
A polynomial parser for the topological model
Illustration by a topological grammar for German

Abstract

This paper describes a parser for Ger-
man, which treats major phenomena of
word order including scrambling, (par-
tial) VP fronting and extraposition. The
outputs of the parser are dependency
trees and topological phrase structures.
We use the CKY parsing algorithm,
which is polynomial with some bounds
on the number of emancipations (that
is, constituents that are positioned out-
side of the domain of their governor).
Our approach will show the procedural
role of tools such as the slash feature of
HPSG.

1 Introduction

The aim of this article is to describe a parsing
algorithm for topological grammars.
For a simple description of word order phenom-
ena of so-called “free word order languages” the
topological model postulates the existence of
template-like structures, i.e. a series of places,
called fields. For German, this tradition dates
back to the 19th (Herling 1821) and mid-20th cen-
tury (Drach 1937 for the “field” metaphor and
Bech 1955 for verbal topology).
The topological model has been implemented in
HPSG (Kathol 1995) and DGs (Bröker 1998,
Duchier & Debusman 2001, Gerdes & Kahane
2001). The DG-based topological grammars build
two types of structures: The syntactic depend-
ency trees (i.e. unordered trees whose nodes are
labeled with the words of the sentence, and
whose branches are labeled with syntactic rela-
tions among the words (subject, direct object…))
and a topological structure.

In Duchier & Debusman 2001, this topological
structure is a projective dependency tree; Gerdes
& Kahane 2001 propose a topological phrase
structure, i.e. a hierarchy of topological phrases
that are defined as fixed series of fields.
Contrarily to most phrase structure grammars
(based on X-bar principles), a topological phrase
structure does not attempt to express subcategori-
zation directly. (It is only linked by powerful
grammar rules to the corresponding dependency
trees with the information on subcategorization.)
For instance, in the topological grammar for
German, a non-finite verb can head two kinds of
topological phrases, either a phrase, called do-
main, with positions for all of its dependents, or a
restricted phrase, which forms the verb cluster,
with no positions for dependents other than
predicative elements. These two kinds of phrases
must be placed in very different topological posi-
tions: A domain is placed in any major field
(Vorfeld, Mittelfeld, Nachfeld) and the verb clus-
ter only in a field at the end of the proposition
called the right bracket.
The algorithm we present is based on the topo-
logical phrase structure and follows the tradi-
tional CKY algorithm for context-free grammar.
The mismatches between the topological struc-
ture and the dependency tree force us to store
some information in a way which is similar to the
slash feature of G/HPSG (Gazdar et al. 1985).
This brings to the fore the procedural role of the
slash feature. Moreover, we combine the slash
feature with another feature we call the visitor
feature, which plays a complementary role.
In Section 2 we briefly recall some word order
phenomena of German covered by the topological
grammar which cause difficulties for parsing.
Section 3 presents the grammar formalism and
Section 4 the parsing algorithm we propose.

2 Some word order phenomena of
German

The topological grammar allows analyzing uni-
formly important free word order phenomena of
German such as (partial) VP-fronting, intraposi-
tion, extraposition, auxiliary flip and pied-piping.
In the following, we present only the main phe-
nomena (see Kathol 1995 and Gerdes & Kahane
2001 for a larger grammar).
German is a V2 language, that is, the main finite
verb occupies always the second position of the
declarative sentence. Moreover, all the other
verbs of the proposition tend to form a verb clus-
ter at the end of the proposition, cutting the sen-
tence in five areas: Vorfeld, left bracket, Mit-
telfeld, right bracket, Nachfeld. The left bracket
is filled by the V2 and the right bracket by the
verb cluster. The three other fields, the major
fields, accommodate the other constituents,
whose relative order is rather free.1 The fact that
the complements of different verbs can be placed
in contradiction to an X-bar phrase structure is
called scrambling (1b). Some complications arise
because a subordinated verb, rather than going in
the verb cluster, can open an embedded domain
in one of the major fields. This phenomenon is
covered by the terms of VP-fronting (1c), intra-
position (1e), and extraposition (1d). Moreover, a
dependent of a verb in an embedded domain can
emancipate and go in a major field of a higher
domain (1f).

(1) a. Niemand hat diesem Mann den Roman
zu lesen versprochen

 Nobody (nom.) has this man (dat.) the
novel (acc.) to read promised

b. Diesem Mann hat den Roman niemand
zu lesen versprochen

c. Den Roman zu lesen hat diesem Mann
niemand versprochen

d. Diesem Mann hat niemand versprochen,
den Roman zu lesen

e. Diesem Mann hat, den Roman zu lesen,
niemand versprochen

1 The placement depends on the communicative (or
information) structure of the sentence. In particular,
placement in the Nachfeld underlies communicative
and heaviness constraints. Direct objects are the most
rare to find in the Nachfeld.

f. Zu lesen hat diesem Mann den Roman
niemand versprochen

g. Den Roman hat niemand diesem Mann
versprochen zu lesen

‘Nobody promised this man to read the novel.’

All of these sentences correspond to the same
dependency tree:

In order to describe these phenomena, Gerdes &
Kahane 2001 consider that each word opens one
(or several) topological phrases in which can go
its dependents and eventually some words eman-
cipated from embedded phrases. A topological
phrase resembles a box, whose ordered compart-
ments, called fields, can themselves accommo-
date new boxes. In addition to the rules that list
the fields of each type of box, the topological
grammar has two further types of rules:
• rules that indicate into which field a word can

go, depending on the position of its governor;
• rules that indicate which type of box a word

can create when it is placed into a given field.
The hierarchy of boxes forms the topological
structure. The word that opens a box is called the
topological head of this box; the topological
heads of the other phrases in the box are called its
topological dependents. A node that is not posi-
tioned in a constituent opened by its governor is
said to be emancipated: Its topological governor
is then different from its syntactic governor (see
Kahane et al. 1998 and Duchier & Debusmann
2001 for similar notions).

We can now describe German word order in the
following terms.
• The main finite verb of the sentence is placed

at first (in the initial field).2 It opens the main

2 We consider that in a compound verb form such as
hat gelesen ‘has read’ the past participle depends syn-
tactically on the auxiliary, which is the finite verb
form. The V2 is thus always the root of the syntactic
dependency tree and the head of the main domain.

hat ‘has’

niemand
‘noboby’

dobj

subj aux

den Roman
 ‘the novel’

zu lesen
‘to read’

iobj inf

diesem Mann
‘to this man’

versprochen
‘promised’

domain, which is the underlying pattern of a
declarative sentence, and consists of the fol-
lowing sequence of five fields: [Vorfeld, left
bracket, Mittelfeld, right bracket, Nachfeld].
It occupies the second position of the main
domain, the left bracket.

• A non-finite verb depending on V2 can go
into the right bracket. As a result, it opens a
reduced constituent, a verb cluster, with only
one position on its left for a verbal depend-
ent.3 If a subsequent third verb joins the verbs
already in the right bracket, it will again open
a phrase with a position to its left, and so on.

• Dependents (verbal or non-verbal) of any of
the verbs of the main domain (V2, any verb
in the right bracket or even an embedded
verb) can go in any of the three major fields,
leaving aside some constraints we will not
discuss here. Exactly one element has to oc-
cupy the Vorfeld, which is the first field.

• When a verb is placed in any of the major
fields, it opens an embedded domain, which
consists of three fields: Mittelfeld, right
bracket, Nachfeld. It occupies the right
bracket where the same rules as in the main
domain apply. A dependent of a verb in an
embedded domain can go in a major field of
a higher domain if the embedded domain al-
lows this emancipation.

3 The Formalism

We extend the topological linearization formal-
ism for dependency trees of Gerdes & Kahane
2001 to account for analysis and to include a
syntactic module.
A grammar in this formalism is called a Topo-
logical Dependency Grammar. It has two mod-
ules: a syntactic module, which controls the well-
formedness of the syntactic representation by the
projection of the lexicon, and a topological mod-
ule, which ensures the correspondence between
the syntactic structure and the topological struc-
ture.

3 The situation is different for verbs that allow auxil-
iary flip (Oberfeldumstellung). See Gerdes & Kahane
2001 for details.

3.1 The syntactic module

The parameters to instantiate are the vocabulary
V, the set of (lexical) categories C, the set of
syntactic roles R, and the set of lexical rules. A
lexical rule assigns a category and a valency bag
(multiset) to a word. An element of the valency is
a couple (r,A) where r is a syntactic role and A a
category.4

Example

V = the German words
C = { V, Vfin, Vzu, Vinf, Vpp, N, D}

(V = verb, Vfin = finite verb, Vzu = infinitive
with zu, Vinf = base infinitive, Vpp = past
participle, N = noun, D = determiner)5

R = { subj, dobj, iobj, aux, inf, det }
Lexical rules :
hat ‘has’: Vfin, val:{(subj,Nnom),(aux,Vpp)}
gelesen ‘read’: Vpp, val:{(dobj,Nacc)}

3.2 The topological module

The parameters to instantiate are the vocabulary
V, the set of (lexical) categories C, the set of
syntactic relations R, the set of box names B, the
set of field names F, the initial field i, the order
of permeability of the boxes, which is a partial
ordering on B (used for emancipation) and four
sets of rules:

1. Box description rules:
The rule b à f1 f2 … fn indicates that the box b
consists of the list of fields f1, f2, …, fn.

4 We do not present the treatment of modifiers, when
the governor is selected by the dependent. It does not
pose any technical problem but it necessitates particu-
lar rules we cannot present here (for the treatment of
modifier in a DG see for example Nasr 1995; various
propositions in HPSG can also be adapted here). We
do not explicit either the optionality of a syntactic
argument.
5 For the clarity of our exposure we give a very rough
presentation of the category. For the nouns, cases are
added in their names (nom, gen, dat, and acc).

f1 f2 … fn
b

2. Field description rules:
The pair (f,ε) in F×{!,?,+,∗} indicates that the
field f has to contain exactly one element (!), at
most one element (?), at least one element (+) or
any number of elements (∗). This is the satiation
value of the field. A box is saturated iff all fields
of type (f,!) contain exactly one constituent and
all fields of type (f,+) contain at least one con-
stituent.

3. Correspondence rules (between the depend-
ency and the topological structure):
The rule (r,A1,A2,f2,b) indicates that a word w2
of category A2, that exhibits a dependency of
type r on a word w1 of category A1, can go into
field f2 of a box containing w1, if this box is
separated from w1 by borders of type = b (in
other words, the parameter b controls the eman-
cipation).

(In our figures, boxes are represented by ovals,
fields by rectangles or sections of an oval.)

4. Box creation rules:
The rule (A,f,b,f’) indicates that a word of cate-
gory A, placed into a field f, can create a box b
and go into the field f’ of this box. The word that
creates a box is called its topological governor.

Box creation rules are applied recursively until a
lexical rule of type (c,f,b,•) is encountered where
b is a lexical box with a unique lexical field, into
which the word has to be placed.

Phrase structure derivation starting from a
dependency tree

The word labeling the root node of the syntactic
dependency tree is placed into the initial field i.
Box creation rules are then activated until the
word is placed in a lexical field (•). A correspon-
dence rule is activated for one of the dependents
of the root node, placing it in an accessible field.
Just as for the root node, box creation rules are
activated until the word is assigned to a lexical
field. This procedure continues until the whole
tree is used up. Each time a box creation rule is
triggered, a box is created and a description rule
for this box has to be activated. Finally, all boxes

have to be saturated (e.g. a field requiring at least
one element cannot remain empty).

3.3 Example of a grammar

We will now instantiate our formalism for the
German grammar fragment we have informally
presented in Section 2.

Parameters

B = { md, ed, vc, v, xp }
(md = main domain, ed = embedded domain,
vc = verbal cluster, v = verb, xp = non-verbal
phrase)

F = { i, vf, lb, mf, rb, nf, cf, hf, of, • }
(i = initial field, vf = Vorfeld, lb = left
bracket, mf = Mittelfeld, rb = right bracket, nf
= Nachfeld, of = Oberfeld, hf = head field, • =
lexical field, f = vf/mf/nf = major field)

i is the initial field

Permeability order

0 < vc < xp = ed < md

Box description

md -> vf lb mf rb nf
ed -> mf rb nf
vc -> of hf
v -> •
xp -> undescribed

Field description

(i,!), (vf,!), (mf,∗), (nf,∗), (lb,!), (rb,?), (of,?),
(hf,!), (•,!).

Correspondence rules6

Positioning of the first verb in the right bracket:7

 (-, -, V, rb, 0)
Positioning of a verb to the left of the preceding
verb in the right bracket:

(-, V, V¬fin, of, 0)

6 Some parameters can be left underspecified. In par-
ticular the syntactic role is not instantiated. Contrary to
English, in German, the placement does not really
depend on the syntactic role of the dependent.
7 The last parameter (•) indicates that the right bracket
of a given domain is not accessible when emancipating
an element from an embedded domain.

f1
A1

b

f2 A2

r >

Positioning of an element in a major field:8
 (-, V, -, f, ed)

Box creation rules

Creation of the main domain in the initial field:
 (Vfin, i, md, lb)
Creation of an embedded domain in a major field:
 (V¬fin, f, ed, rb)
Creation of a verbal cluster in the right bracket or
in the Oberfeld: (V,rb/of,vc, hf)
Positioning of a verb: (V, lb/hf, v, •)
Creation of a non-verbal phrase: (X, f, xp, ?)

4. The parsing algorithm

The parsing algorithm is driven by the topologi-
cal structure, which is built bottom-up: A topo-
logical phrase is placed (in the field of a higher
phrase) only when it is saturated.
We begin with a presentation of the algorithm
when there is no emancipation. In this case, we
can ensure that the dependency structure is also
built bottom-up, that is, a node combines with its
governor only when it has all its dependents. This
condition can no longer hold when emancipations
are allowed.

4.1 The algorithm without emancipation

The philosophy of a CKY algorithm is to be-gin
to parse one word segments of the sentence, to
note the results in a parse matrix, and to parse
bigger and bigger segments by concatenation of
segments previously parsed. The entries of our
parse matrix are of the form
[i,j,hd:A,val:X,top:C] where i and j delimit the
segment, A is the category of the governor, X is
its valency, and C is a topological configuration.
A topological configuration (TC) is an ordered
tree of fishbone type whose internal nodes are
fields or boxes, where daughters of a field are
boxes, where daughters of a box are fields, where
the root is a field, and where leaves are labeled
by a field. Each field label is accompanied by a
satiation value (?, !, *, or +). The fishbone type

8 The last parameter indicates that it is possible to
emancipate out of any type of box inferior to ‘ed’ in
the order of permeability, i.e. ed, xp, or vc, but in
German, emancipation will not in general be possible
out of phrasal complements.

implies that a TC has exactly one spine, which
terminates in a lexical field • corresponding to the
position the head of the segment, all other
branches being of length 1.
Example of a topological configuration in tree
(left) and box representation (right):

The first step of the algorithm is to associate a
category, a valency and a TC to each one word
segment [i,i] of the sentence. These initial TCs
are built by using the box creation rules, the box
description rules and the field description rules. It
consists more or less to lexicalize this part of the
grammar.
Given a word a of category A, for each lexical
rule (A,f0,b0,•), we consider the TC f0-b0-•. Then
we can trigger box creation rules (A,f1,b1,f0), a
box description rule for b1 and field description
rules for each field of b1, giving us new TCs.
More complex configurations can be obtained by
triggering rules (A,f2,b2,f1) and needed box and
field description rules. Our German grammar
verifies that this process necessarily stops at this
step and that no rule (A,f3,b3,f2) exists and can
apply.9 The following figure shows the TCs asso-
ciated with a zu-infinitive:

9 A similar assumption is made in X-bar Syntax, where
an item can only be the head of a limited number of
phrases (X, X', and X" = XP in the most common ver-
sion). In our framework, this number is limited but not
fixed: A word can head two or three constituents ac-
cording to its place. For instance, a non-finite verb that
opens a new domain heads three constituents (a lexical
box, a verb cluster, and an embedded domain),
whereas it heads only two constituents when it joins in
the right bracket of its governor's domain.

hf

v zu-inf à à

•
hf

v

•

of

vb

rb/of

hf

•

of

vb

rb

à

mf

ed

nf

vf/mf/nf

v

f2 f3 f4

f1

f1

b1

f0 f3 f2 f4

b0

• f5 f6

f0

f5 f6 •

b1
b0

Note that these TCs can be compiled off-lined,
creating lexicalized tree chunks, similar to ele-
mentary trees of Tree Adjoining Grammars. Dur-
ing the analysis, each TC, not only maximal TCs,
has to be considered separately, which causes the
maximum number of TCs per word to show up in
the complexity of the algorithm.

Let us examine the recursivity step of our algo-
rithm. Suppose that we have the parsed segments
[i,j,hd:A1,val:X1,top:C1] and
[j+1,k,hd:A2,val:X2,top:C2]. The two segments
can be combined if one of them fill requirements
of the other. Suppose that A1 will be the head.
Then A2 must fill one of the valency slots of A1
and C2 must fill one of the fields of C1. More-
over we impose that the valency and the TC of
A2 are saturated, that is, X2=∅ and no field of
C2 needs to be filled (none shows a satiation
value equal to ! or +). The leaves of C1 between •
and the place filled by C2 must also be saturated.
Finally the combination of A1 and A2 must be
licensed by a correspondence rule (r,A1,A2,f2,b),
where r is the syntactic role assigned to A2 and
f2 is both the root of C2 and the field of C1 will
be filled by C2 (the variable b, which controls
emancipation, is not considered here). This give
us the new parsed segment
[i,k,hd:A1,val:X,top:C], where X is X1 deprived
of (r,A2) and C is a copy of C1 where
1) the field filled by C2 is suppressed if it had a
satiation value equal to ? or ! and it receives the
value * elsewhere and
2) the leaves between the spine and the place
filled by C2 are suppressed (they cannot be filled
afterwards).
The parsing succeeds if the whole sentence corre-
sponds to a segment [1,n,hd:A,val:∅, top:C],
where C is saturated and rooted by the initial
field i. If we keep backpointers at each step in the
algorithm, we have a compact representation of
the parse forest.
With this limited algorithm, we can analyze for
example: Den Roman gelesen hat Maria.

4.2 The algorithm with emancipation

Example: Den Roman hat Maria gelesen.
An emancipated constituent is not in the maximal
projection of its governor. In our example, den
Roman, which depends on the past participle

gelesen, is placed in a field of the main domain
headed by the auxiliary hat.
Suppose we want to apply our previous algorithm
(the CKY parsing without emancipation). We can
easily parse the segments den Roman, hat Maria,
and gelesen, but neither den Roman and hat
Maria, nor hat Maria and gelesen can be com-
bined. Our parsing will still be driven by the
topological structure and we will maintain the
condition of saturation of the TC of the topologi-
cal dependent. But we need conditions on the
syntactic combinations of the words.
Two solutions are possible.
The first one consists in combining hat Maria
and gelesen but we must bear in mind that gele-
sen still expects a dependent. Therefore we do
not require the valency of the topological phrase
to be saturated and we must percolate it in a spe-
cial feature similar to the slash feature of
G/HPSG (Gazdar et al. 1985, Pollard & Sag
1994)
The second possibility consists in combining den
Roman and hat Maria. In this case we do not
trigger a correspondence rule because no depend-
ency must be built. We must store den Roman in
a special feature we call visitor (see Hudson 2001
for a similar device), which is the converse of the
slash feature. The slash feature allows us to lift
up a need (a valency slot to be filled), while the
visitor feature allows to hand down a resource
(that will fill a valency slot).
Nevertheless, with our conditions on the satura-
tion of TCs, the two strategies are not equivalent
and there are both necessary. Let us consider two
examples.
Example 1: Maria hat den Roman gelesen
Although the sentence is projective, den Roman
must be analyzed as an emancipated constituent.
Indeed, gelesen is in the left bracket of the main
domain and the maximal projection of gelesen,
the verb cluster, does not contain its dependent
den Roman, which is in the Mittelfeld of the main
domain headed by hat. From the topological
point of view, den Roman can only combine with
hat but it is not in the valency of hat and it must
be considered as a visitor.
Example 2: Ich glaube, dass Maria den Roman
gelesen hat.
In this example den Roman is still emancipated
and, from the topological viewpoint, it cannot
combine with its governor gelesen. It also cannot
combine with hat because they are separated by

gelesen. The smallest topological phrase contain-
ing den Roman and gelesen also contains hat.
Therefore the slash strategy is needed and gele-
sen and hat must combine together before com-
bining with den Roman.
We can now present the complete algorithm. The
entries of our parse matrix are of the form
[i,j,hd:A,slash:X,visit:Y,top:C]. The slash value
X is a bag of 4-tuples (r,B1,B2,b) where r is a
syntactic role, B1 and B2 two categories and b a
box. The visitor value Y is a bag of pairs (B,f)
where B is category and f a field. We do not use a
Valency feature; valencies are put expressed di-
rectly in the slash feature of the lexical constitu-
ent. Our initial segments are of the form
[i,i,had:A,slash:X,visit:∅,top:C] where the slash
elements are obtained by translating a valency
element (r,B) of A into (r,A,B,0) (0 indicates that
no emancipation has been done).
Suppose now that we want to combine the parsed
segments [i,j,hd:A1,slash:X1,visit:Y1, top:C1]
and [j+1,k,hd:A2,slash:X2,visit:Y2, top:C2]. One
of them must fill a place in the TC of the other.
Suppose that C2 takes the field f2 of C1. It sup-
poses that C2 is saturated and Y2=∅ (the gover-
nor of a visitor cannot be in a higher domain).
The combination of the two segments give us the
parsed segment [i,k,hd:A1,slash:X,visit:Y,top:C]
where C is built as in the algorithm without
emancipation10, X is the union of X1 and X’2 and
Y is the union of Y1 and {(A2,f2)}. The element
of X’2 are obtained by replacing the last value b
(the box label controlling the emancipation) by
the max (for the permeability order) of b and the
top box label of C2
Now such a segment can be reduced by corre-
spondences rules, each one combining a slash
element (= a need) with a visitor (= a resource).
More precisely, the slash element (r,A,B,b) can
merge with the visitor (B,f) if there exist a corre-
spondence rule (r,A,B,f,b’) with b=b’. Both ele-
ments are suppressed from the bags. This reduc-
tion can be made at any moment. It will be neces-
sary to combine the segment with its governor in
order to empty the visitor bag. The parsing suc-
ceeds if the whole sentence corresponds to a

10 Additionally we need to suppress all the fields of C1
that are lower in C1 than f2 in order to avoid a visitor
to find its governor in a lower constituent. Of course
we require that these fields were saturated.

segment [1,n,hd:A,slash:∅,visit:∅, top:C], where
C is saturated and rooted by the initial field i.
Example 3: den Roman hat Maria zu lesen ver-
sprochen
den Roman hat Maria: [1, 4, hd:Vfin,
slash:{(aux,Vfin,Vpp,0)}, visit:{(Nacc,vf)},
top:i-md-lb-v-•-mf*-rb?-nf*]
zu lesen versprochen: [5, 6, hd:Vpp,
slash:{(obj,Vzu,Nacc,vc)}, visit:∅, top:rb-vc-h-
v-•]
s: [1, 6, hd:Vfin, slash:{(aux,Vfin,Vpp,0),
(obj,Vzu,Nacc,vc)}, visit:{(Nacc,vf),(Vpp,rb)},
top:i-md-lb-v-•-nf*]
s can be reduced to [1, 6, hd:Vfin, slash:∅,
visit:∅, top:i-md-lb-v-•-nf*] by merging
(aux,Vfin,Vpp,0) and (Vpp,rb) with the rule
(aux,Vfin,Vpp,rb,0) (particularization of (-,-
,V,rb,0)), as well as (obj,Vzu,Nacc,vc) and
(Nacc,vf) with the rule (obj,Vzu,Nacc,vf,ed) (par-
ticularization of (-,V,-,f,ed)).

4.3 Complexity

Just as for regular CKY algorithms, we can sup-
pose that the parameter sets including the rule
sets are bounded.
Accordingly, the results for a grammar without
emancipation are similar: The number T of TCs
is bounded by the number of box creation rules,
because we suppose that the grammar does not
use box creation rules recursively. Thus the com-
plexity remains of order RT2C2n3 with R being
the number of correspondence rules and C the
number of categories.
The slash and visitor features are more expen-
sive: We assume the slash and visitor sets to be
bounded by K, i.e. we suppose that we do not
need to keep more than K entries in the slash and
visitor sets at a time.
One slash quadruple allows a finite number S of
different configurations. Equally, the number V
bounds the number of different configurations of
an entry in the visitor bag. A segment carrying
slash and visitor sets can appear in SKVKTC
states. The maximum number of entries in each
square of the parse matrix remains
O(R(TC)2(SV)Kn3).
We avoid exponential growth only because we
restrict the number of slash and visitor entries of

each configuration.11 Our algorithm only verifies
the saturation of the subcategorization frame of
each predicate, i.e. the possibility of constructing
a correct dependency tree for a topological phrase
structure, but this does not allow us to construct
the dependency tree.
If we kept backpointers at each step of the algo-
rithm, i.e. if we noted down the segments corre-
sponding to the lexical elements that enter into a
dependency relation, we would obtain a compact
representation of the parse forest and we could
reconstruct the dependency tree, making our al-
gorithm grow by O(n4K).

4 Conclusion

We have proposed a parsing algorithm for a
grammar which allows us to handle very complex
phenomena of word order. Moreover this is a
rather rich grammar which builds both depend-
ency structures and topological phrase structures.
It must be underlined that we do not use our
phrase structure to represent the syntactic struc-
ture of the sentence, but only for linearization,
i.e. as an intermediate step between the text and
the syntactic structure proper, which is encoded
by a non ordered dependency tree.
Our bottom-up strategy driven by the topological
structure forces us to introduce tools equivalent
to the slash feature of G/HPSG. We hope that this
presentation shed light on the procedural role of
the slash feature, and on the complementary pos-
sibility of a linguistic analysis using a visitor
feature.
Work is in progress to choose useful input and
output formats and to implement the presented
algorithm. Real values on efficiency will not be
available as long as the grammar does not surpass
experimental size, as the complexity depends
heavily on the number of slash and visitor places,
of categories, of box creation rules, and of corre-
spondence rules needed in the linguistic descrip-
tion.
It seems to be an interesting task to compare the
performance of this algorithm with the constraint-

11 It is difficult to give an upper bound for the case of
the German grammar presented here, because the
number corresponds to the maximum number of ele-
ments that can depend on the verbs of the right bracket
or that are emancipated from an embedded domain.
This depends heavily on choices in the linguistic
analysis.

based approach of Duchier & Debusman 2001
and with efficiency considerations for HPSG as
in Nishida et alii 2001.

References
Bech Gunnar, 1955, Studien über das deutsche Ver-

bum infinitum, 2nd edition 1983, Linguistische Ar-
beiten 139, Niemeyer, Tübingen.

Bröker Norbert, 1998, “Separating Surface Order and
Syntactic Relations in a Dependency Grammars”,
COLING-ACL’98, 174-180.

Drach, Erich, 1937, Grundgedanken der deutschen
Satzlehre, Diesterweg, Frankfurt/M..

Duchier Denys, Ralph Debusmann, 2001, “Topologi-
cal Dependency Trees: A Constraint-Based Account
of Linear Precedence”, ACL 2001, 180-87.

Gazdar, Gerald, Ewan Klein, Geoffrey Pullum and
Ivan Sag Generalized Phrase structure grammar,
Harvard University Press, Cambridge MA, 1985.

 Gerdes Kim, Sylvain Kahane, 2001, “Word Order in
German: A Formal Dependency Grammar Using a
Topological Hierarchy”, ACL 2001, 220-27.

Herling, S. H. A., 1821 “Über die Topik der deutschen
Sprache”. In: Abhandlungen des frankfurterischen
Gelehrtenvereins für deutsche Sprache. Frankfurt/
M., Drittes Stück, S. 296-362, 394

Hudson Richard, 2000, “Discontinuity”, in S. Kahane
(ed.), Dependency Grammars, T.A.L., 41(1): 15-56,
Hermès, Paris.

Kahane Sylvain, Alexis Nasr, Owen Rambow, 1998,
“Pseudo-Projectivity: a Polynomially Parsable Non-
Projective Dependency Grammar”, COLING-
ACL’98, Montreal, 646-52.

Kathol Andreas, 1995, Linearization-based German
Syntax, PhD thesis, Ohio State University.

Bernd Kiefer, Hans-Ulrich Krieger, John Carroll, and
Rob Malouf. 1999. A bag of useful techniques for
e? cient and robust parsing. In Proceedings of ACL
99, pages 473–480.

Lenerz Jürgen, 1977, Zur Abfolge nominaler Satzglie-
der im Deutschen, TBL Verlag Günter Narr, Tübin-
gen.

Nishida, Kenji, Kentaro Torisawa and Jun'ichi Tsujii.
(2001). “Compiling an HPSG-based grammar into
more than one CFG”. In Proceedings of PACLING
2001. pp. 199--206.

Pollard, C. and I. Sag., 1994, Head-Driven Phrase
Structure Grammar, Chicago: University of Chi-
cago Press, and Stanford: CSLI Publications.

