively assessing different methods. Here, we utilized the SV peaks 
identified by different methods to cluster spots and then referenced spatialPCA to 
evaluate the spatial clusters using three metrics: the spatial chaos score (CHAOS), the 
median low local inverse Simpson index (LISI), and the percentage of abnormal spots 
(PAS). Lower scores across these metrics signify more continuous spatial distribution of 
clusters, thereby indicating superior performance of the corresponding method. Com-
pared to the mouse brain dataset, both two datasets are larger-scale and impose higher 
demands on the robustness of methods. When identifying SV peaks, SOMDE fails to 
produce results within 24  h on both datasets, while Sepal encountered errors on the 
mixed-species B dataset. As the results showed in Fig. 3a, b and Additional file 1: Fig. 
S16, lower metrics indicate the clustered domains using SV peaks of Descart are more 
spatially continuous and smooth, thereby demonstrating the advantages of Descart in 
detecting spatial structure of tissues. Taking the CHAOS metric as an example, Descart 
achieves the best results in 5 slices of the mouse embryo dataset and in 3 slices of the 
mixed-species B dataset. SpatialDE gets the second-best performance in both two data-
sets, but the running time requires at least 10 h and is hundreds of times longer than 
Descart, underscoring a significant efficiency gap (Fig. 3c, d). In these datasets, meth-
ods with spatial assumptions outperform those that do not consider spatial information, 
consistent with observations drawn from the mouse brain dataset. We then visualized 
the top-ranked peaks identified by different methods and compared them with histologi-
cal images (Fig. 3e and Additional file 1: Fig. S17 and S18). The top-ranked peaks identi-
fied by methods with spatial assumptions are generally associated with specific regions 
within the tissue, corroborating the insights gained from the metrics. Notably, Descart, 
additionally incorporating chromatin accessibility information, identified top-ranked 
peaks that align well with spatial structure of tissues in all slices.

Descart captures cellular heterogeneity of metastatic melanoma

Next, we turned our attention to the performance of various methods on spATAC-seq 
data with single-cell resolution. We collected a metastatic melanoma dataset, where Rus-
sell et al. integrated their developed Slide-tags technique with scATAC-seq, facilitating 
simultaneous acquisition of chromatin accessibility and spatial information in individ-
ual cells [9] (Additional file 2: Table S1). In their study, Russell et al. also provided well-
annotated labels of cell types, allowing us to conduct a benchmarking of Descart and 
baseline methods. The benchmarking is analogous to that applied to the mouse brain 



Page 9 of 24Chen et al. Genome Biology          (2024) 25:322 	

dataset, with the distinction that cell type labels were employed instead of domain labels. 
Sepal reported errors on this dataset, while SOMDE exceeded a 24-h computation time. 
Benchmarking results for other methods, as illustrated in Fig.  4a (with pre-processed 
results in Additional file 1: Fig. S19), demonstrate that Descart excels in facilitating cell 
clustering and revealing cell type-specific signals, thereby affirming its superiority in 
identifying SV peaks. Given the dataset encompassed a total of 53,431 peaks, closely 
aligning with our predetermined number of SV peaks, the cluster performance across 

Fig. 3  Evaluation for different methods on the mouse embryo dataset and the mixed-species B dataset. 
a, b Clustering performance evaluated by CHAOS scores using SV peaks identified by different methods 
on the mouse embryo dataset (a) and the mixed-species B dataset (c), respectively. Due to the lack of 
well-annotated labels in the two datasets, we are unable to utilize label-dependent metrics for evaluation, 
such as NMI, ARI, and AMI scores. c, d Running time of different methods on the mouse embryo dataset (b) 
and the mixed-species B dataset (d), respectively. e, f The histological image (the first plot) and top-ranked 
SV peak identified by each method on the 220403_D2 slice from the mouse embryo dataset and the 
GSM6043255_ME11_20um slice from the mixed-species B dataset, with the raw count values visualized in 
the tissue space
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different methods is relatively consistent. Note that, with the exception of two tumor 
subtypes (“tumour_1” and “tumour_2”), the spatial distribution patterns of various 
cell types are not significantly distinct, allowing us to assess the robustness of differ-
ent methods when sequencing sample spatial distribution contains significant noise. 
Thus, methods with spatial assumptions do not show the pronounced advantages as in 
the mouse brain dataset. Within this dataset, Descart also demonstrates its notable effi-
ciency on running time over other methods with spatial assumptions (Fig. 4b). In terms 

Fig. 4  Benchmarking performance of SV peaks identification on the metastatic melanoma dataset. a 
Overview for benchmarking results of different methods from three perspectives, that is, the ability to 
facilitate clustering performance and capture cell type-specific signals (see the “Methods” section for further 
visualization details). b Running time of different methods. c–e Overlapped proportion of SV peaks identified 
by Descart and baseline methods with domain-specific peaks identified by the “tl.rank_features” function in 
epiScanpy (c), “FindAllMarkers” function in Signac (d), and the “tl.diff_test” function in snapATAC2 (e). f The 
top-ranked SV peak identified by each method in the tissue space, compared to histological image (the first 
subplot). g Top-ranked SV peak identified by each method, compared with cell type labels (the first subplot), 
in the UMAP space
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of cell type-specific signals, methods that show superior performance, such as Descart, 
Moran’s I, SPARK-X, epiScanpy, HDA, and Signac, primarily focus on cell types with a 
higher cell count (cell types are ordered by cell count from top to bottom in Fig. 4c–e). 
Notably, Descart can focus on a broader range of cell types, contributing to its distin-
guished clustering performance. We further visualized cells, on the tissue space using 
actual spatial locations and the latent space using UMAP on the scATAC-seq data 
matrix, respectively (Fig. 4f, g). The two spaces correspond to the spatial and chromatin 
accessibility information of cells, serving as the foundational elements for constructing 
the graph in Descart. The majority of methods do not show discernible patterns among 
top-ranked peaks in the two spaces. In contrast, top-ranked peak identified by Descart is 
associated with two tumor subtypes, and SPARK-X with one, marking them as relatively 
superior methods.

Descart imputes data using the graph of inter‑cellular correlations

SpATAC-seq data typically suffer from noise and a large number of missing values, lead-
ing to the inaccuracy of downstream analysis. A key feature of Descart is its ability to 
denoise data and restore missing values, by utilizing the graph-based neighbor relation-
ships between spots. The data imputation procedure can be categorized into four cases 
(details in the “Methods” section): (i) case 1: based on the graph of spatial locations; (ii) 
case 2: based on the graph of chromatin accessibility; (iii) case 3: based on the graph of 
inter-cellular correlations, that is, the integration of case 1 and case 2; (iv) case 4: aug-
menting case 3 with raw data. Taking the E13_5-S1 slice of the mouse brain dataset as an 
example, we applied Descart on to select 10,000 SV peaks and then performed cell clus-
tering and uniform manifold approximation and projection (UMAP) visualization on the 
data before and after imputation. As shown in Fig. 5a, b, except for case 2, all other cases 
improve the accuracy of clustering, and different domains are better separated in the 
low-dimensional space after imputation. Using only spatial information, except for mar-
ginally enhanced spatial continuity (CHAOS), case 2 does not surpass the results using 
the original data in other metrics. Using only chromatin accessibility information (case 
1) significantly improves clustering results but slightly disrupts spatial continuity (LISI). 
In contrast, the fusion of two types of information (cases 3 and 4) leads to better per-
formance than using either type of information alone, suggesting that indispensability 
of both spatial and chromatin accessibility information when constructing the graph of 
inter-cellular correlations.

Inspired by SCALE, we next focused on Descart’s effectiveness in imputing signals 
across different domains. We aggregated signals within spots of the same domain to 
serve as a meta-spot (ground truth) and then calculated the Pearson correlation coef-
ficients between each spot’s signal and the meta-spot before and after data imputation. 
Higher correlation coefficient indicates greater accuracy of the imputation results. As 
shown in Fig. 5c, except for domains “Cartilage_3” (1 spot) and “Cartilage_4” (2 spots) 
containing few spots, the correlation coefficients between post-imputation signals and 
meta-spot signals are higher across other domains, suggesting the superior perfor-
mance of Descart in data imputation. Notably, cases 3 and 4, which involved using an 
inter-cellular correlation graph that combines spatial and chromatin accessibility infor-
mation for imputation, show superior performance, aligning with conclusions derived 
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Fig. 5  Descart enables data imputation using the graph of inter-cellular correlations. a Evaluation of 
clustering performance on the E13_5-S1 slice from the mouse brain dataset, assessed using NMI, ARI, CHAOS, 
and LISI scores. b Visualization of spots in the UMAP space. c Pearson correlation coefficients between 
each spot’s signal and the corresponding meta-spot, comparing results before and after data imputation. 
The central line of the boxplot represents median correlation coefficients of each spot, with the whiskers 
indicating the upper and lower quartiles. d Spatial locations of the domains “DPallm” and “Midbrain” in the 
tissue space. e Statistical significance of domain-specific peaks for “DPallm” and “Midbrain,” evaluated through 
p-values generated by the “tl.rank_features” function in epiScanpy. f, g Visualization of domain-specific peaks 
for “DPallm” (chr8: 9,124,673–9,125,174) (e) and “Midbrain” (chr8: 9,124,673–9,125,174) (f), in tissue space. In a, 
b, c, e, f, and g, the comparison between raw data and data imputed by Descart is showcased. Cases 1 to 4 
denote as different imputation strategies implemented in Descart (details in the “Methods” section): (i) case 
1: based on the graph of spatial locations; (ii) case 2: based on the graph of chromatin accessibility; (iii) case 
3: based on the graph of inter-cellular correlations, that is, the integration of case 1 and case 2; (iv) case 4: 
augmenting case 3 with raw data
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from clustering metrics. For domain-specific signals, taking “DPallm” and “Midbrain” 
domains (the spatial locations are illustrated in Fig.  5d) as examples, we found that p
-values (outputted by the “tl.rank_features” function in epiScanpy) of domain-specific 
peaks significantly decreases after imputation (Fig.  5e), demonstrating the ability of 
Descart in recovering signal disparities across different domains. To look deep in the 
differences of data imputation cases, we selected and visualized a domain-specific peak 
from each domain, respectively (Fig. 5f, g). Using only chromatin accessibility informa-
tion (case 1) precisely boosts the signal within the domain but disrupts spatial continu-
ity. Using only spatial information (case 2) is akin to applying a low-pass filter to the 
signal in space, which enhances signals within the domain but also inadvertently ampli-
fies out-of-domain noises. Due to the incorporation of more diverse information, cases 3 
and 4 show more precise imputation effects, proving to be more applicable in real-world 
scenarios.

To further explore the optimal parameters for imputation, we tested the impact of var-
ying the number of nearest neighbors (assumed as k ) for the graph construction of chro-
matin accessibility and different times of ds (the mean Euclidean distance between each 
spot and its nearest neighbor) for the graph construction of spatial locations. Details on 
the settings and results of the ablation experiment are available in Additional file 1: Note 
S9 and Additional file  1: Fig. S20. Considering the overall effectiveness of imputation, 
ease of use, and preservation of cellular heterogeneity, we employ the default param-
eters of Descart ( k = 20, times of ds being 5) for data imputation represents an optimal 
solution.

Descart enables peak module identification

Features with co-variation can be clustered into a module, facilitating the identification 
of genes or peaks specifically associated with the development of a cell type even a spe-
cific tissue structure. Utilizing modules of features for analysis, as opposed to focusing 
on individual features, can mitigate noise and be more efficient for researchers, making 
the precise identification of modules with specific patterns crucial. However, compared 
to gene module identification via spRNA-seq data, the field for identifying peak modules 
based on spATAC-seq data still remains a significant gap. Moreover, due to the high-
dimensional nature of spATAC-seq data and the highly discrete patterns of chromatin 
accessibility in space, precise peak module identification is a formidable challenge. To fill 
this gap, Descart leverages constructed graphs to calculate the similarity between peaks 
in terms of spatial locations and chromatin accessibility, facilitating the identification of 
peak modules through hierarchical clustering. In testing Descart on the E13.5-S1 slice of 
the mouse brain dataset, we initially identified 10,000 SV peaks and clustered them into 
eight peak modules of varying sizes (Fig. 6a). Next, we averaged read counts of peaks 
within these modules, visualized peak modules on the tissue space, and compared them 
with the spatial distribution of domains and tissue structures (Fig.  6b, c). The results 
reveal that nearly every peak module corresponds to one or more specific domains: 
modules 1 and 3 align with the “Mesenchyme” and “Muscle” domains, respectively; 
module 2 correlates with peripheral regions across multiple tissues encompassing vari-
ous domains, including “Basal_plate_of_hindbrain,” “Dpallm,” “Dpallv,” “Midbrain,” and 
“Diencephalon_and_hindbrain”; modules 4, 6, and 7 correspond to two distinct regions 
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within the “Cartilage_2” domain; modules 5 and 8 exhibit highly similar accessible pat-
terns, covering regions within both the “Cartilage_2” and “Muscle” domains. We then 
performed GREAT analysis [34] to identify significant pathways associated with peaks 
from each module. As illustrated in Additional file 1: Fig. S21, the top-5 most significant 
pathways for each module are respectively associated with the development of various 
tissues in the mouse brain, aligning with the fetal stage of the mice used in the dataset. 
Furthermore, we assessed the overlap between peaks in each module and domain-spe-
cific peaks across different domains and found a strong alignment with the spatial visu-
alization, demonstrating the potential of Descart in peak module identification (Fig. 6d).

Fig. 6  Descart facilitates peak module identification and detection of gene-peak interaction. a Heatmap 
of peak-peak correlations generated by Descart. 10,000 SV peaks identified by Descart are grouped into 
8 modules. b Visualization of domains in the tissue space (top) and the corresponding histological image 
(right). c Visualization of signals for each peak module in tissue space. Signals are averaged using raw counts 
of peaks from each module. d Overlapped counts between domain-specific peaks and peaks in each module. 
e Cosine similarities between the raw data and predicted data by different methods in the RNA to ATAC (left) 
and ATAC to RNA (right) transformation task. f, g Comparison between the raw data and predicted data by 
different methods, on the domain-specific peak (chr8: 9,124,673–9,125,174) and gene (Epha5) for “DPallm,” in 
the RNA to ATAC (f) and ATAC to RNA (g) translation task. The raw data shown in f and g is performed TF-IDF 
and z-score transformation, and the predicted data is performed z-score transformation. All experiments and 
subplots corresponding to the whole figure are performed on the E13.5-S1 slice of the mouse brain dataset
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Descart links gene expression and chromatin accessibility from spatial multi‑omics data

Linking gene expression patterns to chromatin accessibility is a crucial step for con-
structing gene regulatory networks. Leveraging the graph of inter-cellular correlations, 
Descart can obtain a gene-peak correlation matrix, which captures the intensity of 
interactions between genes and peaks (the ‘Methods” section). Utilizing the E13_5-S1 
slice from the mouse brain dataset as a case study, we applied the Descart framework 
to identify 2000 SV genes and 20,000 SV peaks. To assess the accuracy of gene-peak 
correlations identified by Descart, we conducted a novel evaluation that uses the cor-
relation matrix for reciprocal prediction of gene expression and chromatin accessibil-
ity and measures the performance by cosine similarity between predicted and original 
values. We only used the top twenty and bottom five peaks (or genes) most correlated 
with each gene (or peak) for prediction, with the corresponding correlation values for 
computation. For benchmarking, we compared two data-driven cross-omics translation 
methods, UnitedNet and Polarbear, as baselines, and two knowledge-based methods, 
functions for calculating gene activity scores in epiScanpy and Seurat. UnitedNet and 
Polarbear were trained and predicted on the same dataset, and such tasks are simpler 
than their real-world applications. As shown in Fig. 6e, except in the task transforming 
ATAC-seq to RNA-seq where UnitedNet excels, Descart outperforms methods specifi-
cally designed for cross-omics prediction, suggesting the potential for elucidating gene 
regulatory networks from spatial multi-omics data. Knowledge-based methods (epiS-
canpy and Seurat), focusing only on distances between peaks and genes without updat-
ing information from training data, generally underperform. The low cosine similarity 
values across methods may be attributed to differences in the sparsity of real and pre-
dicted data. Raw spatial multi-omics data, such as the domain-specific gene Epha5 and 
peak chr8:9,124,673–9,125,174, initially disperses in space, while the predicted data are 
imputed and exhibits greater spatial continuity (Fig. 6f, g). Visualization results demon-
strate that Descart effectively restored and enhanced the raw signals. UnitedNet, a more 
complex neural network-based method, precisely enhances domain-specific signals in 
the RNA-seq to ATAC-seq transformation task but did not perform as well in other sce-
narios, but, like other baseline methods, falls short in another task. Furthermore, to vali-
date gene-peak interactions from a biological perspective, we compared the interaction 
strength with corresponding Hi-C data [35]. For important genes in mouse brain devel-
opment, Myog and Tcf7l1, the results show that their transcription start sites (TSS) and 
exons are located within the same topologically associating domain (TAD) structure as 
the peaks associated with them, identified by Descart (Additional file 1: Note S10 and 
Additional file 1: Fig. S22).

Discussion
Recent involutions in spatial sequencing technologies can simultaneously capture spa-
tial location and chromatin accessibility of cells, and also increase the demand for SV 
peaks identification tailored for modeling spATAC-seq data. In this article, we intro-
duce Descart, a method based on the graph of inter-cellular correlations, for identify-
ing peaks characterized by both spatial variation and cellular heterogeneity. To our best 
knowledge, Descart is the first method for SV peaks identification tailored for spATAC-
seq data. To deal with the challenge posed by the overly discrete spatial patterns of 
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chromatin accessibility in spATAC-seq data, Descart employs the following strategies to 
capture precise neighborhood relationships among cells: (i) integrating the graph con-
structed from chromatin accessibility information into the spatial graph; (ii) considering 
a broad range of neighboring cells when constructing the spatial graph, and (iii) itera-
tively updating the graph built from chromatin accessibility information with each itera-
tion of SV peaks. To comprehensively evaluate our method, our benchmarking pipeline 
spans 16 slices from 4 datasets and incorporates three aspects from enhancing clustering 
performance, capturing domain-specific signals, and preserving spatial continuity. The 
benchmarking results demonstrate that Descart surpasses other methods with only spa-
tial assumptions in both the accuracy and efficiency of SV peak identification. Due to the 
lack of spatial information, methods based on scATAC-seq data failed to maintain spa-
tial continuity in the identified SV peaks, thereby undermining the accuracy of domain 
identification. Through case studies on the E13.5-S1 slice of the mouse brain dataset, we 
demonstrate the potential of Descart for data imputation, peak module identification, 
and gene-peak interaction detection. Overall, Descart offers an effective and valuable 
tool for spATAC-seq data analysis, contributing to detection of spatial chromatin acces-
sibility patterns with inter-cellular correlations.

Despite the progress achieved so far, Descart still has several potential directions that 
need to be improved. First, to ensure high-efficiency of Descart on large-scale datasets, 
we will introduce downsampling or self-organizing maps for keeping the number of 
nodes in the constructed graph within a manageable range. The key concept of Descart is 
based on the graph of inter-cellular correlations, and its computational complexity scales 
quadratically with the number of cells. As spATAC-seq technologies evolve, increasing 
the spots (or cells) within datasets, Descart may face efficiency challenges. Second, we 
aim to refine existing simulation methods, such as simCAS, to provide multi-scenario 
simulated spATAC-seq data for systematic evaluation. Most feature selection methods 
based on spRNA-seq and scATAC-seq leverage simulated data for evaluation, as such 
data typically come with precise annotations. Finally, considering the availability of other 
spatial omics data, such as spatial metabolic data [36] and spatial CITE-seq data [37], we 
will broaden the application scope of Descart in our future work.

Conclusions
Utilizing the graph of inter-cellular correlations, Descart emerges as a groundbreaking 
method for SV peaks identification within spATAC-seq data. Through the comprehen-
sive benchmark that incorporates three aspects from enhancing clustering performance, 
capturing domain-specific signals, and preserving spatial continuity, Descart demon-
strates its superior performance compared with existing methods, significantly enhanc-
ing the efficacy and efficiency in identifying SV peaks. Besides, Descart also shows its 
ability for data imputation, peak module identification, and gene-peak interactions 
detection, making Descart a valuable tool for spATAC-seq data analysis.

Methods
Construction for graph of spatial locations

To capture spatial accessibility pattern of each peak, Descart construct a spatial graph 
based on spatial locations of spots (can also be replaced by cells). We suppose that 
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X = (x•1, . . . , x•N ) denotes as spatial locations of all N  spots in a single slice, and the coor-
dinates of the spatial locations are typically two-dimensional (i.e., x•i can be represented as 
(xi1, xi2)

T ). Descart first calculates the mean Euclidean distance between each spot and its 
nearest neighbor, denoting it as the standard distance ds =

N
i=1min

j �=i
Dist(x•i ,x•j)

N
 , and then con-

nects each spot to its neighbors within five times ds to obtain a spatial graph. The edge 
weight of the spatial graph is inversely proportional to the Euclidean distance between 
spots, i.e., the edge weight between spot i and spot j is given by

where w(spatial)
ij  is an element in edge weight set W (spatial) of the spatial graph, and 

Dist(x•i, x•j) denotes the Euclidean distance between spot i and spot j in tissue space.

Construction for graph of chromatin accessibility

The majority of graph-based existing methods for selecting primarily rely on spatial posi-
tional information for graph construction, while the constructed graph tends to over-
look the inherent spot-spot relationships associated with gene expression or chromatin 
accessibility. In contrast to those methods, Descart incorporates a graph constructed 
from the ATAC-seq matrix and integrates it with the spatial graph. Due to the charac-
teristics of high dimensionality, sparsity, and noise in the ATAC-seq matrix, construct-
ing a graph directly from the raw count matrix is deemed impractical. Assuming that 
Y ∈ R

M×N denotes as the raw peak-by-spot (or peak-by-cell) count matrix with N  spots 
and M peaks, Descart first applies term frequency-inverse document frequency (TF-
IDF) transformation as in Signac [29] to obtain a continuously valued matrix (denoted 
as ). Then, Descart selects a subset of peaks (50,000 peaks as the default) and performs 
PCA transformation to obtain a PC-by-spot matrix P = (p•1, . . . ,p•N ) ∈ R

10×N . Note 
that as an iterative method, in the initial iteration, Descart directly selects peaks based 
on their decreasing order of accessible degree and, in subsequent iterations, involves 
the selection according to the ranking from the previous iteration. With the PC-by-spot 
matrix P , Descart connects each spot to its 20 nearest neighbors and defines the edge 
weight between spot i and spot j as

where Cosine(pi,pj) denotes as the cosine similarity between vector pi and pj , w(ATAC−seq)
ij

 
is an element in edge weight set W (ATAC−seq) of the chromatin accessibility graph.

SV peaks selection

Given the graph of spatial locations and the graph of chromatin accessibility, Descart 
directly integrates the edges of them to obtain a graph of inter-cellular correlations. The 
edge weight of spot i and spot j in the newly-formed graph can be calculated as

w
(spatial)
ij =

{
ds

Dist(x•i ,x•j)
,Dist

(
x•i, x•j

)
≤ 5dsandi �= j

0, else

w
(ATAC−seq)
ij =

{
Cosine(p•i,p•j), j ∈

{
Top 20 nearest neighbors of cells i

}

0 , else

wij = w
(spatial)
ij + αw

(ATAC−seq)
ij
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where α is the factor for balancing the two types of edge weights (1.5 in default), and wij 
is an element in edge weight set W  of the inter-cellular correlations graph. On the other 
hand, Descart perform z-score transformation on the matrix to  obtain the matrix Ỹ  . 
The key concept of Descart is grounded in that peaks with regional continuity in the 
graph will be identified as informative peaks (i.e., SV peaks), while peaks with disparate 
accessibility levels between the two spots connected by the majority of graph edges will 
be considered as non-informative peaks (i.e., peaks that need to be filtered out). Under 
the concept, Descart evaluated each peak by an importance score using self-correlations, 
which can be obtained by

where ỹk• is a row vector in the matrix Ỹ  representing the peak k , and sk is the impor-
tance score of the peak k . In our practical code implementation, this is accomplished 
using the formula s = diag(Ỹ ×W × Ỹ

T
) , where a single matrix operation completes 

the evaluation of all peaks. Based on the importance score, Descart sorts all peaks and 
feeds the ranking back into the step of constructing the graph of chromatin accessibil-
ity. The iterative process continues until the ranking stabilizes. Descart involves four 
iterations as the default setting, with outputting the final iteration’s importance scores 
as the ultimate results. It is noteworthy that after performing omics-specific preprocess-
ing and transforming the values of each feature into z-score-transformed values, Descart 
can also be employed to obtain the importance scores of features for any type of spatial 
sequencing data. Researchers can utilize the importance scores to fit various distribu-
tions to obtain p-values for all peaks. Alternatively, they can straightforwardly designate 
a specific number or a predetermined proportion of peaks as SV peaks.

Peak module identification

Based on the graph of inter-cellular correlations and its edge weights, Descart can obtain 
the peak-peak similarity matrix S(peak−peak) by.

Subsequently, Descart transforms the matrix S(peak−peak) to a peak-peak distance 
matrix D(peak−peak) through (i) being subtracted by the 99.5th percentile of the elements 
in S(peak−peak) from each element in S(peak−peak) and (ii) setting the diagonal elements 
and negative values of the resulting matrix to zero. Finally, Descart utilizes the scipy 
package for hierarchical clustering (with the method parameter set to “ward”) to identify 
peak modules.

Gene‑peak interaction detection

For transcriptomics data within spatial multi-omics data, Descart uses the same pre-
processing procedure as in Seurat and Scanpy. Specifically, Descart (i) scales the library 
size of each spot to 10,000, (ii) performs log(x + 1) transformation, and (iii) performs z
-score transformation, on the raw gene-by-cell (or gene-by-spot) matrix. Then, Descart 
integrates the processed matrix with the z-score-transformed peak-by-spot matrix to 

sk = ỹk• ×W × ỹTk•

S(peak−peak) = Ỹ ×

(
W +WT

2

)

× Ỹ
T
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obtain a feature-by-spot matrix Ỹ ′ , where features encompass all genes and peaks. Using 
the same calculation formula as for S(peak−peak) , Descart can derive a correlation matrix 
among all features, from which the corresponding submatrix reveals the strength of 
gene-peak or peak-gene interactions.

Data imputation

By incorporating the chromatin accessibility information of each spot with that of other 
cells, Descart enables data imputation on the raw data. Specifically, utilizing the graph 
of inter-cellular correlations and the weights of its edges, Descart performs a weighted 
averaging of the data from nearest neighbor spots and adds the result onto the raw data, 
that is

where Scale(•) denotes the function of z-score transformation, and Ỹ
(enhanced) represents 

the enhanced matrix that can be directly used for downstream analysis. Descart also 
provides two alternatives: (i) imputing data only based on neighborhood relationships 
from the spatial graph or the chromatin accessibility graph, that is, substituting W  in the 
formula for obtaining Ỹ

(enhanced) with W (spatial) or W (CAS) , and (ii) incorporating the 
original data with the imputed data, that is, Ỹ

(enhanced)
= Scale

(
Ỹ ×W + Ỹ

)
.

Data collection

The mouse brain dataset [8], which simultaneously provides capture chromatin acces-
sibility and gene expression of spots, consists of four tissue slices from mouse fetal brain 
at stages E11.0, E13.5, E15.5, and E18.5, respectively. In addition, the dataset also pro-
vides accurate manual anatomical annotations which reveal major tissue organizations 
of these slices, with reference to Kaufman’s Atlas of Mouse Development and Allen 
Brain Atlas. The mixed-species A dataset [38] encompasses four annotated slices, two 
from mouse brains, one from the human brain, and another from the mouse embryo. 
Although this dataset lacks explicit domain labels, reliable clustering labels provided by 
the original authors are available. If the slices have multi-omics-derived clustering labels 
available, we use these as ground truths; otherwise, we use the clustering labels derived 
from the spATAC-seq data. The mouse embryo [6, 7] dataset composes of six tissue sec-
tions from three stages of mouse gestational development, including E12.5, E13.5, and 
E15.5 embryonic days. The mixed-species B dataset [7] comprises a collection of tissues 
from human and mouse, including five slices—three from mouse embryos, one from the 
mouse brain, and another from human tonsil. The metastatic melanoma dataset is a sin-
gle-cell resolution dataset, also serving as a spatial multi-omics dataset [9]. In this data-
set, Russell et al. have ingeniously integrated their Slide-tags technology with scRNA-seq 
and scATAC-seq, allowing for the simultaneous capture of chromatin accessibility and 
gene expression at the cellular level. Besides, Russell et al. also provided well-annotated 
cell type labels of the dataset in their study. A summary of the above datasets is shown in 
Additional file 2: Table S1.

Ỹ
(enhanced)

= Scale
(
Ỹ ×W

)
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Model evaluation

SV peaks selection

Due to the limited knowledge about the congruent relationship between domains (or 
cell types) and peaks, systematically benchmarking methods for SV peaks selection 
remains a tough challenge. For datasets with well-annotated labels, such as the mouse 
brain and metastatic melanoma datasets, we follow and improve the quantitative evalua-
tion procedure from our prior research [27], that is, evaluating whether SV peaks identi-
fied by Descart can (i) perform better in facilitating cell clustering and (ii) capture more 
domain-specific (or cell type-specific) signals. The design of the evaluation framework 
and metric visualization is also informed by scIB [32], with specific calculations detailed 
as follows.

From the perspective of facilitating cell clustering, we utilize different methods to 
select SV peaks, and then perform unsupervised clustering to obtain annotated spa-
tial domains. Due to the absence of analytic methods tailored for spATAC-seq data, we 
resort to the Signac [29] to obtain low-dimensional representations and clustering labels 
of spots (or cells). When clustering spots by the Leiden clustering (the default clustering 
method in Signac), we use a binary search to ensure that the number of clusters matches 
the number of domain labels. The clustering accuracy is assessed by NMI, ARI, and AMI 
scores, and higher values of the three metrics indicate that the method retains more spa-
tial domain information in the identified SV peaks.

From the perspective of capturing domain-specific signals, we assess the performance 
using the overlap proportion between identified SV peaks and domain-specific acces-
sible peaks. Specifically, given the domain labels in a specific dataset, we first use the 
“FindAllMarkers” function in Signac [29], the “tl.rank_features” function in epiScanpy 
[28], and the “tl.diff_test” function in snapATAC2 [33] to extract 100 domain-specific 
peaks for each domain and then compare the OP between specific peaks for each 
domain and SV peaks identified by various methods. OP1, OP2, and OP3 correspond 
to the overlap using the “tl.rank_features” function in epiScanpy, the “FindAllMarkers” 
function in Signac, and the “tl.diff_test” function in snapATAC2, respectively. A higher 
OP value indicates that SV peaks encompass more heterogeneity information related to 
specific domains. We evaluated the three aforementioned methods, along with several 
other approaches (including scaDA [39], scATAC-pro [40], ArchR [41], and snapATAC 
[42]) for identifying differentially accessible peaks, on the E13_5-S1 slice of the mouse 
brain dataset. Considering the reliability and specificity of the available ground truth, we 
ultimately used these three methods to obtain domain-specific signals (Additional file 1: 
Note S11 and Additional file 1: Fig. S23). Notably, the feature selection functions of Sig-
nac and epiScanpy are also used as baseline methods, but we verified that the operator 
does not introduce bias when benchmarking methods (Additional file 1: Note S11).

Referencing scIB, to ensure that each metric contributes equally to each perspective 
and possesses the same discriminative power, we perform min–max scaling on individ-
ual metrics among different methods. Specifically, for each metric, we scale the highest 
value among different methods into 1 and the lowest value into 0. After scaling, all met-
rics of each method for each perspective are averaged to obtain a score, with a higher 
value indicating superior performance of the method in that perspective. The overall 
score of each method is then determined by averaging the scores of the two perspectives, 
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serving as the final measure of each method’s performance. During the benchmark-
ing, all the methods are performed on the raw spATAC-seq datasets after peak calling, 
without filtering any low-quality peaks. Under the strategy, our benchmarking proce-
dure aligns with current practices in the review [43], ensuring that comparisons directly 
reflect the intrinsic capabilities of the methods rather than their adaptability to the 
preprocessing.

For the mouse embryo and mixed species datasets, the absence of well-annotated 
labels precludes the same quantitative assessment as aforementioned. We here assess SV 
peaks identified by each method based on the ability to preserve spatial continuity as 
in spatialPCA [44]. Specifically, we perform cell clustering based on SV peaks and then 
use CHAOS, median LISI, and PAS scores to measure the spatial continuity of the clus-
ters. Lower values of the three metrics indicate better performance of the corresponding 
method. The workflow for cell clustering is consistent with the aforementioned setting, 
and the number of clusters is set to 10 for all slices.

Detailed formulas for all the metrics mentioned above are provided in Additional 
file 1: Note S12. In addition to assessing the accuracy of SV peak identification, we con-
ducted evaluations of the running time for different methods, i.e., the time they require 
from initial data processing to obtaining the ranking of each peak. All experiments were 
conducted on a server with 128 GB of memory and equipped with 32 units of 13th Gen 
Intel(R) Core(TM) i9-13900 K.

Baseline methods

Given the absence of methods specifically designed for spATAC-seq data, we assessed the 
performance of Descart against two categories of methods: (i) those based on spRNA-seq 
data, including SOMDE [15], SpatialDE2 [11], SpatialDE [12], SPARK-X [13], SPARK [31], 
scGCO [14], Sepal [16], and Moran’s I [17], and (ii) those based on scATAC-seq data, 
including Cofea [27], HDA [22–26], Signac [29], and epiScanpy [28]. HDA, notably the 
most commonly used feature selection method for scATAC-seq data analysis, selects 
peaks with at least one read count in a majority of cells. We implemented HDA in Python 
following its instruction. EpiScanpy and Signac, both important pipelines for scATAC-
seq data processing, were utilized solely for the feature selection functions as baseline 
comparison methods. The implementation of other methods was conducted using source 
code and default parameters provided in their respective studies.
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results and running time on the mixed-species A dataset. Fig. S6. Benchmarking results before metric transforming 
of different methods on the mixed-species A dataset. Fig. S7. Overlapped proportion (OP) of SV peaks identified by 
Descart and baseline methods with domain-specific peaks related to overall domains. Fig. S8. Overlapped proportion 
(OP) of SV peaks identified by Descart and baseline methods with domain-specific peaks related to each domain. 
Fig. S9. Concordance of SV peak rankings evaluated by each method. Fig. S10. Overlapped proportion of SV peaks 
identified by each method under different peak numbers. Fig. S11. Overlapped proportion of SV peaks identified 
by Descart and baseline methods. Fig. S12. Visualization of domains and top-ranked SV peak on the slices from the 
mouse brain dataset. Fig. S13. Venn diagrams and box plot on the mouse brain dataset showing the overlap of the 
top 10,000 peaks identified by Descart and its two single-element-focused variants. Fig. S14. The overlap proportion 
of the top 10,000/50,000 important peaks identified by Descart between successive iterations. Fig. S15. Quantitive 
assessment of the impact of different parameters with NMI scores as the metric. Fig. S16. Clustering performance 
on the mouse embryo dataset. Fig. S17. The top-ranked SV peak in the tissue space on the slices from the mouse 
embryo dataset. Fig. S18. The top-ranked SV peak in the tissue space on the slices from the mixed-species B dataset. 
Fig. S19. Benchmarking results on the metastatic melanoma dataset. Fig. S20. The impact of varying the number of 
nearest neighbors for the graph construction of chromatin accessibility and different times of d_s for the graph con-
struction of spatial locations. Fig. S21. The top-5 most significant pathways for each module with p-values calculated 
through GREAT analysis. Fig. S22. Contact matrix of the mouse brain development Hi-C data. Fig. S23. Overlapped 
proportion among domain-specific peaks and visualization of marker peaks on the E13_5-S1 slice of the mouse 
brain dataset.
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