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Abstract. During the last decade, popular SMT solvers have been ex-
tended step-by-step with a wide range of decision procedures for different
theories. Some SMT solvers also support the user-defined tuning and com-
bination of such procedures, typically via command-line options. However,
configuring solvers this way is a tedious task with restricted options.

In this paper we present our modular and extensible C++ library SMT-RAT,
which offers numerous parameterized procedure modules for different
logics. These modules can be configured and combined into an SMT
solver using a comprehensible whilst powerful strategy, which can be
specified via a graphical user interface. This makes it easier to construct
a solver which is tuned for a specific set of problem instances. Compared
to a previous version, we have extended our library with a number of
new modules and support for parallelization in strategies. An additional
contribution is our thread-safe and generic C++ library CArL, offering
efficient data structures and basic operations for real arithmetic, which
can be used for the fast implementation of new theory-solving procedures.

1 Introduction

The satisfiability problem (SAT) poses the question whether a given propositional
formula has a solution. Satisfiability-modulo-theories (SMT) tackles its natural
extension, where we allow theory constraints in place of propositions. Lazy SMT
solving [33] uses a SAT solver to find solutions of the Boolean skeleton of an
SMT formula and invokes dedicated theory solvers to check the consistency
in the underlying theory. Whereas full lazy approaches search for a complete
Boolean solution before invoking theory solvers, less lazy techniques consult them
more frequently. This cooperation highly benefits from an SMT-compliant theory
solver, which (1) works incrementally, i.e., it should be able to exploit results
from previous consistency checks; (2) it can backtrack according to the SAT
solving; (3) for inconsistent constraint sets, it should be able to find an infeasible
subset as explanation.

Most activities in the area of SMT solving focus on theories such as bit vectors
(BV), uninterpreted functions (UF) or linear arithmetic over the reals (LRA)
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and integers (LIA) resulting in the SMT solvers, e.g., CVC4 [3], MathSAT5 [§],
Yices?2 [I5] or OpenSMT2 [6]. However, less activity can be observed for SMT
solvers for (the existential fragment of) non-linear real arithmetic (NRA): besides
some incomplete solvers like MiniSmt|[38] and iSAT3| [I7/32], we are only aware
of one SMT solver 23| [28124] that is complete for NRA. Even fewer SMT solvers
are available for (the existential fragment of) non-linear integer arithmetic (NIA),
which is undecidable in general. To the best of our knowledge, only Z3| and the
SMT solving spin-off of Aprove [J] can tackle this theory.

One of the most widely used decision procedures for NRA is the cylindrical
algebraic decomposition (CAD) method [I0]. Other well-known methods use,
e.g., Grobner bases (GB) [35] or the realization of sign conditions [4]. Also some
incomplete methods based on, e.g., interval constraint propagation (ICP) [17]
or the wvirtual substitution (VS) [37] can handle significant fragments. However,
the exponential worst-case complexity of solving NRA formulas [36/22] makes it
challenging to develop practically feasible solutions. Embedding the above NRA
decision procedures in SMT solvers as theory solvers is a promising symbiosis.
Highly efficient SAT solvers can handle the Boolean problem structure and learn
from previous (SAT and theory) conflicts. The expensive theory consistency
checks then only concern conjunctions of theory constraints.

Available implementations of the above decision procedures are seldom avail-
able as libraries, and even if they are, they are not SMT compliant. Thus, for
an SMT embedding, these mathematically complex decision procedures had to
be adapted and extended before an SMT-compliant implementation could be
realized. For the implementation, an efficient library for basic computations with
polynomials was needed, which, if we want to have the door open for paralleliza-
tion, must be additionally thread-safe. Furthermore, on a given problem instance
there might be significant differences in the running times of different theory
solvers. Therefore, we aim at their strategic combination [29] to increase usability.

We have developed the C++ library SMT-RAT containing a variety of mod-
ules implementing SMT-compliant solving procedures. The modular design of
SMT-RAT facilitates an easy extension by further solving procedures. Modules
share a common interface allowing their combination according to a user-defined
strategy resulting in an SMT solver. Currently, SMT-RAT can solve problems of
(the quantifier-free fragments of) LRA, LIA, NRA and NIA. Compared to the
previous version of SMT-RAT [I2], (1) we have extended and optimized the VS
module, the GB module (can now handle inequalities and simplify formulas),
and the CAD module (can now handle arbitrary instead of only univariate poly-
nomials); (2) we have implemented a Simplex module [I5], an ICP module [I§], a
module embedding a SAT solver and a module simplifying polynomial constraints
using non-trivial factorization and sum-of-squares decomposition; (3) we have
implemented a general branch-and-bound method for finding integer solutions
with NRA modules, where the splitting decisions are lifted to the SAT level; (4)
we have extended SMT-RAT to support strategies, which compose procedures such
that they run in parallel on multiple cores and implemented an easy-to-grasp
graphical user interface for the construction of such a strategy; (5) we have
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extended the module interfaces to support lemma exchange and lightweight
invocation, where it is allowed to avoid hard obstacles during solving at the price
of possibly not finding a conclusive answer.

2 System Architecture

2.1 Data structures and basic procedures: CArL [26]

The current version of SMT-RAT integrates custom-designed data structures for
SMT formulas and basic functions to manipulate them, bundled in the library
CArL, which has also been successfully used in the tool Prophesy [13].

While there exist C++ libraries for the manipulation of polynomials such
as CoCoA[I] and GiNaC [5], these libraries share some common deficits. First
of all, they lack customization possibilities and are usually tied to one fixed
representation of numbers. Secondly, the libraries are often not flexible when it
comes to manipulation of variable (and polynomial) orderings, which is essential
for efficient implementations of a CAD or a GB procedure. Thirdly, the libraries
are usually not thread-safe, which precludes the design of parallel solvers.

In CArL, the data structure for SMT formulas is a directed acyclic graph, with
Boolean operators as inner nodes and Boolean variables or theory constraints,
e. g., polynomial inequalities, as leafs. Essential simplifications and normalizations
[14] are applied by default and identical formulas are stored only once.

Polynomials are represented by default as a sum of terms. We mark leading
and constant terms and sort all terms only on demand. The data structure is
templated in several ways. Amongst others, we can use rational numbers, native
numbers, intervals and polynomials as coefficients. Furthermore, we can use
different orderings and store additional information with the polynomials with
minimal overhead by utilizing policy templates. Besides, CArL supports univariate
representations of multivariate polynomials, which is essential for, i.a., the CAD.

Variables are represented by bit vectors, encoding their identity, their domain
and their rank (for support of fast custom-ordering of variables). Additional
information is stored in a central pool. For the representation of rational numbers,
we support gmp [20] (thread-safe) and cln [2I] (faster single-threaded). Algebraic
numbers are represented by the interval-isolated root of a univariate polynomial.
Intervals in CArL are an extension of boost intervals also allowing open bounds.

Besides standard arithmetic operations, CArL includes the required procedures
for CAD, including Sturm sequences and root isolation, and a variant of the
Buchberger algorithm to compute Grébner bases. The implemented methods are
specifically tailored towards SMT compliance.

2.2 Interfaces and strategic compositions of procedures: SMT-RAT [34]

Based on CArL’s data structures and basic functions, a rich set of SMT-compliant
implementations of NRA /NTA procedures is provided by SMT-RAT. Each procedure
is encapsulated in a module, which fixes a common interface. Modules can be



Fig.1: A snapshot of an SMT-RAT composition of an SMT solver.
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composed to a solver according to a user-defined strategy. The manager class
provides the API, including the parsing of an SMT-LIBv2 input file, and a
manager instance maintains the allocation of solving tasks to modules according
to the strategy. An overview is given in Figure[l}

Modules Each module m has an initially empty set of received formulas Cyep(m).
We can manipulate Cy,(m) by adding (removing) formulas ¢ to (from) it with
add(p) (remove(y)). The main function of a module is check(bool full),
which either decides whether the conjunction of the received formulas in Cye,(m)
is satisfiable or not, returning sat or unsat, respectively, or returns unknown.
If the function’s argument full is set to false, the underlying procedure of
m is allowed to omit hard obstacles during solving at the cost of returning
unknown in more cases. Usually, C,.,(m) is only slightly changed between two
consecutive check calls, hence, the solver’s performance can be significantly
improved if a module works incrementally and supports backtracking. In case
m determines the unsatisfiability of C,.,(m), it can return an infeasible subset
Cing(m) C Chrep(m). Moreover, a module can specify lemmas, which are valid
formulas. They encapsulate information which can be extracted from a module’s
internal state and propagated among other modules. Furthermore, a module itself
can ask other modules for the satisfiability of its set of passed formulas denoted
by Cpas(m), if it invokes the procedure runBackends (bool full) (controlled by
the manager). It thereby delegates work to modules that may be more suitable
for the (sub-)problems in Cpes(m).

Strategy SMT-RAT supports user-defined strategies for the composition of modules.
A graphical user interface can be used to specify strategies as directed trees T' :=
(V, E) with a set V of modules as nodes and the transitions E CV x 2 x X x V|
with 2 being a set of conditions and X being a set of priority values. A condition
is an arbitrary Boolean combination of formula properties, such as propositions
about the Boolean structure of the formula, e.g., whether it is in conjunctive
normal form (CNF), about the constraints, e.g., whether it contains equations,
or about the polynomials, e.g., whether they are linear. Furthermore, each edge
carries a unique priority value from X = {1, ..., |E|}.



Fig. 2: Example strategies with SMT-RAT (T = no condition).
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Manager The manager holds the strategy T' = (V, E') and the SMT solver’s input
formula Cjppye. Initially, the manager calls the method check of the module
m,., being the root of T, with C\cp(my) = Cinpur- Whenever a module m € V
calls runBackends, the manager adds a solving task (o, m, m’) to its priority
queue @ of solving tasks (ordered by the priority value), if there exists an edge
(m, w, o, m") € E such that w holds for Cpas(m). If a processor p on the
machine on which SMT-RAT is executed is available, the first solving task of Q
is assigned to p and popped from ). The manager thereby starts check of m/’
with Cyep(m’) = Cpes(m) and passes the result (including infeasible subsets and
lemmas) back to m, which can now benefit in its solving and reasoning process
from this shared information. Note that a strategy-based composition of modules
works incrementally and supports backtracking not just within one module but as
a whole. Therefore, each module m stores the subsets of C,.,(m), which form the
reasons for a passed formula being added. In order to exploit the incrementality
of the modules, all backends executed in parallel terminate in a consistent state
(instead of being killed), if one of them finds an answer.

Procedures implemented as modules Usually, a SAT solver forms the heart of an
SMT solver. In SMT-RAT, the module SATj; abstracts C,.,(SATys) to propositional
logic and uses the efficient SAT solver minisat [I6] to find a satisfying solution for
the Boolean abstraction. It invokes runBackends where C.s(SATj) contains the
constraints abstracted by the assigned Boolean variables in a less-lazy fashion [33].
The module SIMy; implements the Simplex method equipped with branch-and-
bound and cutting-plane procedures as presented in [I5]. We apply it on the
linear constraints of any conjunction of NRA/NIA constraints. For a conjunction
of nonlinear constraints SMT-RAT provides the modules GBy;, VS, and CAD,y,
implementing GB [25], VS [1I] and CAD [27] procedures, respectively. Moreover,
the module ICPy; uses ICP similar as presented in [I8], lifting splitting decisions
and contraction lemmas to a preceding SAT); and harnessing other modules for



Table 1: Results in seconds (timeout = 200s) obtained on a 2.1 GHz AMD.

Benchmark Z3 raty rato ratg raty
(#examples) solved time |solved time | solved time |solved time | solved time
Hona (20) 50.0% 72.8/15.0% < 1.0/100.0% < 1.0[15.0% < 1.0/100.0% < 1.0
- sat 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
- unsat 10 72.8 3 <1.0 20 <1.0 3 <1.0 20 <1.0
KissING (45) 68.9% 1155.9(17.8% 50.2[ 35.6% 375.9/28.9% 26.5] 28.9% 54.4
- sat 31  1155.9 8 50.2 16 375.9 13 26.5 13 54.4
- unsat 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
METITARSKI (7713)[(99.9%  370.5(92.7% 4964.3| 92.8% 4658.3|93.2% 3974.8| 95.6% 3109.4
- sat 5025 133.7| 4766 2180.8 4740 2952.1| 4802 1803.8 4815 2290.4
- unsat 2684 236.8| 2385 2783.4 2418 1706.2| 2388 2170.9 2560 819.0
KEYMAERA (421) 99.8% 11.5(97.6% 26.0] 96.9% 17.0]{96.4% 74.7[ 98.1% 25.3
- sat 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
- unsat 420 11.5 411 26.0 408 17.0 406 74.7 413 25.3
WITNESS (99) 21.2% 107.1| 72.7% 2110.9| 64.6% 332.2][21.2% 10.9| 75.8% 937.9
- sat 4 75.3 55 2110.6 47 331.9 4 9.8 58 937.6
- unsat 17 31.8 17 <1.0 17 <1.0 17 1.1 17 < 1.0
APROVE (8829) 94.0% 12011.6|79.5% 5077.8| 80.3% 6128.4|76.6% 10645 80.0% 3886.3
- sat 8014 11090.9| 6965 5038.7 7038 5695.5| 6698 10181.3 7009 3782.3
- unsat 284 920.7 50 39.1 56 432.9 68  463.6 58 104.0
CarypTo (177) 98.9% 11.6(83.6% 123.3] 78.0% 323.9(37.3% 402.1] 85.3% 308.3
- sat 79 7.5 64  46.5 59 236.5 21 304.5 67 224.7
- unsat 96 4.1 84 76.7 79 87.4 45 97.7 84 83.6

nonlinear conjunctions of constraints as backends. The module CNF,; invokes
runBackends on Cjqs(CNF)ps) being a formula in CNF which is satisfiability-
equivalent to Cye,(CNFp). The module PPy, performs some preprocessing based
on factorizations and sum-of-square decompositions of polynomials.

3 Experimental Results and Future Work

We evaluated the four strategies specified in Figure [2| on the five NRA bench-
mark sets HONG [23], K1SSING (both crafted and dimension dependent), METI-
TArskI [2], KEYMAERA [30], WITNESS [3I] (generated by theorem proving,
counterexample-guided synthesis and formal verification, respectively) and the
two NIA benchmark sets APROVE [19] and CALYPTO [7] (generated by automated
termination analysis and sequential equivalence checking, respectively). The first
two strategies, rat; and rat,, are sequential, using a nested combination of
Simplex/ ICP, VS and CAD. The third strategy rats extends the first one by
applying CAD in parallel to the nested combination of VS and CAD. The last
strategy raty basically runs the first two strategies in parallel.

Table [1| shows the experimental results, which compare the four SMT-RAT
strategies with the currently fastest SMT solver for these theories, Z3, showing
that SMT-RAT is already competitive. We ran Z3 sequentially and in parallel and
took the best of both real-time performances for each instance. The column
“solved” shows the number of solved instances and the column “time” states
the accumulated solving time not including timeouts. On WITNESS, SMT-RAT
performs even better than Z3, as it benefits from the algebraic procedures being
tuned for small variable domains as occurring in these examples. It also performs
better on HONG, where it highly profits from the ICP module. Even though rat,



is the best SMT-RAT strategy overall, we observed that both parallel strategies
perform worse than expected, which is due to CAD,; currently not always being
able to terminate quickly with a consistent state when called in parallel. We want
to extend SMT-RAT with further modules based on linearization, bit-blasting and
further preprocessing. More experimental results can be found on our website [34].
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