
Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

METHOD

Samadi et al. Genome Biology            (2025) 26:3  
https://doi.org/10.1186/s13059-024-03467-5

Genome Biology

SMORE: spatial motifs reveal patterns 
in cellular architecture of complex tissues
Zainalabedin Samadi1, Kai Hao1 and Amjad Askary1*    

Abstract 

Deciphering the link between tissue architecture and function requires methods 
to identify and interpret patterns in spatial arrangement of cells. We present SMORE, 
an approach to detect patterns in sequential arrangements of cells and examine their 
associated gene expression specializations. Applied to retina, brain, and embryonic 
tissue maps, SMORE identifies novel spatial motifs, including one that offers a new 
mechanism of action for type 1b bipolar cells. Structural signatures detected by SMORE 
also form a basis for classifying tissues. Together, our method provides a new frame-
work for uncovering spatial complexity in tissue organization and offers novel insights 
into tissue function.
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Background
A central theme in biology is the idea that function is shaped by structure. Biological 
tissues, for example, often comprise stereotyped organizations of specific cell types 
that together enable proper function of the tissue. Formation of these structures dur-
ing development is orchestrated by intrinsic gene regulatory networks and extrinsic cell-
cell interactions. Therefore, analysis of cellular architecture of tissues can provide insight 
into both developmental processes that generate them and mechanisms that govern 
their function.

Recent technological developments in spatial omics have enabled researchers to map 
the position of cell types in complex tissues [1, 2]. Developing methods to analyze and 
interpret the resulting cellular maps is an active area of research [3–5]. Reported devel-
opments can roughly be classified into three groups. First, methods that examine spatial 
distribution of one cell type label relative to itself. This includes spatial autocorrelation 
[6] and Ripley’s spatial statistics [7] that determine whether cells with a given label are 
clustered, dispersed, or randomly distributed in space. Second, methods that quantify 
association between pairs of cell type labels based on proximity. Analysis of this kind, 
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which is implemented in popular tools such as [5, 8] and also utilized in several other 
studies [9–13], can reveal enrichments or depletions in cell-cell interactions by com-
paring frequency of pairwise interactions in the samples with a random configuration. 
Third, methods that identify distinct cellular neighborhoods or microenvironments [14–
21]. These methods typically cluster cells based on an embedding that represents the 
types and abundances of their neighboring cells. Variations of this approach have been 
used to study immune tumor microenvironment in colorectal cancer [14] and reorgani-
zation of local tissue architecture in response to acute kidney injury [21]. Methods have 
also been developed to analyze higher-order assembly of cellular neighborhoods, such 
as constructing “Tissue Schematics” [15] or to employ concepts from natural language 
processing, like “bag-of-words” idea in Spatial-LDA, to identify distinct microenviron-
ment “topics” [16].

Despite the remarkable diversity of existing methods for spatial analysis, to our knowl-
edge, none of them capture patterns in sequential arrangement of cells, as they focus 
on composition of cell types in each region regardless of their order. Spatial ordering 
of cell types within tissue is crucial for understanding organizational principles. Stere-
otypical sequential arrangements appear in many tissues, for example in the intestinal 
crypts along the crypt-villus axis, in airway epithelial cells of bronchioles, and in lay-
ers of skin epidermis. But their intricacy and significance is perhaps most evident in the 
central nervous system, where sequential arrangement of cell types enables precise sig-
nal processing and thus is directly related to tissue function. While some simple pat-
terns in the spatial arrangement of cells are readily recognizable, the vast diversity of 
cell types revealed by spatial omics, combined with the complexity of biological tissues, 
necessitates a systematic statistical approach to uncover many of the underlying spatial 
patterns.

Here, we introduce a strategy for identifying “Spatial Motifs” that reveal statistically 
overrepresented spatial arrangements in complex tissues. Spatial omics data are often 
modeled as neighborhood graphs. Our approach focuses on paths in these graphs to 
directly capture ordered arrangements that may be overlooked by methods focused 
solely on regional composition. To extend the concept of motifs to spatial maps of cell 
types, we first developed an algorithm for enumeration and uniform sampling of paths 
in neighborhood graphs. Each path consists of a sequence of nodes, labeled by the cell 
types they represent. Paths along which the physical distance monotonically increases 
capture arrangements of cell types in the sample. Identifying overrepresented patterns 
in linear sequences, such as DNA, has long been a cornerstone of bioinformatics, with 
methods extensively refined and optimized over the years. To identify recurring patterns 
of cell types in sampled paths, we adapted the STREME algorithm, originally developed 
for motif discovery in nucleic acid sequences, enabling us to build on a history of highly 
optimized techniques (Fig.  1a). Our new algorithm, called Spatial MOtif REcognition 
(SMORE), introduces crucial modifications to accommodate input from spatial graphs 
rather than one-dimensional sequences. It also integrates motif discovery with differen-
tial gene expression analysis to compare cells within spatial motifs to those of the same 
type located elsewhere in the tissue.

We tested the sensitivity, specificity, and accuracy of SMORE by recovering motifs 
that were embedded at specified frequencies within synthetic graphs. We then 
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analyzed published datasets of mouse retinal bipolar cells, hypothalamic preop-
tic region, and embryonic tissue to identify a variety of spatial motifs. Our results 
revealed that gene expression of cells in some spatial arrangements can differ signif-
icantly from other cells of the same type, providing clues to the functional signifi-
cance of the spatial motifs. We also demonstrate SMORE’s remarkable versatility and 
scalability by applying it across diverse spatial transcriptomics datasets, spanning 
both 2D sections and 3D volumes, imaging- and sequencing-based techniques, and a 
whole mouse brain dataset with nearly 4 million cells. Together, this work presents a 
novel and broadly applicable approach for identifying patterns in spatial data that go 
beyond pairwise associations and regional composition.

Fig. 1  Overview of the spatial motif discovery algorithm. a Schematic of the procedure for finding motifs 
on a set of spatially distributed nodes, each labeled by a color and a letter for illustration purposes. (1) A set 
of spatially distributed nodes in 2D space. (2) Delaunay triangularization is used in this case to generate the 
graph. (3) URPEN is used to sample a set of length-4 radial paths. Control data is created by shuffling the 
observed graph node cell types. (4) SMORE is used to extract most significant spatial motifs. (5) PWM logos 
can be used to represent the output motifs. b An example of a radial and a non-radial path. Radial path 
sampling ensures nodes that are farther from each other in the sample are also farther from each other in 
physical space. c A simplified example for the SMORE pipeline. Input samples are converted to nmers from 
length 3 up to length of the motif and p values of the seeds evaluated based on negative binomial test 
with Bernoulli probability computed based on total number of distinct seeds in primary and control graph. 
nEval = 3 most significant seeds are input to refine and enrichment where ZNIC p values are used to refine 
and enrich candidate seeds. Hold-out scoring is performed to compute the p value for the output motif. 
Nodes of the seeds involved in the motif are erased from the graph and the process is repeated again. More 
detailed description of each block is provided in the “Methods” section. Letters and sequences are chosen for 
demonstration purposes and do not correspond to specific cell types
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Design of the spatial motif discovery algorithm
Our algorithm for finding spatial motifs in neighborhood graphs consists of two main 
components: first, a method to uniformly sample paths from the graph, and second, a 
procedure to find motifs in the obtained samples. Each path provides a sequence of cell 
type labels that occur near each other in space. Generating sequence samples from the 
neighborhood graphs reduces identification of spatial patterns into finding overrepre-
sented sequences of labels. Despite some important differences, this task is similar to 
identifying motifs in nucleic acid or protein sequences. Therefore, we generalized exist-
ing methods of motif discovery in genomic sequences for our application on graphs.

The sampling algorithm takes a graph G and returns an unbiased sample of all paths 
inside the graph. In a graph, a path is a walk that does not intersect itself. Our selected 
paths are also constrained to be “radial.” Radial condition in a spatially embedded net-
work is defined as the requirement that physical distance along a path monotonically 
increases along the sequence of edges in the path. Radial condition ensures that the 
sequence of labels in a sampled path corresponds to a spatial arrangement of cell types 
in space, so that labels that are farther from each other in the path are also farther from 
each other in physical distance (Fig.  1b). Therefore, the radial requirement simplifies 
interpretation of the output motifs.

After sampling, the motif discovery algorithm identifies sequences of a given length 
that are statistically overrepresented in an iterative process. In each step, a significant 
recurring pattern of cell types is identified and is subsequently refined by considering 
sequences similar to the initial pattern or seed (Fig. 1c). The algorithms for path sam-
pling and motif discovery are described below. For more details, refer to the extended 
“Methods” section. The time required for analysis of the experimental datasets in this 
study is summarized in Additional file 1: Table S1. The code for sampling and motif dis-
covery algorithms is available at: SMORE:​ Spati​al Motif​ Recog​nition.

Sampling the graph to generate paths

The first step in our approach involves uniform sampling of neighborhood graphs. We 
have developed an algorithm for Uniform Random Path Enumeration (URPEN) based on 
the Rand-ESU algorithm [22]. The Rand-ESU method involves enumerating all potential 
subgraphs within a given graph, incorporating a probability element to uniformly sample 
a subset of these subgraphs. In our modification, we have adapted this method to exclu-
sively sample paths as opposed to subgraphs. Paths differ from subgraphs in that they 
cannot intersect themselves, and each node, excluding the initial and terminal nodes, is 
only linked to its preceding and succeeding nodes in the path sequence. This contrasts 
with subgraphs where nodes can be connected to an arbitrary number of neighboring 
nodes. This distinction is crucial when selecting the next neighbor to expand the grow-
ing sample.

Enumerating all length‑k paths in a graph

The Path Enumeration algorithm (PEN) (Algorithm  1) enumerates all paths of length 
k within a graph. The algorithm begins with a vertex v from the input graph and adds 
only those vertices to the set that are neighboring the newly added vertex w but are not 

https://github.com/zsamadi/SMORE
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already in Vpath . To prevent enumeration of both the path and its reverse, for undirected 
graphs, the index of the last vertex in the enumerated path must be greater than that of 
v.

Uniform path sampling

Similar to ESU-tree, the PEN algorithm’s structure can be visualized as a tree structure. 
The tree structure for an example graph is demonstrated in (Fig. 2a). This tree has 18 
leaves which correspond to the 18 size-3 paths of the graph. We can use this tree to 
sample paths uniformly without bias. The PEN algorithm systematically traverses its 
associated PEN-tree. In situations where a full traversal is impractical, we can perform 

Fig. 2  Unbiased sampling of paths from neighborhood graphs. a An example of the PEN sampling tree. 
b URPEN returns each path at a frequency corresponding with the sampling level, whereas Radial Random 
Walk (RRW) results in biased sampling of the graph. Examples of RRW upsampled and downsampled paths 
are shown in the top right corner of the 20% sampling panel. The sampling probability in URPEN is set to 
p = (1, 1, . . . , 1, 0.2) for 20% sampling, and p = (1, 1, . . . , 1, 0.6) for 60% sampling. This test was performed 
1000 times. c Sampling quality with URPEN and RRW on the bipolar cell type graph and a random graph with 
12000 nodes. d Sampling speed for non-radial and radial sampling on the bipolar and random networks



Page 6 of 30Samadi et al. Genome Biology            (2025) 26:3 

a partial exploration of the PEN-tree such that each leaf is reached with equal probabil-
ity. To achieve this, a probability is introduced for each depth 1 ≤ d ≤ k in the path (or 
each depth in the PEN-tree), and the subsequent node rooted at a node at depth d is 
traversed with probability pd . This is implemented by calling the ExtendPath function 
at lines 3 and E6 of the PEN algorithm (Algorithm 1) with probability pd . This new algo-
rithm is called Uniform Random Path Enumeration, URPEN. It can be observed that 
URPEN visits each path with equal probability of p = k

d=1 pd . The method is tested in 
the “URPEN enables efficient and unbiased sampling of neighborhood graphs” section 
on a random graph to validate its accuracy numerically.

Spatial MOtif REcognition (SMORE)

Applied to a neighborhood graph, URPEN returns sequences of cell types that are 
observed near each other. Similar to DNA sequences, we can search through these cell 
type sequences for motifs using unsupervised learning techniques. The SMORE method 
is developed to detect motifs within the sampled sequences. Our approach uses as its 
basis the recently developed STREME method [23] which the author has demonstrated 
to be more accurate, sensitive, and comprehensive than several widely used motif dis-
covery algorithms. STREME is developed to find motifs within sequence-like samples; 
SMORE on the other hand finds motifs in a network-based dataset. The algorithm fol-
lows a series of steps to accomplish its objectives. 

1.	 Construct the graph from spatial data: To construct a graph from the spatial coor-
dinates of cell types, Delaunay triangularization is employed, forming a graph with 
nodes as cells, labeled with their respective cell types. Given that each dataset may 
comprise multiple tissue sections or animal IDs, separate graphs are generated for 
distinct sections and IDs. For generating control data, each section or animal ID is 
shuffled independently. Additionally, besides Delaunay triangularization, the method 
offers options to construct the graph using arbitrary K nearest neighbors or epsilon 
graph approaches.

2.	 Sampling the graph and generating control data: SMORE uses URPEN for uniform 
sampling of the input graph. Control samples are generated using one of two meth-
ods: shuffle or kernel. The shuffle method produces control data by shuffling node 
cell type labels within samples (e.g., tissue sections and animal IDs). On the other 
hand, the “kernel” method establishes a kernel around each cell and swaps the cell’s 
label with that of a cell within its kernel (Additional file  1: Fig. S1). In the experi-
ments detailed in this paper, kernels with a radius of K neighbors are used, where K is 
specified for each experiment. K = 1 means only first neighbors within the graph are 
considered for shuffling. The degree of randomness in the control data is controlled 
by adjusting the number of neighbors considered for shuffling.

	 There are certain scenarios where specific cell types associated motifs are readily 
apparent. In such cases, these cells can be fixed between primary and control data, 
meaning that their cell labels are not shuffled.

	 We generate nTrain control data and seed numbers for control data are the total 
number of that specific seed within these nTrain samples. NScore independent con-
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trol data is generated for output motif scoring, with the same settings as the training 
data.

3.	 Convert to n-mers and count seeds: Input samples to the algorithm can be of an 
arbitrary length. These samples are converted to W-mers, where W is the desired 
motif length. These W-mers are input to the count seed modules. Three strategies 
have been proposed for counting motif instances: counting all occurrences, count-
ing those with no shared edges, and counting those with no shared nodes [24]. We 
adopted the third approach, which assumes that motifs share no common nodes, to 
prevent overrepresentation due to overlapping occurrences. This approach, referred 
to here as the Zero Node in Common (ZNIC) model ensures that each counted motif 
instance is structurally independent. Motif counts under ZNIC model are referred 
to as ZNIC counts. By using the ZNIC model, we avoid inflated frequency counts, 
allowing for a more accurate capture of the network’s true structural patterns. ZNIC 
counts of unique seeds, along with their associated nodes, are then passed to the 
next module for evaluating initial seeds.

4.	 Initial seed evaluation: The significance of each initial seed is obtained by the nega-
tive binomial test (see the “Methods”  section for details). The justification for this 
specific test is argued in the extended “Methods” section. The first nEval seeds with 
this criterion are passed to the next stage of refinement and enrichment. The default 
value for nEval is 25.

5.	 Refinement and nested seed enrichment: The refinement and seed enrichment both 
use the same process of enrichment, except that refinement is only one iteration, 
and seed enrichment is nEnrich iterations, with the default value of nEnrich = 20 . 
Enrichment groups similar path samples together and compares ZNIC counts of the 
grouped sequences with the control data. nEval motifs from the initial evaluation 
step are first enriched for one iteration and top nRef (nRef = 4 as a default) motifs 
are further refined in seed enrichment block for nEnrich iterations or until p value 
does not improve.

	 During each iteration, the Position Weight Matrix (PWM) is calculated from the 
sequences participating in the motif. Likelihood ratio scores are then computed for 
all samples, using this PWM matrix, and the samples are arranged in descending 
order based on their PWM scores. In the event of an equal PWM score, the samples 
are further sorted based on their p values obtained in the initial evaluation block. 
Subsequently, ZNIC counts for the ordered samples are determined, and the PWM 
score threshold that minimizes the p value is identified. This process is iterated if the 
p value obtained is more significant than the previous iteration.

6.	 Motif scoring: In most cases, tissue samples are different from each other and it is 
not optimal to take sections of the samples as hold-out for scoring. In our experi-
ment, the same samples are used for finding motifs and scoring the output motif, 
with the scoring part iterated over NScore times with different shuffled networks 
to avoid false positives. Implementation results on synthetic data with nScore = 50 
shows that the false positive rate is negligible. Furthermore, tests on real data with 
randomly shuffled cell type labels did not result in any significant output motif. The 
ZNIC counts for the seeds involved in the output motif are computed in the primary 
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and nScore randomly generated control data and the 95 percentile least significant 
p value is considered as the output p value of the scoring module.

7.	 Motif node erasing: The respective nodes for the seeds involved in the motif are 
erased (i.e., their cell type is set to 0) from the graph in primary and control data 
along with their reverses. The previous steps are then repeated until output motifs 
are not significant anymore, or a specified number of output motifs have been dis-
covered.

Results
URPEN enables efficient and unbiased sampling of neighborhood graphs

The sequence of cell types along a path in the neighborhood graph captures their local 
spatial arrangement. A collection of these sequences can be used for identifying over-
represented patterns in the graph, only if it represents an unbiased sample of all possible 
paths. Furthermore, the sampling algorithm should be able to handle the large number 
of cells in typical spatial transcriptomics datasets.

To confirm that URPEN sampling is unbiased, we generated a graph by applying 
Delaunay triangularization on a spatially uniform distribution of 120 two-dimensional 
Cartesian points. We then used URPEN to sample radial paths of length 5 from this ran-
dom graph at three sampling levels; 20%, 60%, and 100%. If sampling is unbiased, we 
expect each path to appear in the sample with a probability equal to the sampling level. 
We repeated these tests 1000 times. So, for the case of 20% sampling, we expect each 
path to appear on average 200 times in the output results. This number is 600 for 60% 
sampling and 1000 for complete 100% sampling. As a comparison, we also sampled the 
same graph with the commonly used random walk method. Random walk starts with a 
randomly chosen node and subsequent nodes are selected from the neighboring nodes 
with equal probability, until a path of the desired length is obtained.

While URPEN returned paths at the expected frequency, random walk sampling 
showed significant bias for certain paths (Fig. 2b). The distribution of the URPEN counts 
is also consistent with a set of identical independent binomial distributions with p = pd , 
confirming that paths were sampled with equal probability (Fig. 2b). Similar results were 
obtained for other path lengths and for paths not constrained by the radial condition 
(Additional file 1: Fig. S2). The sampling bias of random walk can be mitigated by using 
unbiased estimators [25]. However, that incurs complexity and leads to a penalty in 
speed performance [22].

We also evaluated the sampling quality of URPEN compared to random walk (Fig. 2c). 
Sampling quality is defined as the percentage of path types for which the number of 
extracted paths has at most 20% error relative to the exact counts, similar to the meas-
ure used previously [22]. Path samples with at least 5 counts were considered for quality 
evaluation. Sampling quality was computed for two cases: A random graph with 12,000 
nodes and 35,823 edges and a graph based on spatial distribution of bipolar cells in a 
section of mouse retina [26]. Sampling quality for the URPEN method increases with 
increasing sampling probability, reaching one at complete sampling. In contrast, sam-
pling quality for the random walk peaks at around 0.5.

We then assessed how sampling speed scales with the path length (Fig.  2d). The 
two graphs of Fig. 2c was sampled by URPEN at 10% level. The speed appeared to be 
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independent of the path length for non-radial paths. However, when the radial con-
straint was applied, the speed decreased with path length, because the proportion of 
paths that meet the radial condition decreases with increasing path length. Consistent 
with this explanation, the speed of sampling radial paths is not independent of graph 
architecture, as it appears to be the case for the non-radial paths. Together, our results 
demonstrate that URPEN avoids the shortcomings of random walk sampling and offers a 
robust method for uniform path sampling.

SMORE accurately identifies overrepresented cell type arrangements in synthetic graphs

Evaluating the performance of SMORE requires datasets with known ground truth. 
Since the presence and frequency of overrepresented spatial patterns in existing experi-
mental data is unknown, we created synthetic data by embedding patterns within ran-
dom graphs at known frequencies. Each graph has 12,000 nodes, 35,823 edges, and 12 
cell types. The embedding percentage indicates the proportion of nodes used for pat-
tern embedding. For example, 2% embedding indicates that 2% of the nodes (i.e., 240 
nodes) were used for embedding patterns. In the case of a length 4 motif, this results 
in 60 sequence patterns. Other nodes in the graph were labeled randomly. Embedded 
patterns included one variable position, which was filled with one of two cell types with 
equal probability. Other positions in the pattern were assigned one predefined cell type. 
Although more complex patterns can also be considered, we chose our patterns so that 
they are sufficiently complex while still providing insight into the algorithm’s perfor-
mance. The algorithm was run 100 times for each embedding frequency, generating 10 
output motifs per run. The samples for length 4 motif included all possible radial paths 
inside the graph. For the length 5 motif, the graph was downsampled by URPEN and 
65% of all radial paths were used.

The accuracy of a motif discovery algorithm describes its ability to recover accurate 
versions of overrepresented patterns [23]. We assessed the accuracy of SMORE by meas-
uring the similarity of output motifs to embedded patterns (Fig. 3a). In each run, SMORE 
returns 10 motifs that are sorted based on their statistical significance. At embedding 
frequencies above 0.5%, the most significant output motif tends to be the one most 
highly correlated with the embedded pattern. At 1% and higher embedding frequency, 
the Pearson correlation coefficient between the extracted motifs and the embedded pat-
terns was higher than 0.9 in all 100 tests. Based on these results, we expect SMORE to 
be able to accurately identify length 4 and 5 motifs even when they only occur at low 
frequencies in a sample.

To assess the specificity of SMORE, we examined the true positive rate (TPR) and false 
positive rate (FPR) against output p values (see the “Methods” section for details). Ide-
ally, both TPR and FPR should be high at high p values and decrease as the p values 
decrease, with FPR decreasing at a faster rate to allow for correct motif identification. 
Accordingly, we observed that FPR curves reached zeros at around log p value of –10, 
while TPR performance gradually increases with the embedding frequency (Fig. 3b). The 
corresponding ROC curves (Fig. 3c) confirm close to perfect classification performance 
of SMORE at embedding frequencies higher than 1%.

To evaluate the sensitivity of SMORE, we defined success rate to be the proportion 
of output motifs that are statistically significant, at a given p value, and have a Pearson 
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correlation coefficient of at least 0.95 with respect to the embedded pattern. With a log 
p value threshold of –10 (Fig. 3d), success rate for identifying length 5 motifs exceeds 
90% at embedding frequencies above 1%. Success rates for length 4 motifs increase more 
gradually with embedding frequency, exceeding 90% only at 3% embedding. At each 
embedding frequency, success rate appeared to drop sharply beyond a specific p value 
threshold (Fig.  3e). As expected, this threshold decreases with increasing embedding 
frequency.

SMORE reveals spatial motifs in the distribution of mouse retinal bipolar cells

Retina contains a rich diversity of neuronal cell types, organized into three layers of cell 
bodies. These cell types have different features and frequencies and are tiled across the 
retina in a stereotypical manner that supports the overall function of the tissue. Cell type 
diversity and individual variability make it difficult to identify recurring patterns in the 
cellular architecture of the retina. Spatial motif analysis can reveal higher order associa-
tions between retinal neurons and provide insight into their development and wiring.

We applied SMORE on a dataset of the mouse bipolar interneuron subtypes con-
taining more than 30,000 cells [27]. These subtypes were differentiated using co-
detection of 16 gene markers by SABER-FISH, allowing the classification of all 15 
bipolar subtypes. Bipolar interneurons bridge all visual circuits, establishing the link 
between sensory rod and cone photoreceptors and the output neurons. Bipolar cells 

Fig. 3  Evaluation of SMORE’s performance on synthetic data with known ground truth. a Accuracy of 
SMORE, defined as the best correlation coefficient between the embedded motif and extracted motifs for 
length 4 motifs with varying embedding frequency (f). This figure represents the average results from 100 
algorithm runs. The highlighted curves indicate the best correlation among the n = 10 output results. Faded 
curves demonstrate the results when considering only n = 1, 2, or 3 of the best output motifs, instead of all 
10. Examples of motifs with different levels of correlation are shown on the top. b Specificity results for length 
4 motifs, measured by false positive rate and true positive rates against log p value threshold and (c) against 
each other. d Sensitivity of SMORE measured by successful motif recovery rate against embedding frequency 
and (e) enrichment log p value (see Additional file 1: Fig. S3 for length 5 results)
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also do not migrate from their birthplace, providing a spatial map between their final 
location and the location of their progenitors [28].

Rod bipolar cells (RBCs) constitute the majority of retinal bipolar cells in mice and 
their cell bodies are mainly organized together, further out in the inner nuclear layer 
(INL) compared to cone bipolar cells (CBCs) (Fig. 4a). SMORE evaluates the statisti-
cal significance of cell type arrangements in the experimental data against control 
data, which are generated by shuffling cell type labels. When shuffling is done for all 
cells across the whole graph, relatively obvious structures, like separation of RBCs, 
are identified as highly significant motifs (Fig. 4b, motif #2). To reveal other motifs 
involving RBCs, besides this trivial case, we can fix the position of RBCs in the con-
trol data (Fig.  4a). This would eliminate any motif whose significance stems from 
RBCs and elucidate the relationship between RBCs and other cell types (Fig.  4c, 
motifs #1 and 3).

Our analysis revealed several highly significant spatial motifs among retinal bipo-
lar cells. These motifs can be investigated in the context of retina development, 
anatomy, and physiology. For example, when RBC positions are fixed, the most sig-
nificant motif involves a type 2 OFF CBC followed by two RBCs and a type 6 ON 
CBC (COOK motif; Fig.  4c). Overrepresentation of this cellular arrangement can 
be understood in the context of a primary rod pathway that enables scotopic vision 
[29]. Within this pathway, the signal originating from a single rod cell is primarily 
directed to a select few AII amacrine cells through two RBCs [30]. The AII amacrine 
cells establish connections with nearly all bipolar cell types to gather scotopic sig-
nals originating from RBCs (denoted as O in our motif notation). These signals are 
then distributed to both ON and OFF CBCs through gap junctions and inhibitory 
synapses, respectively (Fig. 4d). However, the number of connections varies depend-
ing on the bipolar cell types [31]. Type 2 (C) cells account for 69% of the total num-
ber of OFF bipolar chemical synaptic contacts with AII amacrine cells, while type 
6 (K) cells contribute 46% of the total area of ON bipolar gap junctions with AII 
amacrine cells [31]. Both type 2 and type 6 cells not only have the highest access to 
AII amacrine cell signals but also share these signals with other types of bipolar cells 
through interconnected gap junctions in the network. These findings support the 
central role of type 2 and type 6 cells in conveying the most sensitive scotopic signals 
to the postsynaptic ganglion cells. Furthermore, AII amacrine cells are characterized 
by their narrow-field dendrites. Typically, a bipolar cell receives more inputs from 
AII amacrine cells that are in its close proximity [31]. This suggests that bipolar cell 
types involved in scotopic vision should be spatially close to each other. Given these 
considerations, we hypothesize that the COOK motif is associated with the primary 
rod pathway for scotopic vision in mice.

SMORE is specifically designed to identify overrepresented sequential arrange-
ments of cell types. Therefore, its objective and output differs from previous meth-
ods that search for spatial neighborhoods or microenvironments based on local cell 
type composition, regardless of order of cells. To clarify this distinction, a side-by-
side comparison between SMORE and two such methods, HistoCAT [8] and Ima-
CytE [19], is included in the Supplementary Information (Additional file 1: Fig. S4).
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Fig. 4  Spatial motif analysis of mouse retinal bipolar cells. a A retinal section with classified bipolar subtypes 
(left) and examples of control data generated from this section using different randomization methods, 
global shuffling (middle) and shuffling with fixed RBCs (right). b The top five output motifs, identified using 
the global shuffling method, are displayed in order from top to bottom with their respective log p-values. 
Their positions within a section of the retina are shown by highlighting the nodes associated with each 
motif, using the color code in the bottom right corner. Two example regions, marked by rectangles, are 
enlarged for a closer view. c Same as b, but for motifs obtained when RBCs are fixed. Annotations for the cell 
types involved in the motifs are listed at the bottom. d Schematic for primary pathway for rod-driven signals 
involving rods, rod bipolar cells, AII amacrine cells, OFF or ON (cone) bipolar cells, and OFF or ON ganglion 
cells. e Absolute log p value versus difference in gene expression medians (delta median) for cells in a spatial 
motif versus cells of the same type that are not in a motif arrangement. The results for a random selection of 
cells are shown in red. f Selected cases and genes with absolute log p value greater than 7. The heatmap is 
colored with delta median values. The motif cases, specified by motif number-position-cell type, are sorted 
by cell type on the vertical axis. Values in each cell show absolute log p value for comparison between cells 
within a given motif and overall cells of the same type
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Cells within spatial motifs exhibit gene expression differences compared to other cells 

of the same type

Spatial context of the cells often influences their function. With recent advances in spa-
tial gene expression profiling, there has been an increased interest in systematically 
characterizing spatial variability of gene expression [32–38]. Spatially variable genes 
may explain functional distinctions between cells in different regions or demarcate spa-
tial domains [32–34, 37]. If spatial motifs represent functional units made of various cell 
types that together play a distinct role, we can expect cases with distinct gene expression 
signatures. Specifically, cells within some spatial motifs may exhibit unique gene expres-
sion profiles compared to cells of the same type that lie outside these specific spatial 
arrangements.

We assessed differential gene expression between cells of each type that are involved 
in a spatial motif and the ones that are not. For each gene, the median expression value 
among the cells of a specific type that are involved in the motif was subtracted from the 
median of all the cells of the same type. The p values for the observed delta medians 
were obtained through theoretical computation by analyzing the distribution of delta 
median values for a random subset of cells (see the “Methods” section for details). We 
performed this analysis for motifs obtained by shuffling with fixed RBC cells for the 16 
genes profiled in the retinal bipolar dataset [27]. Several cases of highly significant dif-
ferential gene expression were observed in the motif cells (Fig. 4e). In contrast, control 
samples where a random subset of cells were selected, with the same size and type of the 
corresponding motif case, showed much higher p values. This observation is consistent 
with functional specialization of cells in spatial motifs.

The heatmap in Fig. 4f illustrates the absolute log p values across all cases for 20 output 
motifs. Each motif can consist of multiple cell types in different positions. For example, 
the second motif in the fixed shuffling case of Fig. 4c comprises 10 cells, 4 cells in each 
of the positions 1 and 4, and one cell in positions 2 and 3. Here, we consider each cell 
type in each position of each motif as a separate case. Genes with absolute log p values 
greater than 7 are highlighted in Fig. 4f.

Among genes that were significantly upregulated or downregulated in the motifs, 
Grm6 stands out because it shows the most extreme differential expression in both direc-
tions. Grm6 is upregulated in type 1b OFF bipolar cells (B) in OBBO motif, where O rep-
resents an RBC, ( delta median = 45,− log(pvalue) = 30.31 ) and downregulated in type 
5b ON bipolar cells (H) in HBBI motif ( Delta median = −12,− log(pvalue) = 14.67 ). 
Grm6 encodes the metabotropic glutamate receptor 6 (mGluR6) which is localized to 
the dendritic tips of ON bipolar cells [39]. It plays a crucial role in triggering depolari-
zation of ON bipolar cells in response to light-induced hyperpolarization of photore-
ceptors [40]. Mutations in Grm6 gene in humans lead to autosomal recessive congenital 
stationary night blindness (arCSNB) [41].

We observed that enrichment of Grm6 in type 1b cells in motif 11 (OBBO) can be 
explained by their position along the radial axis of the retina. Grm6 is expressed at 
higher levels in type 1b cells whose cell body is closer to the photoreceptor level (Fig. 5a). 
Since RBCs (O) are concentrated in this outer region, type 1b cells in OBBO motif also 
tend to be in radial positions where Grm6 expression is higher (Fig.  5a). In contrast, 
downregulation of Grm6 in type 5b cells (H) of motif 4 (HBBI) seems to be explained by 
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their proximity to type 1b (B) cells rather than their radial position (Fig. 5b–d). Type 1b 
cells lack dendrites connecting them to photoreceptors [42, 43]. Therefore, the mecha-
nism of their function is not well understood [42]. Our observation suggests that type 1b 
cells may influence signal processing in the retina by altering expression of key postsyn-
aptic receptors, like Grm6, in nearby ON bipolar cells.

SMORE reveals overrepresented cell type arrangements in the preoptic area of mouse 

hypothalamus

To explore the utility of SMORE at identifying non-trivial recurring patterns in a sig-
nificantly more complex sample, we applied it to a spatial transcriptomics dataset of 
the mouse hypothalamic preoptic region [44]. This dataset profiles about 1 million cells 
and has identified about 70 neuronal populations with distinct signatures and spatial 
organizations.

As we showed before, the approach used to generate control data affects the output 
motifs. This can be used to tune the algorithm to different anatomical features. Here in 
addition to fixing specific cell types, we introduce local kernel shuffling (Fig. 6a–c). Shuf-
fling cell labels across the entire sample can result in the emergence of relatively straight-
forward structural motifs, such as regional boundaries. On the other hand, local shuffling 
maintains cell type frequencies within cellular neighborhoods. Therefore, if a sample is 
compartmentalized to regions with distinct cellular compositions, local shuffling is more 
likely to identify patterns that are overrepresented within each compartment. Control 

Fig. 5  Grm6 shows motif specific expression patterns. Expression of Grm6 versus radial position of cell in 
the mouse retina for (a) type 1b and (b–d) 5b cells. Cells within specific spatial arrangements are highlighted 
in each panel. The radial position was computed by considering the outer extreme points as the maximum 
radius points and computing the radial position for other nodes relative to the nearest outer point



Page 15 of 30Samadi et al. Genome Biology            (2025) 26:3 	

data generated by local shuffling maintains a higher degree of similarity with respect to 
the original experimental data. Therefore, the motifs obtained with global shuffling tend 
to have more significant p values compared to the output motifs of local shuffling. In 
both shuffling methods, if certain cell types form obvious structures (e.g., Fig. 6a Epend-
ymal cells (blue)), their positions can be fixed in the control data.

We applied SMORE to cellular maps of the hypothalamus preoptic region from five 
adult male mouse brains at Bregma − 0.29 to identify length 4 spatial motifs. The sec-
tions used in our analysis comprise 28,866 cells. We tried both global shuffling and local 
shuffling with kernel sizes of 4 and 6 (Fig. 6b). In another set of experiments, we also 

Fig. 6  Spatial motif analysis of mouse hypothalamic preoptic region. a The graph of the preoptic region 
of the hypothalamus from five adult male mouse brains at Bregma − 0.29. b Examples of control data 
generated from the 5th tissue using different randomization methods: global shuffling, kernel shuffling 
with 6 neighborhood depth, and kernel shuffling with 4 neighborhood depth. c Control data obtained by 
applying the same randomization methods as (b) but with the positions of non-neuronal cell types fixed. d 
The top five motifs, identified using global shuffling (top), kernel shuffling with depth 6 (middle), and kernel 
shuffling with depth 4 (bottom). The position of motifs within a tissue section is shown to the right, along 
with their log p-value, ordered from top to bottom. To show the position of the motifs, nodes associated 
with each motif are highlighted using the color code in the bottom right corner. e Same as d, but for motifs 
obtained when non-neuronal cell types are fixed. Annotations for the cell types involved in the motifs are 
listed at the bottom
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fixed the position of non-neuronal cell types between the primary and control data 
(Fig. 6c). When non-neuronal cell types were not fixed, the most significant motif con-
sists of a group of four interconnected ependymal cells (Fig. 6d). This pattern is immedi-
ately visible in the graphs because ependymal cells form a layer that lines the ventricles. 
As expected, fixing the position of non-neuronal cells removes this motif as well as the 
motif made entirely of mature oligodendrocytes (Fig. 6e). Instead, other motifs emerge, 
some of which are combinations of ependymal and neuronal cells (e.g., motif 3 of fixed 
global shuffling).

The first five motifs generated through the global shuffling method correspond to dis-
cernible patterns within the fifth tissue section shown in Fig. 6a. In addition to the first 
motif of ependymal cells, motif 2 comprises astrocytes, E-9, and E-14 cell types, which 
are enriched in the PVA nuclei of the hypothalamus [44]. E-14 and E-9 cells also show 
similar gene expression patterns [44]. Motif 3 represents a pattern of mature oligoden-
drocytes known to be enriched in the anterior commissure and the fornix. Motif 4 is 
a pattern of I-2 and I-13 cells which are indicated to be enriched in BNST-p and StHy 
nuclei. I-2 and I-13 are both aromatase-enriched clusters and express both androgen 
receptor (Ar) and estrogen receptor alpha (Esr1) [44]. Motif 5 is primarily composed of 
cell types I-11, I-12, and I-14, collectively enriched in the MPN and StHy nuclei.

Motifs obtained from kernel shuffling methods capture less obvious patterns. For 
instance, motif 5 in the case of “fixed kernel 6,” represented as hSci sequence which is 
equivalent to a radial path of 4 excitatory neuronal cell types, E-15, E-8, E-12, and E-17, 
occurs 4 times in the primary data (2 occurrences in each of animal IDs, 10, and 11) and 
3 times in the total of 50 generated control data. This motif consistently appears in ker-
nel shuffled tests, with different ranks. Interestingly, there is a similar motif, BSic, with 
B representing astrocytes, that appears as motif 11 of the not fixed kernel 4 (Additional 
file 1: Fig. S5a) experiment and appears at the opposite side of the brains of the same 
Animal IDs.

The functional explanation of identified spatial motifs is not the focus of this study. 
But it is reasonable to expect that such patterns hint to either functional relationships 
between the cell types involved or specific developmental programs that generate them. 
Therefore, they can help generate hypotheses for future studies. For instance, motif 5 in 
the non-fixed global shuffling experiment primarily consists of cell types I-11, I-12, and 
I-14. In the case of the fixed shuffle, motif 4 is predominantly composed of cell types E-8, 
E-15, I-34, and I-15 in the first position, while I-11 occupies the remaining positions. 
I-15, I-2, I-11, I-14, I-33, E-8, and E-15 cells display sexually dimorphic cFos enrichment 
in male mating [44]. Interestingly, a similar motif exists in female sections (Additional 
file 1: Fig. S5b), where I-15 replaces I-11. The Esr1-enriched cluster I-15 exhibits signifi-
cant enrichment in female animals and is preferentially activated in females, with lesser 
activation in males after mating [44].

We also performed gene expression analysis for the motifs obtained by global shuffling 
with fixed non-neuronal cells. Many cases of highly significant differential gene expres-
sion were observed in the motif cells (Fig.  7a). The heatmap in Fig.  7b illustrates the 
absolute log p values across all cases for 40 output motifs. The majority of statistically 
significant cases for genes imaged using combinatorial smFISH measurements are con-
centrated in the first 10 output motifs. In contrast, genes measured through sequential 
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FISH rounds, typically genes with higher expression levels, exhibit a higher prevalence 
of significant cases in this analysis. This difference is probably related to the fact that 
gene expression values for sequential genes are generally under dispersed (Additional 
file 1: Fig. S6), resulting in the upregulated or down regulated genes being more signifi-
cant. Genes with absolute log p values greater than 20 are highlighted in Fig. 7c. In most 
cases, the significance of differential gene expression varies depending on the position 
in the motif. For example, Vgf is upregulated in motif 2, position 1, cell type 26 (i.e., 2-1-
26 case). But its differential expression is not significant in position 3 of the same motif. 
This may indicate that within a spatial motif, cells of the same type in different positions 
can have differences in their gene expression and potentially distinct roles.

Identifying spatial motifs in a 3D sample

So far, spatial transcriptomics has mostly been applied to thin tissue sections or mon-
olayer cultured cells. In these cases, obtained measurements are typically projected on 
a two-dimensional plane. However, recent advances have made it possible to map gene 

Fig. 7  Motif specific gene expression analysis for hypothalamus motifs. a Absolute log p value against 
difference in median gene expression in motif and non-motif cells. Blue markers show experimental results; 
red markers are the results for one random selection of cells. The expression values are not normalized. 
b Heatmap of absolute log p values for genes (on the horizontal axis) and motif cases (on the vertical axis). 
Out of 155 genes, 135 were measured by combinatorial FISH and 20 were measured in sequential rounds 
of FISH. These two groups are separated with a dashed line. c Selected cases and genes with at least one 
absolute log p value greater than 20. The motif cases are sorted by cell type. The gene names and their motif 
address (motif number-position-cell type) are included on the x- and y-axis, respectively
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expression in thicker tissue slices, resulting in 3D datasets [45–48]. This is an impor-
tant step in development of spatial methods because it enables profiling of cells in their 
native context, which in many tissues of interest is inherently three-dimensional. Since 
our method operates on a neighborhood graph, it should be able to identify spatial 
motifs in 3D datasets as well. To test this, we applied SMORE on the cellular map of 
a 200-µm-thick slice of mouse anterior hypothalamus, encompassing over 78,000 cells 
[49]. The cells in this dataset are classified into 21 excitatory neuronal clusters, 26 inhibi-
tory neuronal clusters, and 7 non-neuronal cell subclasses based on the expression of 
156 genes (Fig. 8a).

Figure 8b illustrates the top 20 output motif nodes highlighted within the graph. Com-
paring this figure with the equivalent view from Fig. 8a (lower left) indicates the simi-
larity of the highlighted motifs with the visual structure of tissue and agrees with our 
expectation that global shuffling is able to derive discernable patterns, along with other 
motifs that are less obvious. Figure 8c highlights the first 5 motifs along with the logos 
representing the identified motifs. Overall, our results demonstrate that SMORE can be 
used for analysis of both 2D and 3D spatial data.

The cells within the 3D graph of tissue structure tend to have a greater number of 
neighbors on average compared to those in 2D datasets. For instance, while the average 

Fig. 8  Spatial motif analysis of a 200 µ m slice of mouse hypothalamus. a The graph of 3D MERFISH dataset 
with classified cell subtypes shown as dots colored by subtype. The perpendicular views from different 
angles are shown alongside the 3D view for the primary graph. Epen, ependymal cells; ASC, astrocytes; OGC, 
oligodendrocytes. Excitatory and inhibitory subtypes started with E and I letter, respectively. b The first 20 
spatial motifs obtained using global shuffling to generate the control data. c The first 5 output motifs along 
with their highlighted nodes on the tissue graph, and their respective log p values. Annotations are the same 
as Fig. 6 for the shared cell types
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number of neighbors for the 2D mouse hypothalamus dataset in Fig. 6a is 5.9, it is 15.2 
for the 3D hypothalamus dataset. Additionally, the 3D dataset comprises more than 
twice the number of cells in the 2D hypothalamus dataset (78,229 compared to 28,866). 
Consequently, the number of paths within the 3D dataset is substantially higher. Here, 
we used URPEN to sample 10% of the radial paths in this 3D tissue graph. Despite this 
downsampling, the number of radial paths for the 3D dataset was 1,838,093, while it 
was 696,141 for the specific tissue sections analyzed in Fig. 6, which were not downsam-
pled. Due to the larger sample size, the log p values for the 3D dataset exhibit greater 
significance.

To further demonstrate scalability of our approach, we applied SMORE on a spatial 
atlas of the whole mouse brain (Allen Brain Cell Atlas) [50], which includes about 4 mil-
lion cells profiled by MERFISH (Additional file 1: Fig. S7).

Spatial motifs can serve as structural signatures for tissue classification

Thus far, we have focused on spatial maps of cell types in neural tissues obtained through 
imaging-based methods. The complexity of neural tissues, with numerous intermin-
gled cell types, and the single-cell resolution of imaging-based techniques make these 
datasets particularly well-suited for spatial motif analysis. However, SMORE is a gen-
eral framework, agnostic of the methodology used for spatial profiling. Here, we dem-
onstrate the broader utility of our method by analyzing transcriptomic maps of mouse 
embryos at embryonic day (E) 8.5 and 9, generated using Slide-seq [51].

Our analysis includes data from two E8.5 embryos, with 15 and 17 sagittal sections 
collected at 30 µ m intervals, and one E9 embryo with 26 sagittal sections collected at 
20 µ m intervals. In total, the dataset encompasses 256,487 cells with gene expression 
profiles spanning 27,554 genes. Following the original study, we used 29 cell states as 
labels, each assigned by computationally mapping beads to a pre-existing single-cell ref-
erence. This approach effectively mapped cell states to their expected spatial domains, as 
shown for 10 selected cell states Fig. 9a.

As expected, due to the coarse-grained classification of cell states, most of the top 
motifs were composed of repeating patterns of a single cell state (Fig. 9b). These homo-
typic motifs represent regions of the sample that are broadly labeled, for example as 
brain or heart. Among the top 10 motifs, some also represent the boundary of two tis-
sues, for example presomitic mesoderm and neuromesodermal progenitors (Fig.  9b, 
motif #10). Although these motifs lack the complexity seen in neural tissues, they still 
reveal statistically significant patterns. Therefore, we asked if motif frequency could be 
used to cluster structurally similar samples. Indeed, clustering based on the frequency 
of the top 30 motifs successfully grouped the two E8.5 samples together, separating them 
from the E9 embryo (Fig. 9c).

An advantage of sequencing-based spatial transcriptomics methods, like Slide-seq, is 
their ability to capture a comprehensive, unbiased view of gene expression across the tis-
sue. We performed differential gene expression analysis, comparing cells within motifs 
with the cells of the same type elsewhere in the samples, and found numerous highly 
significant cases (Fig.  10a, b). A notable example is the lower expression of retinoic 
acid pathway members Crabp1 and Crabp2 in brain cells positioned within a sequence 
of anterior neuroectoderm cells (Motif #25, Fig.  10c, d). This observation aligns with 
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previously reported anterior-posterior expression domains of these genes [52] and may 
suggest region-specific modulation of RA signaling. Overall, among the 181 unique sig-
nificant genes (log(p)< −80 and absolute delta median > 0.5 ), 40 overlapped with the 
352 top enriched genes along the anteroposterior and dorsoventral axes reported in the 
original study [51]. This overlap, observed from a pool of 27,554 genes, is statistically 
significant (p-value = 8.99e − 38).

Together, this analysis demonstrates SMORE’s versatility in identifying spatial motifs 
across diverse tissue types and transcriptomics platforms. It also highlights the scalabil-
ity of our motif-specific gene expression analysis for genome-wide, sequencing-based 
data and showcases clustering of tissues based on frequency of their spatial motifs.

Fig. 9  Spatial motif analysis of a slide-seq mouse embryo dataset. a Cell type distributions in two E8.5 
embryos (replicates) and one E9.0 mouse embryo. Three example sagittal sections from each embryo are 
shown. b First 10 output motifs obtained using global shuffling to generate the control data are highlighted 
on the tissue graph. Obtained motifs are represented by logos in the bottom. Annotations for the cell types 
involved in the motifs are either listed in the legend for panel (a) or at the bottom of panel b. Each motif is 
indicated by a different color in the highlighted tissue graph, with the colors noted on top of the motif logos. 
c Clustergram obtained based on correlation of the frequency of first 30 motifs in different embryo tissues
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Discussion
Spatial transcriptomics is a rapidly growing field. We have seen significant innovation 
in the field over the past few years, resulting in a multitude of techniques and con-
sistent improvements in their efficiency and scalability. Concurrently, application of 
spatial transcriptomics has expanded beyond specialized groups to the broader com-
munity of biomedical researchers. There are already several commercial platforms 
available to researchers, and it is expected that additional options will become avail-
able in the near future. Therefore, the need for innovative computational methods to 
extract biologically relevant information from this type of data is on the rise.

In this work, we introduce a method for identifying patterns of cell type arrange-
ments with arbitrary length. There are two major contributions that make this task 

Fig. 10  Motif specific gene expression analysis of mouse embryonic samples. a Selected cases and genes 
with at least one absolute log p-value greater than 100 and absolute delta median greater than 1. The gene 
names and their motif address (motif number - position in motif - cell type - embryo number; MPCE) are 
included on the x- and y-axis, respectively. Embryos are numbered as 1:E8.5_rep1,2 : E8.5_rep2, and3 : E9 . b 
Motif logos for the motifs that are not included in Fig. 9 but are present in the panel (a) heatmap. Cell type 
annotations are shown at the bottom. c Expression level of Crabp1 in all “brain” cells (cell state A) in the E9.0 
embryo viewed from the top along the z-axis (left) compared to brain cells in motif #25 (right). d same as 
c for Crabp2 expression level. Both Crabp1 and Crabp2 are identified as significantly downregulated in brain 
cells within motif #25 compared to other brain cells, as highlighted in the panel (a) heatmap
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possible: a method for unbiased sampling of paths from a graph (URPEN) and a 
method for identifying motifs in such samples (SMORE). Our approach is general 
and can be applied to any system with sufficient complexity profiled with any spatial 
omics method. This includes solid tumors and organoids, where greater heterogene-
ity increases the need for statistical analysis. It is also not limited to two-dimensional 
maps and can be readily adapted for three-dimensional data. In addition to the appli-
cation presented here, individual components of our method can be independently 
employed in a range of other contexts that are modeled as a graph. For example, path 
sampling via random walk has been used in applications ranging from network repre-
sentation learning [53] to estimation of similarity measures [54]. Unbiased path sam-
pling using URPEN can offer benefits over random walk in such applications. Detailed 
evaluation of performance improvement with URPEN needs further investigation.

Spatial motifs can be explained in terms of their functional significance or develop-
mental mechanisms that generate a specific cell type arrangement. Therefore, they can 
be used to generate hypotheses and further our understanding of tissue biology. We have 
provided a few examples in this study. This includes association of RBCs with type 2 and 
6 cone bipolar cells that can be involved in the primary scotopic pathway and downregu-
lation of Grm6 in type 5b ON bipolar cells near type 1b cells that offers a possible mech-
anism for the function of these atypical bipolar cells. Interpretation of each spatial motif 
at this point can only be done on a case-by-case basis, in the context of what is known 
about the cell types involved. This can begin with length 2 motifs, which are easier to 
interpret, and progress to higher lengths in a stepwise manner. For motifs that consist of 
more than one seed, each seed can also be investigated separately.

Our findings also underscore the potential of spatial motifs as powerful tools for sys-
tematically characterizing tissues based on their cellular architecture. It will be interest-
ing to explore more systematic ways of utilizing spatial motifs for characterizing tissues. 
For example, the set of all spatial motifs in a sample can provide a quantitative represen-
tation of the tissue structure. These representations can be valuable in classifying tissues 
with subtle differences in their cellular architecture, such as various cancer subtypes. In 
this study, we showcase an example of such classification for mouse embryonic tissues 
from E8.5 and E9 stages. To enhance this utility, further analysis is required to optimize 
key factors, including the normalization of high- and low-frequency motifs, selection 
between motifs, incorporation of features beyond motif frequency, and identification of 
the optimal motif length for best performance.

Our analysis here is constrained by certain technical limitations of the existing data. In 
datasets we analyzed, each cell is represented by a point in the tissue, which is typically 
the center of its nucleus. This ignores variation in size of the cells and their receptive 
fields. Position of the cell body may also not be a good indicator of neuronal connectiv-
ity. Furthermore, our motifs are currently confined to short range local neighborhoods 
surrounding each cell. Expanding the method to incorporate longer range interactions 
could be an interesting next step, either by clustering identified motifs or by permitting 
gaps in the motif sequence. Gene expression analysis can be informative as shown here. 
However, gene panels in imaging based spatial transcriptomics datasets are often selec-
tive, focusing on known cell type markers. In contrast, sequencing-based spatial meth-
ods offer expansive genomic coverage, but their measurements can be more noisy and 
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sparse. As more, scalable and multimodal spatial methods become available, SMORE 
has the potential to discover more intricate relationships between the spatial positioning 
of cells and their functional characteristics, including gene expression.

Conclusions
In conclusion, SMORE provides a novel and robust method for identifying spatial motifs 
in complex tissue structures. By capturing the sequential order of cells, SMORE fills 
a critical gap and complements the rapidly growing suite of spatial analysis methods. 
We present substantial algorithmic developments that enable efficient, unbiased sam-
pling of paths from neighborhood graphs and discovery of motifs in the resulting cell 
type sequences. By rigorously investigating the performance of each component of our 
method, we quantitatively demonstrate their accuracy, specificity, and sensitivity. The 
application of SMORE to spatial maps of the mouse retina, brain, and embryonic tissue 
illustrates its utility in uncovering previously unrecognized patterns of cell type organi-
zation and contextualizing their biological significance through gene expression analysis. 
We further demonstrate the versatility and scalability of our method by analyzing sam-
ples spanning a wide range of cell and cell type counts, profiled using different spatial 
transcriptomics platforms. Together, our results highlight the capability of SMORE to 
illuminate the substantial complexity of neural tissues, provide novel insight even in well 
studied models, and generate experimentally testable hypotheses.

Methods
In order to apply the SMORE method on the spatial structure of the cell types, spatial 
transcriptomics dataset is imported and the neighborhood graph based on cell positions 
is created. Control data is generated using one of two methods: global shuffling and ker-
nel shuffling. As an example, Additional file 1: Fig. S1 illustrates a kernel for the center 
node (highlighted in magenta). In this figure, K is set to 4 and 6, indicating that all nodes 
within K neighborhoods of the center node are part of the kernel.

nTrain instances of shuffled labels are generated. Labels for fixed nodes are not shuffled 
and labels for the other nodes are not shuffled with the fixed nodes. The graph is sam-
pled with URPEN with the specified sampling frequency and the labels for the sampled 
paths are imported from either the original cell type labels or the set of nTrain shuffled 
labels created for the control data. After incorporating the reverse paths into the dataset, 
both primary and control data are fed into the SMORE method to identify motifs. The 
algorithms for path sampling and motif discovery are described in detail below.

Uniform path sampling

The topological relations inside the spatial data can be represented as graphs. A 
graph is defined as an ordered pair G = (V;E) consisting of a nonempty set of verti-
ces V and a set of edges E of two-element subsets of V. In the following, we are deal-
ing with undirected graphs, but the path sampling algorithm can equally be applied 
to directed graphs as well. Vertices in V are assumed to be uniquely indexed by the 
integers 1, . . . , n , where n = |V | is defined as the size of the graph. v > u is used to 
indicate that the index of a vertex v is larger than that of a vertex u. For a vertex 
v ∈ V0 , where V0 is a subset of vertices, its forward neighborhood with respect to 
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V0,Nfrw(v,V0) , is defined as the set of all vertices from V \ V0 which are adjacent to v. 
The neighborhood of a vertex is simply its forward neighborhood with respect to the 
empty set, ∅.

The developed algorithm for finding motifs in graphs consists of two main com-
ponents; first a method to uniformly sample the graph, and second, a procedure 
to find motifs inside obtained sequences. The sampling algorithm takes a graph G 
and all paths inside the graph are sampled uniformly. In a network, a path is a walk 
that does not intersect itself. Selected paths are also constrained to be radial. Radial 
condition in a spatially embedded network is defined as the requirement that actual 
physical distance along a path monotonically increases along the sequence of edges 
in the path. The graph on spatial dataset is created based on the distance between 
nodes, therefore, the radial requirement enables us to better interpret output motifs 
in our experiment on the real dataset.

Algorithm 1 Path enumeration (G, k)

The Path Enumeration algorithm (PEN) (Algorithm  1) enumerates all paths of 
length k within the graph. The algorithm begins with a vertex v from the input graph 
and adds only those vertices to the set that are neighboring the newly added vertex w 
but are not already in Vpath . To prevent enumeration of both the path and its reverse, 
the index of the last vertex in the enumerated path must be greater than that of v, 
though this requirement is not necessary for directed graphs. The proof for the cor-
rectness of PEN is similar to that of the ESU algorithm [22].

We can modify the PEN algorithm to enumerate a subset of paths such that each 
path is reached with equal probability. This is implemented by calling the Extend-
Path function at lines 3, and E6 of the PEN algorithm with probability pd . This 
new algorithm is called Uniform Random Path Enumeration, URPEN. The method 
is tested in the  “URPEN enables efficient and unbiased sampling of neighborhood 
graphs” section on a random graph to validate its accuracy numerically.
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Compute significance

The significance of each initial seed is obtained by the negative binomial test. The 
Poisson distribution arises naturally in the study of data taking the form of counts. If 
a data point y follows the Poisson distribution with rate θ , then the probability distri-
bution of a single observation y is y ∼ Poisson(θ) . The Poisson model for data points 
yv = [y1, y2, . . . , yn] can be extended to the form yi ∼ Poisson(wiθ) , where the wi val-
ues are known positive explanatory values proportional to the population, and θ is the 
unknown parameter of interest. Seed number in each graph can be modeled as a Poisson 
distribution where yi is the number of paths of some specific type (seed) in the graph, 
and θ is the underlying rate in units of seeds per graph.

To perform Bayesian inference, we need a prior distribution for the unknown rate. We 
use a gamma distribution as prior, which is conjugate to the Poisson. With prior distri-
bution Gamma(α,β) , the resulting posterior distribution is obtained as

The known form of the prior and posterior densities can be used to find the marginal 
distribution for a single observation, which has a predictive distribution as

where αn = α +
∑n

i=1 yi , and pn = w0
(βn+w0)

 with βn = β +
∑n

i=1 wi . Assuming that y0 is 
the seed number in the primary graph, p value for some specific observation is obtained 
as

where y0 , and yi , i = 1, 2, . . . , n are the number of ZNIC sites of the specific seed in pri-
mary and control data, respectively. wi numbers are the total number of ZNIC seeds in 
the respective graph. In our experiments, prior α and β values are assumed to be equal 
to y0 , and w0 , respectively. The first nEval significant seeds according to this criterion are 
passed to the next stage of refinement and enrichment.

Refinement and nested seed enrichment

The refinement and seed enrichment both use the same process of enrichment, except 
that refinement is only one iteration, and seed enrichment is NREFIter iterations. nEval 
motifs from initial evaluation step are first enriched for one iteration and top NREF 
motifs are further refined in seed enrichment block for NREFIter iterations or until 
p value does not improve. At each iteration, all seeds with positive likelihood ratio scores 
with respect to the PWM matrix obtained from the previous iteration are sorted with 
their score and p values obtained in the initial evaluation block and their ZNIC counts 
are computed. More specifically, it’s computed how many ZNIC samples each seed 
contributes to the previous samples. These counts are used to obtain significance with 

(1)θ |yv ∼ Gamma

(

α +

n
∑

i=1

yi,β +

n
∑

i=1

wi

)

(2)p(y0|yv) =
p(y0|θ)p(θ |yv)

p(θ |y0, yv)
= NegBin(αn, pn),

(3)P =

∞
∑

k=y0

(

n+ k − 1

k

)

pkn(1− pn)
n,
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the same negative binomial test obtained in 4. For the negative control data, sum of the 
counts over nTrain control data are used for significance computation.

The PWM score that minimizes p value (maximizes absolute log p value) is selected 
to create the PWM matrix for the next iteration. There is an option in the algorithm 
to use differential enrichment where seeds are added to the PWM until the p value is 
decreasing. For example, if there are four PWM score thresholds with ZNIC log p val-
ues, [−10,−11,−9,−13] , the default mode will consider lowest score threshold which is 
equivalent to log pvalue = −13 , but differential p value will consider the threshold cor-
responding to log−pvalue = −11 . The differential p value option will generally lead to a 
simpler motif structure. Default mode is used for bipolar and 3D hypothalamus dataset, 
and differential p value is used for the preoptic area of mouse hypothalamus.

Maximum likelihood estimation is used to estimate a new version of the motif PWM 
matrix for the next iteration. This step is iterated until the p value is decreasing or the 
maximum number of NREFIter is performed. In order to perform maximum likeli-
hood estimation, let us assume that we have L distinct cell types in our dataset, encoded 
as integer numbers from 1 to L. Assuming that the initial seed consists of W letters, 
S = s1, s2, . . . , sW  , the PWM matrix, M, is a L×W  matrix where W is the length of 
the searched motif. Elements of the PWM matrix in the first iteration are obtained as 
follows,

where ρ is the Dirichlet prior set to 0.01 in our experiment, and b is the L× 1 vector of 
background probabilities of the cell types. For the subsequent iterations, the maximum 
likelihood estimation for M matrix is obtained as follows [23],

The PWM matrix, M, is obtained by normalizing M̂ through the columns. K is the 
number of seeds involved in the motif, and Ii is the indicator matrix of ith seed, which is 
equivalent to PWM matrix of 4 with ρ set to 0. Zi, Ni, and Pi are the incremental ZNIC 
counts, total ZNIC counts, and log p value of the ith seed involved in the motif, respec-
tively. Total ZNIC counts are the number ZNIC sites of the ith seed and incremental 
ZNIC counts are the fraction of these sites that don’t have any node in common with 
previous seeds, up to i’th seed.

Applying SMORE on synthetic and real data

We have tested SMORE on synthetic data and real data. The results on synthetic data 
helps to quantify the algorithm’s performance by assessing its ability to identify known 
truth patterns at various embedding frequencies. Subsequently, SMORE has been 
applied to multiple real spatial transcriptomic datasets, each of which is thoroughly 
detailed in its corresponding section.

The background frequency in synthetic data experiment is assumed to be near uni-
form, with

(4)M(i, j) =

{

1+ ρb(sj)/1+ ρ if sj = i
ρ/1+ ρ otherwise

(5)M̂ =

K
∑

i=1

PiZi/NiIi + ρb
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where bF is the background frequency and it is assumed to be known to the algorithm. 
Cell type labels, other than the ones for the motifs, are distributed randomly among 
available nodes according to their frequency. This specific form of background frequency 
is arbitrary and is designed to have at most twofold difference in the cell type frequency 
to avoid potential unwanted repeating cell type patterns like AAAA.

Output motifs are represented by sequence logos. Some output motifs are simple in 
structure and some are more complex, consisting of multiple cell types in each position. 
Simple logos like AAAA indicate a repetitive pattern of A type cells interconnected in 
the graph within that particular tissue. In more complex motifs like (AB)AAA, the first 
position can be occupied by either A or B. Embedded length-4 patterns in the synthetic 
data follow a format like (A/B)CDE, where one variable position can be filled by either 
cell type A or B, each with equal probability. The remaining positions in the pattern 
(CDE) are fixed to specific cell types. For a 2% embedding, the nodes corresponding to 
60 random path samples from the total length-4 sampled paths are labeled as ACDE and 
another 60 as BCDE, while all other nodes in the graph are randomly labeled.

In Fig. 3a, the Pearson correlation coefficient (PCC) between the extracted motifs and 
the embedded motifs is shown. The Tomtom method [55] is employed to identify the 
best enriched matches among the 10 output motifs from SMORE. Tomtom searches for 
the best match by considering all possible shifts of the query motif with respect to the 
target motif (the embedded motif in this case). The matching position weight matrices 
(PWMs) are aligned using the obtained offsets and overlaps from Tomtom, and the PCC 
is computed and plotted to evaluate the pipeline’s accuracy. Each embedded motif word 
corresponds to a 12× 4 PWM matrix, employing a Dirichlet prior with a weight of 0.01. 
The Dirichlet prior is a uniform distribution of the cell types.

Computing TPR and FPR

TPR is computed as TPR = TP/(TP+ FN) , where TP (true positive) denotes the num-
ber of output motifs with a correlation exceeding the threshold (0.95 in our context) and 
a p value below the specified threshold. FN (false negative) is the number of instances 
with a correlation surpassing the threshold but a p  value greater than the specified 
threshold. Thus, TP + FN represents the overall number of cases with a correlation 
exceeding the threshold.

FPR is defined as FPR = FP/(FP+ TN) , with FP (false positive) indicating the number 
of output motifs possessing a correlation below the threshold and a p value below the 
specified threshold. TN (true negative) is the number of output motifs with a correlation 
below the threshold and a p value exceeding the specified threshold. Consequently, FP + 
TN denotes the total number of cases with a correlation below the threshold.

Gene expression analysis

One potential method for deriving a functional interpretation of these motifs involves 
examining gene expression disparities between the cells participating in the motif and 
those that are not involved. This analysis is carried out in the  “Cells within spatial 
motifs exhibit gene expression differences compared to other cells of the same type” 

(6)bF = [1, 1/2, 1/3, . . . , 1/12]1/4,
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section. Each motif is composed of multiple positions, and each position includes one 
or more cell types. For example, the motif (AB)CDE comprises cell types A and B in 
its first position. Among all cells labeled as A ( NA ), only a subset, NAM , takes part in 
the initial position of this particular motif. Each cell has a gene expression profile. For 
each gene, the delta median(dMedian) is calculated by subtracting the median expres-
sion of the gene in the subset NAM cells involved in the motif from the median expres-
sion of that gene across all NA cells of the specific type. The significance for this delta 
median value is then computed against a random selection of NAM cells from the total 
NA cells of that type.

Assume that there are NA cell types of A, NAM of these cell types is in motif (AB)
CDE, with dMedian expression x0 . One sided p  value (significance) for these cells 
is p(dMedian ≥ x0 ). The probability that dMedian expression of these NAM cells is 
larger than x0 is the probability that at least N0 = floor(NAM/2+ 1) of these cells have 
expression greater than x0,

Where NL is the number of cells (out of all NA cells) that have lower than x0 delta 
expression, and NH is the number of cells that have higher than x0 delta expression.
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