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Abstract 

Landslides are common natural disasters in Bogor, Indonesia, triggered by a combination of factors including slope 
aspect, soil type and bedrock lithology, land cover and land use, and hydrologic conditions. In the Bogor area, slopes 
with volcanic lithologies are more susceptible to failure. GIS mapping and analysis using a Frequency Ratio Model was 
implemented in this study to assess the contribution of conditioning factors to landslides, and to produce a landslide 
susceptibility map of the study area. A landslide inventory map was prepared from a database of historic landslides 
events. In addition, thematic maps (soil, rainfall, land cover, and geology map) and Digital Elevation Model (DEM) 
were prepared to examine landslide conditioning factors. A total of 173 landslides points were mapped in the area 
and randomly subdivided into a training set (70%) with 116 points and test set with 57 points (30%). The relation-
ship between landslides and conditioning factors was statistically evaluated with FR analysis. The result shows that 
lithology, soil, and land cover are the most important factors generating landslides. FR values were used to produce 
the Landslide Susceptibility Index (LSI) and the study area was divided into five zones of relative landslide susceptibil-
ity. The result of landslide susceptibility from the mid-region area of Bogor to the southern part was categorized as 
moderate to high landslide susceptibility zones. The results of the analysis have been validated by calculating the Area 
Under a Curve (AUC), which shows an accuracy of success rate of 90.10% and an accuracy of prediction rate curve of 
87.30%, which indicates a high-quality susceptibility map obtained from the FR model.
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Introduction
Landslides are defined as an event or series of events 
where a mass of rocks, soil, or debris moves down a 
slope. Landslide mechanisms include sliding, falling, or 
flowing of material down a slope due to gravitational pull 
(Das 2011; Motamedi 2013). Landslides are one of the 
most common natural disasters experienced in Bogor, 
Jawa Barat, Indonesia. A landslide can be influenced by 
various factors such as slope conditions and slope angle, 
lithology, soil type, and hydrologic or meteorological 
conditions. Another potential factor is induced by human 

activities such as deforestation, changes caused by con-
struction of structures on the slope, undercutting the toe 
of the slope for road construction, etc. Human changes to 
the slope can make the slope become less stable. The neg-
ative impact of landslides includes damage to infrastruc-
ture (houses, buildings, roads, bridges, irrigation, canals, 
etc.), geological and environmental damage (fractures, 
creeping, and slumping), and serious injuries and loss of 
human life due to the landslide events.

From 2014 to 2018, there has been a significant 
increase in the number of landslide events in Bogor, 
with an increase from approximately 20 events in a year 
to over 60 events in a year. The increase in frequency of 
landslide events has also led to an increase in casual-
ties, with 39 deaths and 48 injuries recorded since 2014. 
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Deaths and injuries can result from the collapse of struc-
tures impacted by the landslide or from being swept up 
in the material being moved downslope (Center for Vol-
canology and Geological Hazard Mitigation Geological 
Agency 2018).

Identifying areas with higher risk of landslides requires 
evaluation of the distribution and frequency of historical 
landslides. Historical landslides can be mapped efficiently 
with Geographic Information System (GIS) tools and the 
application of remote sensing (Audisio et al. 2009; Man-
dal and Mondal 2019; Yalcin 2008; Yalcin et  al. 2011; 
Yilmaz and Keskin 2009). Quantitative spatial analysis 
can be used for mapping the landslide susceptibility of a 
region and providing the scientific information relevant 
for mitigation and prevention of future landslides in that 
region (Yilmaz 2009). Quantitative methods are used to 
assess the landslide events as it increases the ability to 
predict where, when and how frequent the occurrence 
of landslides in an area will be. It presents a complete 
and comprehensive assessment of landslide susceptibil-
ity, which includes analysis of model performance, pre-
diction skills evaluation, uncertainty and estimation of 
errors (Guzzetti et al. 1999; Motamedi 2013).

Landslide Susceptibility (LS) is an assessment to quan-
tify the volume or area and the spatial probability of a 
landslide event, by providing a relative estimation of the 
spatial events of landslides in a mapping unit based on 
the conditions of local terrain, and it may also include 
the information related to the temporal probability of the 
expected landslide event, the intensity and velocity rates 
of the existing or potential landslide events (Fell et  al. 
2008; Guzzetti et al. 1999; Lepore et al. 2011; Rossi and 
Reichenbach 2016). This method has various approaches. 
In this study, the statistical model was chosen because 
it has been largely used to assess LS and widely used by 
combining and integrating statistical models with the 
geographical data and open source of GIS applications. 
Many studies have tried to assess landslide susceptibil-
ity by increasing GIS applications using different mod-
els. Many of those studies have applied probabilistic 
models such as the frequency ratio (Audisio et al. 2009; 
Choi et  al. 2012; Ehret et  al. 2010; Lee et  al. 2004; Lee 
and Pradhan 2006; Lepore et al. 2011; Mandal and Mon-
dal 2019; Mezughi et  al. 2011; Mohammady et  al. 2012; 
Oh et  al. 2009; Pal and Chowdhuri 2019; Pradhan and 
Youssef 2010; Rossi and Reichenbach 2016; Yalcin 2008; 
Yalcin et al. 2011; Yilmaz 2009; Yilmaz and Keskin 2009).

The basic idea is to use the information in combination 
with geo-environmental conditioning factors to extract 
the level of detail offered by the landslide data itself for 
determining landslide susceptibility in the study area. 
In this study, a bivariate statistical method called the 
Frequency Ratio (FR) was applied to derive a landslide 

susceptibility map for Bogor, West Java, Indonesia. FR 
was chosen for this research as a basic analysis for a pre-
liminary probabilistic assessment, the mathematical sim-
plicity and data extraction in a limited time period (rapid 
assessment).

Data and methodology
Bogor is one of the administration areas in the West Java 
Province, Indonesia. Bogor is divided into Bogor (Kota 
Bogor) and Bogor Regency (Kabupaten Bogor) with total 
area approximately 2782 km2. Geographically, Bogor is 
located between 6°19′ North latitude and 6°47′ South lati-
tude, and between 106°01′ − 107°103′ East longitude. The 
geomorphology of the Bogor region includes relatively 
low plains in the north to highlands in the south. The 
area ranges in altitude from 15 m above sea level to over 
2500  m above sea level. Bogor is geographically signifi-
cant because its location is adjacent to Jakarta, the capital 
city of the Republic of Indonesia. The population density 
of Bogor Regency in 2016 was 2146 people/km2, while 
the population density of Bogor was 8985 people/km2 
(Statistics of Bogor and Bogor Regency, 2017). The dots 
on Fig.  1 represent the locations of historic landslides. 
The color-coded blue was used in the training dataset and 
red was used in the test set. A red box in the north-cen-
tral western West Java is where Bogor is located within 
West Java.

The aim of this study is to assess and evaluate the sus-
ceptibility for landslides within the Bogor area in a GIS 
environment. Existing landslide data recorded from 1981 
to 2018 and the conditioning factors (geology, slope, 
soil type, rainfall intensity, and land use) were used to 
analyze landslide susceptibility across the region. The 
relationship between a landslide and the conditioning 
factors was determined using the frequency ratio analy-
sis. Our hypothesis is that there will be a strong relation-
ship between landslide occurrence and both natural and 
human-influenced conditioning factors in the study area.

The study began with the compilation of a landslide 
inventory map based on previously recorded historic 
landslide events, documentation of field sites, and sat-
ellite imagery interpretation. A total of 173 observed 
historic landslide points were mapped in the area. The 
landslides in the landslide inventory were randomly 
divided into a training set area (70%) with 116 points, 
and a test set area with 57 points (30%) using the Sub-
set Features Tools in ArcGIS. There is no specific limit in 
determining the distribution of training set and test set, 
but the greater the percentage of datasets for analysis, the 
higher the validation value (AUC) that will be obtained. 
In this study, the data set uses a ratio of 70%: 30% because 
the 70% data set is considered sufficient to represent 
analysis and 30% is considered sufficient to validate the 
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model (Wang et  al. 2016; Meena et  al. 2019; Rossi and 
Reichenbach 2016).

The data are presented as geo-referenced points 
because the available landslide documentation uses point 
representation. The historic landslide inventory was 

obtained based on field observation through a ground 
check process (Fig. 2), conducted by the Center for Vol-
canology and Geological Hazard Mitigation of Republic 
of Indonesia (CVGHM—Pusat Vulkanologi & Mitigasi 
Bencana Geologi). The additional observations were 

Fig. 1  Study area and landslide inventory in Bogor, West Java, Indonesia

Fig. 2  Example of landslide events in Bogor, West Java, Indonesia
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collected through visual identification on aerial photo-
graphs and satellite imagery using remote sensing by veri-
fying the conformity of data with the main data inventory 
in order to create a homogeneous database. Landslides 
are described in terms of their presence (1) and absence 
(0) in a GIS database. Landslide points are discrete points 
as a representation of the source position near the scar of 
the landslide body (Neuhäuser et al. 2012).

The historic landslide events used in this database 
exhibit a variety of conditioning factors that drove the 
landslide events. Evaluating the study region for the vari-
ous conditioning factors is critical in developing a land-
slide susceptibility map (Lee 2014; Yalcin et  al. 2011; 

Yilmaz 2009). In preparation process, multi-resource 
spatial data were processed and the landslide inventory 
created (Table 1). Seven factors were considered that may 
contribute to slope failure, including slope gradient, slope 
aspect, elevation (with an interval of 250 ms), lithology, 
soil type, land cover (and land use), and rainfall intensity 
over a 10  year period from 2009 to 2018. These factors 
were determined for each historic landslide (and across 
the study area), and were collected and processed into a 
spatial database using GIS (Fig. 3).

In this study, a landslide location map was prepared 
based on interpretation of the satellite imagery and pre-
vious studies conducted in the area. To assess landslide 
susceptibility for an area, it is necessary to identify and 
remap both the conditioning factors and landslide loca-
tions. A remap table defines how the values will be 
reclassified in the new spatial database that is supported 
by integer values. In this classification, quantile was used 
and the input raster reclassified into unique values.

Because the availability of DEM data is limited, a Digi-
tal Surface Model (DSM) was used from TerraSAR-X 
data with resolution up to 5 m or equivalent to 1:50,000 
of scale. DSM represents the elevation associated with 
topography and all natural or human-made features on 
the earth surface. DSM covers the West Java Region and 
was acquired in 2011 from the Geospatial Information 

Table 1  Dataset based on GIS system

Data Type Format Scale/resolution

Landslide Points Vector 15 × 15 m

Digital elevation model (DEM) Polygon Raster 15 × 15 m

Lithology Polygon Raster 15 × 15 m

Slope gradient and slope aspect Polygon Raster 15 × 15 m

Land cover Polygon Raster 15 × 15 m

Soil Polygon Raster 15 × 15 m

Distance to lineament Polygon Raster 15 × 15 m

Rainfall intensity Polygon Raster 15 × 15 m

Fig. 3  Flowchart of a research process
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Agency of Indonesia. TerraSAR-X is a German Earth-
observation satellite which provides value-added SAR 
(Synthetic Aperture Radar) data in the X-band, with 
a range of different modes of operation, allowing it to 
record images with different swath widths, resolutions 
and polarisations for research and development pur-
poses. The accuracy of TerraSAR-X is shown in Table 2, 
evaluated by the Geospatial Information Agency of 
Indonesia. On Table  2, Data_ID is the code of refer-
ence samples, The Root Mean Squared Error (RMSE) is 
the square root of the average of the set of squared dif-
ferences between collected coordinates and coordinates 
from an independent source of higher accuracy for iden-
tical locations, and linear error at 90% confidence (LE90) 
is a vertical (height) accuracy calculated based on the 
distance value that indicates 90% of the error or the dif-
ference in the height of the object on the map with the 
actual height value is not greater than the distance value 
(LE90 = 1.6499 × RMSEz (vertical)). The slope gradient 
and slope aspect are obtained from DEM data extraction 
using the 3D Analyst tool extension in ArcGIS 10.6.

The frequency ratio (FR) is a bivariate statistical method 
that is simple to implement with accurate results. The FR 
is widely used in landslide susceptibility mapping (Choi 
et al. 2012; Ehret et al. 2010; Lee 2014; Lee and Pradhan 
2006; Mezughi et al. 2011; Mohammady et al. 2012; Tori-
zin 2011; Yalcin et al. 2011; Yilmaz 2009), and it is highly 
compatible with GIS technology (Lee 2014; Yilmaz and 
Keskin 2009; Yalcin et al. 2011). FR was used to calculate 
the ratio of the cell with landslide occurrence in each class 
for a reclassified factor or categorical factor (i.e., geology 
and land cover), and the ratio was assigned to each factor 
class again. The FR is the ratio of landslides in a desired 
class as a percentage of all landslides to the area of the 
class as a percentage of the entire map. So, a FR of 1 is the 

average value from the ratio of the area where landslides 
occurred to the total area (Ehret et al. 2010; Mezughi et al. 
2011). Finally, the landslide susceptibility by FR was cre-
ated using the overlay function in GIS, which is used to 
merge different factors assigned to the ratio. If the prob-
ability is high (the value > 1), there is a greater susceptibil-
ity for landslides. A lower value indicates a lower degree 
of landslide susceptibility in the region (the value < 1). The 
formula is as follows (Ehret et al. 2010):

where Mi is the number of pixels with landslides for each 
subclass conditioning factor, Mi is the total number of 
landslides in the study area, Ni is the number of pixels in 
the subclass area of each factor and N is the number of 
total pixels in the study area (Ehret et al. 2010).

All of the selected conditioning factors are then evalu-
ated with an Area under Curve (AUC). AUC is one type 
of accuracy in statistics for prediction models (prob-
abilities) in the assessment or analysis of natural disas-
ter events. The AUC value defines conditioning factors 
that would be used on landslide susceptibility mapping 
using FR method. The higher the value of AUC (if thresh-
old definition gets the maximum value of 1), the higher 
the statistic accuracy of the model, which describes the 
prediction threshold independently (Lepore et  al. 2011; 
Mandal and Mondal 2019; Meena et  al. 2019; Moham-
mady et al. 2012; Pimiento 2010; Rossi and Reichenbach 
2016; Yilmaz 2009). AUC of conditioning factors that is 
considered to be processed in this study must exceed the 
minimum limit of 0.6, which indicates that performance 
is higher classification by a chance.

To evaluate the influence of conditioning parameters 
on landslide activity, a threshold-independent method 
is used on Receiver Operating Characteristic (ROC) by 
presenting the results of the accuracy values obtained 
against a defined threshold value. Receiver Operating 
Characteristic (ROC) curves and area under ROC curves 
(AUC) are usually used to assess the binary response 
model such as a logistics model (Chung and Fabbri 2003; 
Pimiento 2010; Rossi and Reichenbach 2016; Wahono 
2010). This curve depicts the use of validation and cross-
validation data sets to generate the ROC curve and esti-
mate its area. The matrix value of each parameter is used 
to test the ROC curve on SPSS statistics. The calculated 
results are presented in percentage of study area classi-
fied as susceptible (x-axis) versus the cumulative per-
cent of landslide occurrence (y-axis), with the area under 
curve (AUC) calculation formula, i.e., (Pimiento 2010):

(1)Fri = (Mi/M) / (Ni/N ),

(2)

AUC =

n
∑

i=0

(xi− xi−1)yi−
[

(xi− xi−1)
(

yi− yi−1

)

/2
]

,

Table 2  Accuracy of the DEM

Source: Quality report of Geospatial Information Agency of Indonesia (2014)

Data_ID RMSE (m) LE90 (m)—
vertical Acc

1109-32 1.5 6.2

1109-34 2.1 6.4

1109-62 2 6.3

1209-11 1.5 6.2

1209-12 2.9 6.2

1209-13 1.1 6.2

1209-21 2.9 6.2

1209-23 3.3 6.3

1209-41 2 6.3

1209-42 1.1 6.2

1209-51 2.4 5.4

Average 5.7
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where xi is the percentage of area and yi is the area of the 
landslide.

AUC is one type of accuracy statistics for prediction 
models (probabilities) in the assessment or analysis of 
natural disasters (Pimiento 2010). AUC is a graph of var-
ying index numbers usually between a maximum value 
of 1 or equal to 100% and 0.5 or equal to 50%. From the 
AUC, value can be classified that is 0.9 as a very good 
model classification, 0.8–0.9 as a good model classifica-
tion, 0.7–0.8 as a medium or reasonable model classifica-
tion, and < 0.6 poor model classification, so the minimum 
AUC parameters are recommended with a minimum 
limit of 0.6. The higher the AUC value of a parameter, the 
higher the influence of the landslide event.

Results
Lithology
Landslide occurrences and geology were mapped in the 
field to establish a landslide inventory and a geological 
map. The geological data of Bogor (Table 3) are provided 
in polygons at scales of 1:50,000 and were previously 
published by Geological Agency of Indonesia. Lithology 
plays an important role in the occurrence of landslides 
because it affects the strength and permeability proper-
ties of the bedrock associated with slope. The infiltration 
rates, soil drainage, and variability in the materials were 
considered as the factors which increase the pore pres-
sure and decrease the stability of slope. This is because 
the lithology unit can have different characteristics such 
as composition, structure, and cohesion of soil which 
produce different resistance to the motion (Das 2011; 
Fell et al. 2008; Guzzetti et al. 1999; Lee 2014; Motamedi 
2013; Torizin 2011; Wahono 2010).

From the second edition of the geological map of the 
Bogor, West Java, quadrangle in 1998, structural fea-
tures like faults, folds, lineaments and joints are observed 
within the Oligocene to Quaternary rocks. Generally, 
the faults include N–S-, SW–NE-, and NW–SE-oriented 
strike-slip and normal faults. Folds are present as SW–
NE, W–E, and NW–SE anticlines and synclines. Joints 
are commonly found and well developed in andesitic 
rocks of Quaternary age. Tectonic events at the end of 
Late Miocene resulted in two different structural pat-
terns. Those tectonic events include a phase of uplift, 
followed by the intrusion of rhyolite rocks (Center for 
Volcanology and Geological Hazard Mitigation Geologi-
cal Agency 2018).

The highest frequency of landslides based on Fig.  4 
occurred where the slope consisted of older deposits, 
including lahar and lava flows, andesitic basalt, with 
oligoclase-andesine, labradorite, olivine, pyroxene, 
and hornblende (QVPO type with 22 historic events). 
The next highest frequency of landslides was hosted 

in QVK-type [21 events] materials (Breccia and lava 
of Gunung, Kencana, and Limo Mountains: Blocks of 
andesitic tuff and andesitic breccia with abundant pyrox-
ene phenocrysts and basaltic lava); and QPV-type [13 
events] materials (Endut volcanics: volcanic breccia, lava, 
and tuff). The results of this study indicate that landslides 
in the Bogor District mostly occur on slopes hosted in 
volcanic or volcanic-derived lithologies.

Slope gradient and slope aspect
Landslides on the slope can occur due to the interaction 
of several conditions including morphological condi-
tions, geology, geological structure, hydrology, and land 
use (Chung and Fabbri 2003). Slopes will be vulnerable 
if there are trigger factors such as intense rainfall events, 
vibration, or human activities (excavation, loading, and 
others) so that the fundamental thing is an inventory of 
historical data on landslide events to determine areas 
that will be affected by future landslides caused by both 
natural and artificial factors.

One of the geomorphologic parameters that is relevant 
for a landslide susceptibility study is the slope gradient 
because it has an important role in gravitational move-
ments. Slope gradient represents elevation points which 
are greatly affected by the resolution of the DEM. The 
slope angle is typically considered to be one of the influ-
ential factors for landslide modeling because it controls 
the shear forces acting on hill slopes (Chung and Fabbri 
2003; Lee 2014; Lepore et al. 2011; Mezughi et al. 2011; 
Mohammady et  al. 2012; Pimiento 2010; Torizin 2011). 
Slope gradient was extracted from the DEM of TerraSAR-
X satellite data as the first derivative of slope. The study 
areas are dominated by flat to moderately sloping slopes.

The slope gradient was divided into seven classes based 
on the slope classification of the U.S. Department of Agri-
culture (Fig. 5) as follows: flat (0–3%), undulating (3–8%), 
moderately sloping (8–15%), hilly (15–30%), moderately 
steep (30–45%), steep (45–65%), and very steep (> 65%) 
(Lee 2014). Slope gradient and slope aspect can influence 
landslide initiation, because the driving force is grav-
ity acting on the slope, which is a sliding plane (Torizin 
2011). The slope gradient controls the shear forces act-
ing on the hillside. The landslide events (Table  3) were 
more prevalent on hilly slopes with 45 historical events 
on slopes classified as hilly. Steep, moderately steep, and 
moderately sloping slopes also exhibited higher frequen-
cies of historic landslides with 21, 16, and 13 historic 
events, respectively.

Soil moisture and soil thickness are related to dif-
ferential solar insolation as a function of slope aspect. 
Slope aspect is considered an important factor in land-
slide studies and plays a fundamental role in slope sta-
bility due to variance in temperature and vegetation 
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Table 3  Frequency ratio values for conditioning factors

Conditioning factors Area total
(pixel)

Landslide
points (n)

Class
density

Map
density

FR

Lithology 36.865360

 a: Andesite with oligoclase–andesine, augite, hypersthene, and hornblende 942 1 0.00106 0.00022 4.8679

 ab: Andesite and Basalt 68 0 0 0.00022 0

 ha: Hornblende andesite 4920 0 0 0.00022 0

 l aut: mainly stream deposits 482 0 0 0.00022 0

 qd: Quart diorite 302 0 0 0.00022 0

 Tmcb: polymict breccia with fragments of basalt–andesite and coralline limestone 3703 5 0.00135 0.00022 6.19169

 Qvb: Volcanic breccia (Breccia, andesitic–basaltic, locally agglomerate) 7074 8 0.00113 0.00022 5.18582

 Qvk: Blocks of andesitic tuff and andesitic breccia with abundant pyroxene phenocrysts and basaltic lava 26,094 21 0.0008 0.00022 3.69039

 Qvas: Sudamanik formation, andesite 3913 3 0.00077 0.00022 3.51564

 Qvt: Pumiceous tuff 1393 1 0.00072 0.00022 3.29186

 Qvpo: Older deposits, lahar and lava, andesitic basalt, with oligoclase-andesine, labradorite, olivine, 
pyroxene, and hornblende

42,960 22 0.00051 0.00022 2.34829

 Msc: Mainly claystone containing beds and modules of hard marly limestone, marl, and dark gray 
limestone

3248 1 0.00031 0.00022 1.41181

 Qpv: Endut volcanics (volcanic breccia, lava, and tuff ) 49,609 13 0.00026 0.00022 1.20164

 Tmtb: Tuff and Breccia: Pumiceous tuff, tuffaceous breccia (andesitic), tuff sandstone, tuffaceous clay with 
silicified wood and plant remains

4810 1 0.00021 0.00022 0.95334

 Qv: Volcanic breccia, agglomerate and tuff 24,120 5 0.00021 0.00022 0.95057

 Tmj: Jatiluhur formation (marl and clayey shale, and quartz sandstone intercalation) 45,197 9 0.0002 0.00022 0.91312

 Qvsb: Lahar, tuffaceous breccia and lapilli, basaltic andesite in composition 37,331 6 0.00016 0.00022 0.73701

 Tmb: Bojongmanik formation (sandstone, pumiceous tuff, marl with molluscs, limestone, claystone with 
bituminous clay and lignite intercalations and resin fragments

53,343 7 0.00013 0.00022 0.60174

 Qav: Alluvium fans (mainly silt, sandstone, gravel and boulders from Quaternary volcanic rocks) 94,297 11 0.00012 0.00022 0.53492

 Qvst: Sandy pumiceous tuff 19,529 2 0.0001 0.00022 0.46962

 Tpg: Kaliglagah formation, consists of coarse sandstone, conglomerate, claystone and marl 16,835 0 0 0.00022 0

 Qa: Alluvium (clay, silt, gravel and boulders) 16,261 0 0 0.00022 0

 Qos: Tuffaceous sandstone and conglomerate 13,328 0 0 0.00022 0

 Tmk: Klapanunggal formation, mainly reefal limestone with foraminifers, molluscs and echinoderms 11,826 0 0 0.00022 0

 Qvsl: Lava flow, basaltic andesite with pyroxene 9007 0 0 0.00022 0

 Qoa: Older alluvium (river conglomerates and sands of andesitic and basaltic composite) 7101 0 0 0.00022 0

 Mdm: Jatiluhur formation, marl and quartz sandstone 6947 0 0 0.00022 0

 Qaf: Clayey sand and peaty clay (floodplain deposits) 4739 0 0 0.00022 0

 Tmbc: Bentang formation (tuffaceous sandstone with pumice and lignite, tuffaceous marl, tuffaceous 
shale, and calcareous conglomeratic breccia)

4680 0 0 0.00022 0

 Qvep: Gunung Endut-Prabakti Lava, containing oligoclase-andesine, hypersthene and hornblende 4438 0 0 0.00022 0

 Qvl: Volcanic lava (lava flow) basaltic with labradorite, pyroxene, and hornblende 3062 0 0 0.00022 0

 Tmkt: Tuff (tuffaceous breccia, tuffaceous sandstone, tuffaceous claystone) 1756 0 0 0.00022 0

 Qvba: Basalt lava flow of Gegerbentang mountain 1690 0 0 0.00022 0

 Tpss: Alternating conglomerate, sandstone, siltstone, and claystone with plant material–pumice con-
glomerate, pumice tuff

1154 0 0 0.00022 0

 Tms: Saraweh formation, claystone, sandstone, marl, and tuff 1052 0 0 0.00022 0

 Tmrs: Rengganis formation, fine–coarse-grained sandstone, conglomerate and claystone 954 0 0 0.00022 0

 Tmbl: Limestone member of the Bojongmanik formation, containing molluscs 860 0 0 0.00022 0

 Tmqd: Quartz diorite, quartz monzonite, micro quartz diorite, diorite and gabbro 824 0 0 0.00022 0

 Tmpb: Bentang formation (tuffaceous sandstone, sandstone, calcareous sandstone, conglomerate, 
volcanic breccia, tuff, tuffaceous claystone, tuff breccia, calcareous breccia, limestone, claystone, lignite 
intercalations)

640 0 0 0.00022 0

 Tmc: Cimandiri formation, interbedded light to medium gray claystone and siltstone, and yellowish 
sandstone in places calcareous

480 0 0 0.00022 0

 Tmda: Dacite 421 0 0 0.00022 0

 Tmp: Pemali formation (globigerina marls, bluish gray and grayish green) 276 0 0 0.00022 0

 Tma: Andesite, hornblende andesite, hypersten andesite, basalt, diabase and propylitized andesite 124 0 0 0.00022 0

 Tba: Andesite 92 0 0 0.00022 0
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Table 3  (continued)

Conditioning factors Area total
(pixel)

Landslide
points (n)

Class
density

Map
density

FR

 Qbr: Coarse sand with mollusc shell 2 0 0 0.00022 0

 Mttc: Cantayan formation, claystone, tuffaceous shale 31 0 0 0.00022 0

 Mttb: Cantayan formation, polymict breccia with basaltic, andesitic, and coralline limestone components 11 0 0 0.00022 0

Slope gradient 8.06515

 Flat (percentage 0–3 %, slope degree < 2) 63,618 6 0.00009 0.00022 0.43248

 Undulating (percentage 3–8 %, slope degree 2–5) 97,995 10 0.0001 0.00022 0.46794

 Moderately sloping (percentage 8–15 %, slope degree 5–8) 93,283 13 0.00014 0.00022 0.63905

 Hilly (percentage 15–30 %, slope degree 8–17) 161,969 45 0.00028 0.00022 1.27401

 Moderately steep (percentage 30–45 %, slope degree 17–24) 60,095 16 0.00026 0.00022 1.22088

 Steep (percentage 45–65 %, slope degree 24–33) 41,608 21 0.0005 0.00022 2.31438

 Very steep (percentage > 65 %, slope degree > 33) 13,358 5 0.00037 0.00022 1.71641

Slope aspect 9.99447

 South 46,242 18 0.00039 0.00022 1.78496

 Southwest 51,905 14 0.00027 0.00022 1.23683

 East 56,071 15 0.00027 0.00022 1.22672

 Northeast 72,939 17 0.00023 0.00022 1.06876

 North 32,020 7 0.00022 0.00022 1.00247

 West 57,480 12 0.00021 0.00022 0.95732

 North 50,650 10 0.00019 0.00022 0.90534

 Northwest 69,926 13 0.00019 0.00022 0.85251

 Southeast 53,517 6 0.00011 0.00022 0.51410

 Flat 41,176 4 0.0001 0.00022 0.44546

Land cover 14.32469

 Shrubs 4469 8 0.00179 0.00022 8.20867

 Settlement 76,140 25 0.00033 0.00022 1.50563

 Plantations 24,843 6 0.00024 0.00022 1.10749

 Dryland agriculture 186,799 45 0.00024 0.00022 1.10467

 Mixed dryland agriculture with shrubs 76,950 18 0.00023 0.00022 1.07265

 Industrial plantation forest 44,441 7 0.00016 0.00022 0.72228

 Secondary dryland forest 52,114 6 0.00011 0.00022 0.52795

 Rice fields 60,854 1 0.00002 0.00022 0.07535

 Primary dryland forest 1618 0 0 0.00022 0

 Mining 1535 0 0 0.00022 0

 Open land 1391 0 0 0.00022 0

 Water bodies 772 0 0 0.00022 0

Soil 17.01816

 Latosols 18,951 18 0.00095 0.00022 4.35546

 Association of reddish brown latosols and brown latosols 37,640 25 0.00066 0.00022 3.04567

 Yellow podzolic soils 18,469 9 0.00049 0.00022 2.23456

 Complex of yellowish red latosols, reddish brown latosols and litosols 80,415 32 0.0004 0.00022 1.82476

 Association of brown latosols and yellowsih brown latosols 16,244 6 0.00037 0.00022 1.69376

 Complex of yellowish red latosols and yellowish red podzolic soils 16,269 4 0.00025 0.00022 1.12744

 Association of brown latosols and regosols 39,668 9 0.00023 0.00022 1.04039

 Andosols 5911 1 0.00017 0.00022 0.77577

 Yellowish red podzolic soils 54,838 9 0.00016 0.00022 0.75258

 Alluvial soils 48,106 1 0.00002 0.00022 0.09532

 Association of red latosols, reddish brown latosols 126,593 2 0.00002 0.00022 0.07245

 Grumusols 27,071 0 0 0.00022 0

 Red podzolic soils 17,625 0 0 0.00022 0

 Regosols 14,477 0 0 0.00022 0

 Association of andosol and regosols 3789 0 0 0.00022 0

 SNG 3330 0 0 0.00022 0
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Table 3  (continued)

Conditioning factors Area total
(pixel)

Landslide
points (n)

Class
density

Map
density

FR

 Association of yellow podzolic and gray hydromorphic soils 2530 0 0 0.00022 0

Distance to lineament 7.59769

 0–250 119,883 17 0.00007 0.00022 0.31240

 250–500 73,939 36 0.0003 0.00022 1.37701

 500–750 40,116 36 0.00049 0.00022 2.23266

 750–1000 24,395 19 0.00047 0.00022 2.17185

 1000–1250 249,533 8 0.00031 0.00022 1.50377

 1250–1500 15,281 0 0 0.00022 0

 1500–1750 6219 0 0 0.00022 0

 1750–2000 1820 0 0 0.00022 0

 2000–2250 495 0 0 0.00022 0

 2250–2500 204 0 0 0.00022 0

 2500–2750 41 0 0 0.00022

Rainfall intensity 5.12200

 > 5000 mm/year 56,380 17 0.0003 0.00022 1.38266

 4000–5000 mm/year 87,057 30 0.00034 0.00022 1.58019

 3500–4000 mm/year 163,804 49 0.0003 0.00022 1.37172

 3000–3500 mm/year 129,119 18 0.00014 0.00022 0.63926

 2500–3000 mm/year 61,896 2 0.00003 0.00022 0.14817

 < 2500 mm/year 33,670 0 0 0.00022 0

Fig. 4  Lithology map of study area (the lithologic codes refer to Table 3)
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(Guzzetti et  al. 1999; Lepore et  al. 2011; Lee 2014; 
Mezughi et al. 2011; Mohammady et al. 2012; Pimiento 
2010; Yilmaz 2009). Slope aspect is divided into ten 
classes, i.e., Flat, North, Northeast, East, Southeast, 
South, Southwest, West, Northwest, and back to North 
(Fig.  6). The most observed landslide deposits with 
18 observations were in south-facing slopes. The next 
highest observations were Northeast-facing, East-fac-
ing, and Southwest-facing slopes with 17, 15, and 14 
historic landslide events, respectively (Table 3).

Land cover
Land cover is one of the main parameters controlling 
slope stability. Variability in vegetation cover influences 
the susceptibility of a slope to fail. Vegetation increases 
soil strength and cohesion through its roots which bonds 
soil sediments. The slope is more susceptible to slope 
failure if the soil surface lacks vegetation cover, espe-
cially during heavy rainfall events which produce surface 

runoff. The probability of the slope failure events in the 
future will likely occur the same as past or present events 
due to the same unstable conditions (Fell et  al. 2008; 
Lepore et al. 2011). Based on a published land cover map 
of the Ministry of Forestry’s Republic of Indonesia (2011), 
land cover in the study area was classified into 12 classes 
(Table 3). The most observed landslide events [45 events] 
occurred on slopes with Dryland Agriculture land cover. 
Other land use categories with higher records of historic 
slope failures (Fig.  7) include Settlement (25 events), 
Mixed Dryland with Shrubs (18 events), and Shrubs (8 
events).

Soil
Particle size, shape, and pore distribution of the soil 
matrix influence slope stability and certain soil charac-
teristics may be useful observations for assessing land-
slide frequency (Das 2011; Fell et al. 2008; Mezughi et al. 
2011; Rossi and Reichenbach 2016). The soil properties 

Fig. 5  Slope gradient map of study area
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influence infiltration of water, the velocity and the rate 
of interflow and baseflow of water movement, and the 
capacity of the soil to hold water. Soils with smaller (finer-
textured) particles such as clay and silt have a larger sur-
face area than the coarse-textured soils, and tend to hold 
large volumes of water, especially under unsaturated con-
ditions (Lepore et al. 2011). In both the bedrock and the 
soil cover—cohesion, permeability, etc. are important. 
Increased pore pressures will weaken both rock and soil.

A soil map from the regional planning agency of Bogor 
was used to classify soil types in the study area soil in 
the study area (Fig. 8). Soil in the study area was classi-
fied into 17 types, which were further lumped into asso-
ciations based on soil properties (Table  3). The greatest 
number of landslides, with a total of 32 events, occurred 
in Complex of Yellowish Red Latosols, Reddish Brown 
Latosols and Latosols type. Other soil types characteriz-
ing slopes with higher failure rates include the Associa-
tion of Reddish Brown Latosols and Brown Latosols [25 
events], and Latosols [18 events].

Distance to lineament
Distance to lineament plays a role in influencing slope 
stability (Lee 2014). The geological structure weakens 
rock strength so that rocks are more weathered and 
eroded. Especially when it rains, water will enter the frac-
ture so that it triggers soil movements. The lineaments 
are closely associated with the higher elevation highlands 
in the south as well. Based on maps obtained from the 
Geological Agency in 2013, the distance to lineament 
from the landslide location of the study area was classi-
fied into 11 classes with 250  m intervals (Table  3). The 
most landslide occurred first in class range 250–500  m 
and 500–750  m with total 36 landslide events, and the 
third is in class range 750–1000  m with total 19 events 
(Fig. 9).

Rainfall intensity
Rainfall becomes one of the parameters that affect 
ground motion because it increases the pore pressure 
and increases soil moisture conditions on the slope, 
which then causes the resisting forces keeping the slope 
stable to decrease. The impact of rainfall intensity is 

Fig. 6  Slope aspect map of study area
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magnified by the slope gradient and land cover (Fell et al. 
2008; Lepore et  al. 2011; Motamedi 2013). Rainfall data 
describe the amount of water that falls to the ground sur-
face during a certain period of time and is measured in 
units of millimeters (mm). Rainfall data from the regional 
planning agency of Bogor in 2015 were used to classify 
rainfall amounts in the study area into six classes from 
a 10-year period (Table  3). The highest frequency of 
landslide events (Fig. 10) occurred where the total rain-
fall amounts were between 3500 and 4000  mm/year 
(49 historic events) and lesser frequency were in 4000–
5000 mm/year (30 events) and 3000–3500 mm/year (18 
events).

Discussion
Landslide susceptibility maps plot the potential for land-
slides to occur in a region as a function of the environ-
mental conditions of the area. These susceptibility maps 

also assist in classifying the size (volume of material dis-
placed and aerial distribution of the debris lobe) and spa-
tial distribution of landslide events in the region and as 
such are predictive models that can inform the regional 
planning for hazard mitigation and relief (Fell et al. 2008; 
Mandal and Mondal 2019; Mezughi et al. 2011; Oh et al. 
2009; Yilmaz and Keskin 2009). The quantile classifica-
tion method is used in this study so that each data class 
will have the same amount of data. The landslide suscep-
tibility map classifies the region into four classes: very low 
susceptibility, low susceptibility, moderate susceptibility, 
and high susceptibility of landslide events occurring.

The next step is the validation of the landslide suscep-
tibility zone through the determination of the success 
and prediction rates. The success rate is a calculation of 
the success of a model that shows how well the model 
matches the prior events (Chung and Fabbri 2003; 
Wahono 2010). To generate the success rate curve, the 

Fig. 7  Land cover map of study area
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calculated index values of all cells in the study area were 
sorted in descending order and were divided into 256 
equal classes ranging from highly susceptible classes to 
non-susceptible classes. After that, the success rate curve 
was built by plotting the susceptible classes starting from 
the highest values to the lowest values on the X-axis and 
the cumulative percentage of landslides occurrence on 
the Y-axis.

Meanwhile, prediction rate is the validation of calcula-
tions on predictive assessments that show how well the 
model can predict unknown upcoming events or poste-
rior events (Mezughi et al. 2011; Pimiento 2010; Wahono 
2010). The prediction rate curve was prepared using the 
same data integration and representation procedures of 
preparing the success rate curve as described above but 

in this case the validation landslides group was used 
instead of the estimation landslides group (Mezughi et al. 
2011). From the validation process, the AUC value for the 
success rate is 0.901 and the AUC value for the prediction 
rate is 0.873. This result show that the model is a good 
and reasonable model because the AUC value obtained 
exceeds minimum limit of 0.6 (Fig. 11).

The obtained ratio values using FR were assigned as 
weight values to the classes of each factor map to produce 
weighted conditioning factor using the raster calculator 
tool in ArcGIS to produce the Landslide Susceptibility 
Index (LSI) map. The landslide susceptibility index (LSI) 
for each pixel, is the summation of total overlapped pixels 
using equation (Mezughi et al. 2011):

Fig. 8  Soil map of study area
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where LSI = Landslide susceptibility index; Wm = Weighted 
thematic maps of conditioning factors.

From the calculation, the study area was divided into 
five zones of relative landslide susceptibility, i.e., very low 
susceptibility, low susceptibility, moderate susceptibility, 
high and very high susceptibility of landslides (Fig.  12). 
The high and very high landslide susceptibility regions 
are where the steeper slope gradients are, which is domi-
nated by dryland agriculture and settlement, latosols type 
of soil, and are closer to lineaments in which there are 
higher total rainfall amounts. In addition, Bogor’s higher 
population density (8985 people/km2) and the reactional 
area of Bogor regency are located mostly near or on 
slopes hosted in volcanic-derived lithologies (near Mount 
Salak, Mount Pangrango, and Mount Gede, located at 
Sukabumi and Cianjur regency). This shows the area is 
divided into very low to moderate landslide susceptibility 
in the northern part of this region (low plain landscape 
type) and moderate to high susceptibility of landslides 
in the southern part of this region (highland landscape 
type).

(3)
LSI = Wm1 +Wm2 +Wm3 + · · · · · · +Wmn,

Conclusion
Seven conditioning factors were collected and pro-
cessed into a spatial database using GIS. The condi-
tioning factors include slope gradient, slope aspect, 
elevation (with interval 250  m), lithology, soil type, 
land cover (and land use), and rainfall intensity over 
a 10-year period from 2009 to 2018, using Frequency 
Ratio (FR) model. The results have been validated by 
comparing each factor with the landslide validation 
set, and have been tested by calculating the prediction 
rate curve. The result from FR shows that lithology, soil, 
and land cover are the most important factors affecting 
landslides. The calculated success rate for FR model is 
90.10% and the prediction rate of 87.30% is the accu-
racy. The curve provides a basis to distinguish differ-
ent susceptibility levels which were classified into five 
susceptibility zones. The southern uplands in the Bogor 
region are more susceptible to landslides because the 
slopes are steeper and consist of older deposits, the 
lithology is dominated by volcanic or volcanic-derived 
lithologies, there is more intense rainfall, and it is dom-
inated by dryland agriculture and settlement.

Fig. 9  Distance to lineament map of study area
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Fig. 10  Rainfall map of study area

Fig. 11  Success rate and prediction rate diagram showing percentage of study area classified as susceptible (x-axis) in cumulative percent of 
landslide events (y-axis)
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