Shared Semantic Dependency Representations for LTAG

Kim Gerdes Patrice Lopez
TALANA DFKI GmbH
Université Paris 7 Stuhlsatzenhausweg 3
F-75251 Paris cedex 05 D-66123 Saarbriicken
gerdes@linguist. jussieu.fr lopez@dfki.de

1 Introduction

This work addresses the problem of shared representation of semantic dependency ambiguities
relevant for post-parsing process. We do not consider here probabilistic approximation but a
compact representation of all ambiguous semantic dependency representations obtained on the
basis of grammatical valid rule applications for a given sentence. Since the syntactic level does
not provide enough information for the disambiguation of all parses, one solution is to maintain
this ambiguity for the semantic and contextual analysis.

Considering such a choice, factorizing all possible parses with a shared representation is a
necessity for two main reasons:

e A shared structure can be obtained more efficiently (in polynomial time) than an enu-
meration of all derivations (exponential time).

e The sharing of sub-results is relevant for post-parsing techniques because the semantic
processing of shared sub-derivation could often be shared and consequently improve com-
putational efficiency.

In addition, some basic Machine Translation tool for two close languages, for example, might
not want to analyze any further and tempt to reproduce the ambiguities in the target language.

We propose first a new shared representation encoding all linguistic ambiguities that could be
expected at the end of a parsing process, thus ensuring modularity of the analysis. The semantic
module will not have to go back again to the surface. The particularity of this representation
is to combine two kinds of structures. The first one, called shared bubble, is inspired by the
bubble tree formalism presented in [Kahane, 1997]. Its role is to represent in a unique structure
all scope ambiguities of modifiers. The second structure is a more classical shared semantic
dependencies graph representing all argumental relation ambiguities and linking the shared
bubbles. The combination of this two representations is called shared bubble graph.

We propose to associate the shared bubble graph representation to the parses obtained with
Lexicalized Tree Grammars which localize semantic dependencies. We take here the example
of the LTAG formalism. We present;:

e How to obtain multiple dependency relations (encountered for example with equi-verbs
see (5)) by the way of features.

e How to obtain the shared bubble graph representation from a shared item forest resulting
from the classical tabular parsing algorithms.

Finally we will present how to obtain an enumeration of the different logical forms from a
shared bubble graph.

2 Adequate Shared Semantic Representations

2.1 Various problems
2.1.1 Multiple modifiers
To warm up let us first consider a simple unambiguous example with two intersective adjectives:

(1) a warm flat beer.

The best corresponding semantic dependency representation, ignoring the determiner, is
indisputably aq

beer beer
warm flat flat
warm
04 a,

Figure 1: Dependency trees for multiple modification.

ag, which is the derivation tree obtained in classical LTAG, seems less appropriate, though
not totally wrong, since we don’t know in which way warm influences flat (See also [Schabes and Shieber, 1994]).
However, without a head, «a; literally falls apart, as in the following example.

2.1.2 Head Ellipsis

(2) Une seule de ces personnes.
Only one of these people

(2) is an example of an every day life phrase with a head ellipsis and two modifiers. In
German and French such ellipses are very frequent. Since the equivalent of such ellipses! in En-
glish are often one-anaphora, tree representations are often proposed as general representation
for dependency representations, even for normalized reference representations (see for example
[Carroll et al., 1999a] which focuses on heads for tree bank annotations). Still such ellipses in
German and French raise a representation problem for strict tree representation because the
semantic head of the phrases is not present in the sentence. One solution is to introduce “empty
nodes” which cause well-known computational and linguistic problems. The second solution
is to suppose transcategorization principles to retrieve a tree structure (the last determiner or
adjective becomes a noun in the case of such ellipses?). At the step of the extraction of a logical
form from these parsing, we have to re-consider again the modifier role of the transcategorized
adjective. Both solutions are not satisfactory since they suppose extra computation due to the
inadequacy of the representation structure.

1Ellipsis in a head-driven semantic sense, not in a sense that (2) abbreviates une seule personne de ces
personnes

2For the German elliptic noun phrase warmes schales von vorgetern (the warm and flat one from the day
before yesterday) a dependency structure usually puts schales in the head position without convincing linguistic
reasons to do so.

2.1.3 Modifier scope ambiguity

(3) a former professor from Tibingen.

(3) is an example of an ambiguous scope of the modifier old. Depending on the scope of
old, this example can mean that (a) we refer to a former professor which is still in Tiibingen
or (b) to an active professor which was in the past in T{ibingen. One can represent these
two ambiguities by an underspecified dependency tree where only dominance restrictions of
the semantemes are given: profesor < from Tiibingen, professor < former. The risk with
this kind of representation is to obtain three possibles dependency trees as shown in figure
2 (the determiner is ignored here), where as and a3 are equivalent for the scope semantic
interpretation (a).

professor professor professor
from Tibingen former form{}m Tibingen
former from TUbingen
By B, Bs

Figure 2: Dependency trees for an ambiguous structure.

This example illustrates that pure underspecification, which is a very classical solution for
scope semantics, can result in overgeneration. This article focuses on a more adequate alterna-
tive to underspecified dependency tree representation that could avoid such overgeneration.

2.1.4 Sharing structure in case of mutual exclusion scopes

(4) Le joueur de football américain de Forbach.
the American football player from Forbach
(the French phrase has an additional third reading where the football comes from Forbach)

(4) supposes that if we speak about an American player, the football does not come from
Forbach. Note that in the LTAG compositional processing, the two different ambiguities are
correctly produced and avoid the attachment of Forbach on football if American has been
attached to joueur. We obtain the three derivation trees presented in figure 3 ignoring the
determiner.

joueur joueur joueur
de football de Forbach de football américain de Forbach de fdotball
amériéain américain de Forbach
61 62 53

Figure 3: Derivation trees

We can not easily for this example represent all ambiguities in a single sharing structure.
There are two solutions to deal with such phenomena :

e Consider two different shared dependency trees (one for the trees §; and d2 one for tree
d3) but it is clear that some sharing is lost.

e Add a special constraint by the way of features for example.

Again both solutions, eventually based on underspecified dependency trees, are not satisfac-
tory since they suppose additional mechanisms. Additionally we would like to draw attention
to the fact that, contrary to the similar structure $; in figure 2, the adjective américain does
not modify joueur; here, only the football is American. This limited scope has to be encoded
somewhere else.

2.1.5 Multiple dependencies

Independently of the problems with modifiers, derivation trees in LTAG have the inconvenience
that each semanteme introduces only one link when it is added to the derivation, excluding
double dependencies. For control verb, derivation are thus always lacking one of their O-
relations, in LTAG usually the relation between the actor and the infinitive. For

(5) John asked to leave yesterday

we get the derivation trees in figure 4, with the missing link represented with a bold line.

leave leave
NN \
\ \\ \\
ask - ask
John yesterday John yesterday
€1 €2

Figure 4: Ambiguous derivation trees.

The question where to adjoin the modifier does not interfere with the dependency structure
of the verbs and their actants.

2.2 Shared bubble representation for modifier scope

In order to deal with the previous phenomena, we propose a shared bubble representation to
encode in a single structure all ambiguous modifier scopes. For this specific task, we argue
that a shared bubble representation is more relevant than shared trees or graphs (unspecified
or not).

If we reconsider the example (1), we propose to represent warm, flat, and beer on the same
level without hierarchical relation among them as in structure ¢; (figure 5)3.

In exactly the same manner, we can represent a “headless” phrase as example (2) (see v, in
figure 6).

The intuitive interpretation of such representations is very simple: Ambiguous phrases can
be represented with the help of dotted lines which stand for optional bubbles. A bubble repre-
sentation of example (3) is presented in y; of the figure 6. The intersective reading of former
corresponds to the possibility to delete the dotted bubble; the non-intersective reading puts
former on the same level with the complex bubble professor from Tiibingen.

3To leave the determiner outside is a purely linguistic choice, we could also describe it as a further information
on the referential function of the noun phrase as in ¢».

warm

flat

beer

?1q @2

Figure 5: A simple bubble structure

the

former

- 'professor.
/ from |

former

professor
from

Figure 6: Shared bubble representations.

Some semantemes introduce a new unambiguous scope level (a new bubble in our repre-
sentation), such a semanteme is called bubble handle. Usually, bubble handles are determiners
and modifier prepositions.

2.3 Formal definition

Let S = {s1,..., 5} be the set of semantemes of phrase P on which we have classical shared se-
mantic dependency graph for the predicate argument structure? (leaving aside the modification
structure of the phrase; the graph is thus not necessarily connected). L = {dotted, continous}
and P(M) is the usual power set of M (the set of all subsets of M). Then we define a shared
bubble R of P to be the pair of mappings

1:B(S)—> L
h:P(S)—= S
such that
e B:=171(L) D h~Y(L) (if a subset of S has a handle it is a bubble)

e VB,C € B: h(B) € C = h(B) ¢ B C C (handle is outside and not separated from its
bubble)

4 Ambiguous argument structure is represented, as usual, by co-indexation of the concerned edges.

we call h(B) the bubble handle of B.

We call a shared bubble simple if the following conditions hold:
o [(P(S)) = {continuous} (only continuous lines)
e h is invertible (a handle handles only one bubble)

o for B,C € I"Y(L) : BNC # () = B C C or C C B (nonempty intersection implies
inclusion)

We also call a simple bubble of P together with an unambiguous argument structure a
reading of P.

For a given phrase P, we say that the shared bubble R has a reading R’ if, with B := [7!(L)
and B' :=1'""Y(L)

o I' Cl,I(B\B') C {dotted} (dotted bubbles can disappear or become continuous)
e h(B) = h'(B") (handles don’t change)

To explain why these conditions are necessary, let us consider the example (4). We have seen
that three derivations and scopes ambiguities are valid in this example (figure 3). Considering
the shared bubble representation presented in figure 7, we can obtain only three valid simple
bubble representations. The simple bubble representation 84 does not satisfy the first condition
since there are two bubbles open by the same bubble handler de (the preposition which intro-
duces football). The simple bubble representation 35 isn’t a valid reading of the shared bubble
representation either since it introduces a bubble non-existing in the shared representation.

In the following, we will distinguish:

e Heavy modifier which always fall in the current bubble (from Tiibingen for example,
corresponding to intersective modifiers).

e Light modifier which can create a higher bubble (including the current bubble with a dot-
ted line) because of its corresponding scope ambiguity (former for example, corresponding
to non-intersective modifiers).

We have shown that this shared bubble representation for modifier relations:

e Is adapted to head ellipses which are frequent in German and French while a tree structure
representation which supposes the occurrence of a head in each syntagmatic constituents
is not.

e Gives precisely possible modifier scopes while underspecified trees can result in redundant
descriptions.

This bubble representation is associated to a shared argumental semantic dependency graph
in order to represent all possible ambiguities.

2.4 Shared argumental semantic dependencies graphs

The shared bubble representation only aims to encode modifier dependencies. To represent the
argumental semantic dependencies we propose to use a classical dependency graph. The nodes
are the shared bubbles (possibly only one bubble, equivalent to noting it without any bubble
at all). Each edge is labeled with a ©-role. The resulting graph is non directed.

To illustrate this representation, we consider the example of an (object-raising) equi-verb
from (6) in figure 8. We do not discuss here the list of relevant ©-roles.

(6) John persuades the former professor from Tibingen to examine Sandy sincerely

de
e
/football\,
L
/américain
[N s

~ ~ |

Invalid Invalid

joueur
de

joueur

de
football

américain

football

football
américain
de

B, B, By B, Bs

Figure 7: Shared bubble representations.

Since the scope of sincerely is ambiguous (on persuade or examine), we introduce a dotted
bubble in order to retrieve correctly the two possible readings. The ambiguous dependency for
the agent relation of examine (the one who is supposed to examine Sandy can be either John
or the doctor) is also represented. The disjunction between the two possible agent arguments
can obtained by the way of variables which is a classical solution in shared graphs.

3 Extracting shared bubbles and shared graph from LTAG
parses

The derivation forest is usually obtained with a partial projection of the shared chart items
representation given by a tabular parsing algorithm. We present here how to obtain the two
representations introduced before from the shared parse forest resulting from a LTAG grammar
which localizes semantic dependencies (for instance a LTAG grammar designed following the
principles presented in [Abeillé, 1991] and [Candito, 1999]).

We suppose that the following informations are present in lexicalized elementary trees:

e In the case of auxiliary tree, if the corresponding modifier is heavy or light.
e In each substitution and foot node a specific ©-role feature indicates the semantic relation
which is realized when the corresponding operation is performed.
3.1 How to build Shared bubbles

We suppose here that we use the definition of LTAG derivation proposed by [Vijay-Shanker, 1987]
(no multiple-adjunction on the same node). As explained in [Kallmeyer and Joshi, 1999], the

John

agent

persuades

former

-~ “professor.
! from !

Figure 8: Shared bubble graph representation for the example 6.

definition presented in [Schabes and Shieber, 1994] is not able to capture the scope ambiguity
of modifiers. Our solution does not suppose multi-adjunction on the same node for particular
modifiers [Kallmeyer and Joshi, 1999] which could lead to extra-processing during the parsing
process and additional complexity to design the LTAG parser. Here we just add a lexical infor-
mation (heavy or light modifier) which will be exploited at the step of the shared dependency
structure extraction.

We propose the following sketch, considering a standard bottom-up processing;:

e For an initial tree, we create a bubble containing only one element: The semanteme
corresponding to this lexical unit.

e If an adjunction of an elementary tree 8 occurs on the spine of an elementary tree -y, then:

— if B is heavy and +~ is not light (heavy auxiliary tree or initial tree) then add the
semanteme corresponding to § in the same bubble as the semanteme for +.

— if B is heavy and v is light then add the semanteme corresponding to § in the bubble
contained by the bubble corresponding to + (if any, else in the same bubble as the
one corresponding to +.)

— if g is light, then create a new bubble containing the semanteme corresponding to 3
and the bubble corresponding to v with a dotted frontier.

e If an adjunction of an elementary tree § occurs on an elementary tree v but not on its
spine, then there is no ambiguous scope: Create a new bubble containing the semanteme
corresponding to v with the semanteme corresponding to 8 as handler, then replace v by
the 8 and the new bubble.

3.2 Building shared semantic graphs

Multi-dependent semantemes can not be obtained by a classical LTAG: Only one dependency
per combination of trees can be given because of the tree structure of the derivation tree. For
instance, all dependency relations can not be given for raising verbs (8) and equi-verbs (7) (here
object control verbs).

(7) John persuades the doctor to examine Sandy.

(8) John believes the doctor to examine Sandy.

Semantic dependency relations which are not localized in the tree structure of elementary
trees are obtained with the classical two steps unification processing [Vijay-Shanker, 1987]. The
cost of this mechanism is important since it supposes percolation and consequently values of
variables which depend on the current derivation (which is possibly exponential in n being the
length of the string to parse). But we argue that all phenomena that could not be localized in the
elementary tree structure need such a mechanism. For instance, since syntactic dependencies are
not localized in classical LTAG [Carroll et al., 1999b], the subject-verb agreement need this two-
step unification. On the contrary since semantic dependencies are localized in the tree structure
of LTAG elementary trees, the predicate-argument constraints are fulfilled straightforwardly.
Consequently the retrieval of semantic dependency relations which are not localized in the tree
structure of elementary tree with a two-step mechanism is justified.

We introduce special features called ©-features. Each substitution and foot node contains a
specific ©-role feature indicating the semantic relation which is realized when the corresponding
operation is performed. In order to retrieve double dependencies, we also introduce é-features
(noted d-struct) which role is to co-index lexical units for the dependencies which are not
localized in tree structures of elementary trees. O-features and J-features are propagated by
the way of percolation and the two-step unification mechanism of LTAG as other classical
syntactic features.

Raising verbs and equi-verbs indicate by the way of a J-struct feature with a disjunctive
value that two of their arguments can be used in the clausal argument (see tree 8 in the figure
9).

Elementary trees for the main verbs used in such a context have a special node for the
subject argument in order to respect the argument-predicate co-occurrence principles defined
in [Abeillé, 1991] (see tree § in the figure 9). The empty category e is used to show the extraction
of the argument. A d-struct feature is introduced at this node. The value of this feature will be
percolated to the §-struct feature at the root node of the elementary tree corresponding to the
dependent semanteme. The dependency indicated by this co-indexation realizes the semantic
relation indicated by the O-feature.

Vv b:ES-struct =x | y] P
6-role =agent N/$ N¢
N ‘%wp [_ } t:| d-struct =x =pati
6-role =agen V |6-role =patient [\ O-struct =x ‘ [] M E?—role —patlenﬂ
&-struct =x ‘ &-struct =y to V* €
persuades t: [G-role :theme] _
examine
B a

Figure 9: Features for double dependencies.

On the example figure 9 with the sentence 7, we obtain at the end of the combination process
a co-indexation between the node for the agent relation of the main verb (tree a) and the root
node of the initial tree for either John or doctor. This disjunctive co-indexation reflects the two
possible dependencies for the agent relation of the main verb.

4 Recovering logical forms

4.1 Principle

The proposed shared representation does not imply a particular semantic post-processing for-
malism. One can map easily this representation to conceptual graph representations. We will
present here how to obtain a logical form in second order logic from a shared bubble graph
R for each reading of R. Depending on the needs of the semantic or pragmatic modules, this
recovery can be done only partly, leaving some parts of the graph in its compact shared state.

Recursive recovery of the logical form(s) corresponding to a reading, with e an arbitrary
natural number (counter to introduce new variables):

o Let {s1,82,...,8;} = B € B be an interior bubble (i.e. VC € BAC C B = C = B; this
can also be a simple semanteme for which we usually don’t draw the bubble around it).

e If the bubble consists only of logical forms connected by the argument dependency, com-
bine the logical forms as usually done for dependency structures. If the order between
the outside quantifiers matters, one obtains correspondingly many forms.

e If B has no handle, replace B by te : s1(xe) A s2(xe) A .. A sp(xe)

e If B has a determiner handle h, with the corresponding quantifier Q. (e.g.3), replace
BUhe by Qexe : s1(ze) A s2(xe) A ... Asg(z). Increase e by 1.

e For other handles, one proceeds equivalently, corresponding to the sense of the handle-
semanteme. (This can be a hard bit of calculus, depending on the chosen logical repre-
sentation. See the examples.)

e Repeat with the modified bubble representation until the reading has disappeared (B = 0)

4.2 Examples

For our simple example ¢, of figure 1, with only one step, we get 3z : warm(z)A flat(z) Abeer(z).
For the right hand reading of +; in figure 2 (the professor is no longer in Tibingen), much
depends on the difficult logical representation of from: We start with the inner bubble Tiibingen
with its handle from. Let’s say that the desired logical form for this PP is from(Tiibingen)(x).
In the next bubble we have the semanteme professor together with the logical form just obtained.
We put them together to y : professor(z) A from(Tibingen)(x). The next bubble contains
former and it is handled by the. We put all together to 3z : former(z) A (y : professor(x) A
from(Tiibingen)(x))(z). This might not be satisfying as logical form already for the reason
that we don’t distinguish between defined and undefined determiners, but it resembles the
structure of Minimal Recursion Semantics. The form has to depend on the semantic calculus
used. As an example of multiple logical forms obtained lets briefly look at the classical example
for ambiguous quantifier scope, which gives figure 10 as a shared bubble graph:

love

agent atient

every a

Figure 10: Every woman loves a man.

10

Since at the last step, the order of the two quantifiers Vz : woman(z) and Jy : man(y)
is not specified, they can be put in two orders: Vz3y : woman(z) A man(y) A love(z,y) and
YV : woman(xz) A man(y) A love(z,y). We're aware of the fact that this is not true for
all languages; the direct translation of this phrase into German for example is arguably non-
ambiguous, and the order of the involved quantifiers is an information which has to be attached
to the love-tree.

Last but not least, we want to draw attention to the fact that island constraints are well
observed: The bubble graph for

(9) Every woman who loves a man hates a linguist.

(figure 11) excludes the undefined determiner a de man from competing with the other
quantifiers, since it is inside the bubble handled by every.

hates

agent patient

every ""‘

woman, (__man

Figure 11: Island constraint

This recovery of the logical form from the shared bubble graph would have to be developed
in more detail for a given usage. What counts here is that this is possible without going back to
the surface, and that it can be done only partially, which preserves the compact representation
as long as possible.

5 Comparison with existing works

[Joshi and Vijay-Shanker, 1999] presents a different approach based on a MRS-like semantic
representation associated to elementary trees. This semantic representations are combined on
the basis of the derivation tree and deals with scope and quantifier ambiguities.

We have tried to exploit here that a LTAG localizes semantic dependencies and that conse-
quently an elementary tree can be view as a basic unit for some computational semantics pro-
cessing. Rather than introducing a new level of semantic representation as in [Joshi and Vijay-Shanker, 1999]
or [Kallmeyer and Joshi, 1999],we are directly enriching elementary tree in order to produce ef-
ficiently a shared representation for all semantic ambiguities that could then be exploited in a
straightforward way in a particular semantics formalism. We don’t try to remodel the usual
TAG-derivation tree into a useful semantic representation as for example [Kallmeyer and Joshi, 1999,
but we create directly a different, more precise graph during the derivation, relying on addi-
tional, though very simple features that have to be added to the elementary trees. As we hope
to have shown, the usual derivation tree can’t encode all relevant information and at the latest
when treating more difficult, in particular non-English phenomena, all approaches have to add
information somewhere. We believe that all relevant information can be encoded in a shared
bubble graph, and we demonstrate this with several problems (head ellipsis, mutual exclusion of
dependencies, overgeneration of underspecified tree representation) ignored by previous similar
works.

11

6 Conclusion

This new representation presents significant characteristics compared with existing shared rep-
resentations:

e This representation gives in a single structure every dependencies that could be expected
from a deep syntactic analysis. All semantic relations and all possible modifier scopes
(which are often neglected) are given.

e The shared bubble representation is more precise than a representation based on un-
derspecified dependency trees. For instance with (3), the predicative role of the adjec-
tive old is ambiguous. In the kind of underspecified tree representation proposed by
[Kallmeyer and Joshi, 1999] for this example, two possible dependency trees would be re-
dundant. Moreover, in the case of mutual exclusion dependencies as in (4), it is useless
to add additional constraints or to consider two different underspecified trees.

e Our proposal is also well adapted to constituents with empty head (see (2)) which are
frequent in French or German and problematic with a tree representation.

e Qur proposal does not suppose a particular formalism of representation for the semantic
processing (both [Kallmeyer and Joshi, 1999] and[Joshi and Vijay-Shanker, 1999] intro-
duce predicative logic mechanisms).

We have proven the practical tractability of this representation by:

e Describing how to extract shared bubble graphs from classical chart items forest obtained
at the end of the parsing process.

e Describing how to obtain easily a logical form from this representation.

e Factorizing in the graph all elementary trees that correspond to the same semanteme
(which corresponds to taking into account the semantic consistency principle in the deriva-
tion tree).

Future work should explore the linguistic pertinence of the separation of predicate argument
structure and modifying structure, which is partly inherited from the distinction between initial
and auxiliary trees in LTAG. Furthermore we hope to apply this proposal concretely:

e The proposed representation should be tested on more complex representations for a
specific LTAG grammar, since everything depends on the occurring elementary trees.

e The recovery of a logical form stays quite vague for the moment since we didn’t want to
decide on a specific semantic formalism. This should be tried out.

e In this proposal we are mainly concerned with parsing. Since shared bubble graphs are
structures a bit more complicated than pure derivation trees (which can be seen as TAG-
building-instructions), we want to find out whether the generation starting with a shared
bubble graph involves other difficulties.

e The usefulness of the shared bubble graph by itself, before extracting other representa-
tions, should be explored further, for example for Machine Translation by linking shared
bubble graphs of two languages.

References

[Abeillé, 1991] Abeillé, A. (1991). Une grammaire lezicalisée d’arbres adjoints pour le frangais.
PhD thesis, Université Paris 7.

[Candito, 1999] Candito, M.-H. (1999). Structuration d’une grammaire LTAG : application au
frangais et a Uitalien. PhD thesis, University of Paris 7.

12

Carroll et al., 1999a] Carroll, J., Minnen, G., and Briscoe, T. (1999a). Corpus annotation for
[? 7) 7) 7 p
parser evaluation. In EACL’99 Workshop on Linguistically Interpreted corpora (LINC-99),
Bergen, Norway.

[Carroll et al., 1999b] Carroll, J., Nicolov, N., Shaumyan, O., Smets, M., and Weir, D. (1999b).
Parsing with an extended domain of locality. In Eighth Conference of the European chapter
of the Association for Computational Linguistics (EACL’99), Bergen, Norway.

[Joshi and Vijay-Shanker, 1999] Joshi, A. K. and Vijay-Shanker, K. (1999). Compositional Se-
mantics with Lexicalized Tree-Adjoining Grammar (LTAG): How much Underspecification is
Necessary? In Proceedings of the third International Workshop on Computational Semantics
(IWCS-8), Tilburg.

[Kahane, 1997] Kahane, S. (1997). Bubble trees and syntactic representations. In Proceedings
of the 5th Meeting of the Mathematics of the Language, DFKI, Saarbricken.

[Kallmeyer and Joshi, 1999] Kallmeyer, L. and Joshi, A. (1999). Factoring predicate argument
and scope semantics: Underspecified semantics with ltag. In Proceedings of the 12th Ams-
terdam Colloquium, December.

[Schabes and Shieber, 1994] Schabes, Y. and Shieber, S. (1994). An alternative conception of
tree-adjoining derivation. Computational Linguistics, 20(1):91-124.

[Vijay-Shanker, 1987] Vijay-Shanker, K. (1987). A Study of Tree Adjoining Grammar. PhD
thesis, University of Pennsylvania, Philadelphia.

13

