
AutoGF: An Automated System to Calculate Coefficients of

Generating Functions

by

Huantian Cao

(Under the direction of Robert W. Robinson)

Abstract

AutoGF, an automated system to calculate coefficients of generating functions,
is developed in this thesis. The algorithms for power series manipulations such as
addition, substraction, multiplication, division, powers, exponentiation, logorithm,
reversion and composition are implemented in AutoGF. Maclaurin series provide the
basis for calculating the coefficients of basic generating functions. User defined gener-
ating functions are also provided for. By writing a text file listing the algebraic steps
defining a target generating function, the user of AutoGF can obtain the coefficients
of very complicated generating functions.

Exponential generating functions are widely used to count labeled graphs and
digraphs. By applying a Hadamard product to the coefficients of exponential gen-
erating functions, the exact numbers of labeled graphs or digraphs with different
numbers of vertices can be obtained under various restrictions using AutoGF. This
is demonstrated for connected graphs, blocks, connected eulerian graphs, acyclic
digraphs, strong digraphs, and forests. The time performances of these graphical
enumerations are investigated and their time complexities are estimated.

Generating functions can also be applied to count integer partitions. The numbers
of all partitions and of partitions into distinct parts are calculated by using AutoGF.
The time performances of these partition enumerations are investigated and their
time complexities are estimated.

Index words: Generating Function, Exponential Generating Function, Power
Series, Graph Enumeration, Integer Partitions, Python

AutoGF: An Automated System to Calculate Coefficients of

Generating Functions

by

Huantian Cao

B.S., China Textile University, China, 1994

M.S., China Textile University, China, 1997

Ph.D., The University of Georgia, 2000

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Science

Athens, Georgia

2002

c© 2002

Huantian Cao

All Rights Reserved

AutoGF: An Automated System to Calculate Coefficients of

Generating Functions

by

Huantian Cao

Approved:

Major Professor: Robert W. Robinson

Committee: E. Rodney Canfield

David Gries

Electronic Version Approved:

Gordhan L. Patel

Dean of the Graduate School

The University of Georgia

May 2002

Acknowledgments

The author would like to express his deep appreciation to his major professor, Dr.

Robert W. Robinson, for his remarkable encouragement, support, guidance, assis-

tance, and kindness. Without Dr. Robinson’s advice and effort, completion of this

thesis would have been impossible.

The author is thankful to Dr. E. Rodney Canfield and Dr. David Gries for serving

on his thesis committee. The author expresses his gratitude to Dr. Michael A. Cov-

inton for providing LATEX style sheet uga.sty to make it easier to type this thesis.

The author appreciates the faculty, staff, and graduate students of the Department

of Computer Science for their cooperation and help.

The author is thankful for the financial assistance provided by the Deaprtment

of Computer Science and the Department of Textiles, Merchandising and Interiors

of the University of Georgia.

iv

Table of Contents

Page

Acknowledgments . iv

List of Tables . vii

Chapter

1 Introduction . 1

1.1 Generating Functions 1

1.2 Purpose of This Study 4

2 Algorithms For Manipulating Generating Functions . . . 6

2.1 Rational Arithmetic 6

2.2 Expansions of Basic Functions 7

2.3 Manipulation of Generating Functions 8

3 The Implementation of AutoGF 16

3.1 Python . 16

3.2 The Architecture of AutoGF 18

3.3 How to Use The System 20

4 Applications of AutoGF to Labeled Graph Enumeration . . 23

4.1 Connected Labeled Graphs 23

4.2 Labeled Blocks . 25

4.3 Connected Labeled Eulerian Graphs 28

4.4 Labeled Acyclic Digraphs 31

v

vi

4.5 Labeled Strong Digraphs 35

4.6 Labeled Trees and Forests 38

5 Applications of AutoGF to Counting Integer Partitions . . 44

6 Conclusion . 51

Bibliography . 54

List of Tables

4.1 Number of Connected Labeled Graphs 26

4.2 Time Performance of Connected Labeled Graphs 27

4.3 Number of Labeled Blocks . 29

4.4 Time Performance of Labeled Blocks 30

4.5 Number of Connected Labeled Eulerian Graphs 32

4.6 Time Performance of Connected Labeled Eulerian Graphs 33

4.7 Number of Labeled Acyclic Digraphs 34

4.8 Time Performance of Labeled Acyclic Digraphs 35

4.9 Number of Labeled Strong Digraphs 37

4.10 Time Performance of Labeled Strong Digraphs 38

4.11 Number of Labeled Trees . 40

4.12 Time Performance of Labeled Trees 41

4.13 Number of Labeled Forests . 42

4.14 Time Performance of Labeled Forests 43

5.1 Number of Unrestricted Partitions . 46

5.2 Time Performance of Unrestricted Partitions 47

5.3 Number of Partitions with Distinct Parts 49

5.4 Time Performance of Partitions into Distinct Parts 50

6.1 Time Complexity of Graph Enumerations 52

6.2 Time Complexity of Integer Partition Enumerations 52

vii

Chapter 1

Introduction

1.1 Generating Functions

A generating function is a power series whose coefficients are a sequence of numbers,

a0, a1, a2, · · · (Wilf 1990, p. 1). That is, g(x) is a generating function for ar if g(x)

has the polynomial expansion

g(x) = a0 + a1x + a2x
2 + · · ·+ arx

r + · · ·+ anx
n.

If the function has an infinite number of terms, it is called a power series (Tucker

1995, p. 243). In the application of generating functions, it does not matter whether

the power series converges, all power series discussed in this thesis are formal power

series meaning that we are not concerned with questions of convergence (Brent and

Kung 1978).

For a problem whose answer is a sequence of numbers, a0, a1, a2, · · · , an explicit

formula such as

an = n2 + 2n + 1,

or a recurrence relation such as

Fn+1 = Fn + Fn−1, (n ≥ 1; F0 = 0, F1 = 1)

may be available to calculate the terms. However, there are situations where a simple

formula or a recurrence relation does not exist or is hard to obtain. In these situ-

ations, relations involving generating functions may be another useful way to deal

with the sequence of numbers problem.

1

2

For example, we have the Fibonacci numbers F0, F1, F2, · · · , where

Fn+1 = Fn + Fn−1, (n ≥ 1; F0 = 0, F1 = 1).

The sequence begins with 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, · · ·. But in addition to the

recurrence relation, we can also use the generating function

f(x) =
x

1− x− x2

to represent the sequence of Fibonacci numbers. That is, the nth Fibonacci number,

Fn, is the coefficient of xn in the expansion of the function x/(1−x−x2) as a power

series about x = 0.

The generating functions discussed above are called ordinary generating func-

tions . They are used to model selection with repetition problems. There is another

category of generating functions called exponential generating functions , which are

usually used to model and solve problems involving arrangements and distributions

of distinct objects. An exponential generating function g(x) for ar is a function with

the power series expansion (Tucker 1995, p. 267):

g(x) = a0 + a1x + a2
x2

2!
+ a3

x3

3!
+ · · ·+ ar

xr

r!
+ · · ·

Exponential generating functions are defined in the same way as ordinary generating

functions except that each power xr is divided by r!. For a given expanded expo-

nential generating function, ar can be obtained by the operation of the Hadamard

product (@), which is defined as

< fi > @ < gi >=< figi >

Like exact formulas and recurrence relations, generating functions allow the user

to do almost anything he wants to do with a sequence. In many cases, the generating

functions are elegant, simple and easy to handle when exact formulas and recurrence

relations are very complicated or very difficult to find.

3

In his book Generatingfunctionology , Herbert S. Wilf described things that gen-

erating functions can do (Wilf 1990, p. 2).

(a) Find an exact formula for the sequence numbers. Generating functions cannot

guarantee to find the exact formula, but they provide a powerful way to find exact

formulas in some cases.

(b) Find a recurrence relation. Usually generating functions are obtained from

recurrence relations. However, from a generating function, the user may derive a new

recurrence relation and gain new insight into the nature of the sequence.

(c) Find the average and other statistical properties of the sequence. Generating

functions can provide quick ways to calculate probabilistic aspects of the problem

represented by a sequence of numbers.

(d) Find an asymptotic formula for the sequence. For some cases, it is impossible

to derive an the exact formula for a sequence, but an approximate formula may be

obtained by using generating functions.

(e) Prove unimodality, convexity, etc. A sequence is called unimodal if it increases

steadily at first and then decreases steadily. By analyzing a generating function, one

may be able to analyze the rises and falls of the sequence of coefficients.

(f) Prove identities. The identities referred to here are those in which a certain

formula is asserted to be equal to another formula for stated values of the free

variables. To prove this, we can define a generating function whose coefficients are

the sequence shown on the left side of the identity and a generating function whose

coefficients are the sequence shown on the right side of the identity and show that

they are the same function.

(g) Other. Generating functions may offer a way for the user who wants to

know something else about the sequence. For example, if a generating function has

a striking resemblance to some other known generating functions. This may lead the

user to discover that the problem is closely related to another one.

4

1.2 Purpose of This Study

In the application of generating functions, usually a generating function is obtained

as a result for a sequence of numbers. However, for a generating function, like

F (x) =
x

1− x− x2
,

it is highly desired to know the sequence numbers it represents. That is, we want to

know a0, a1, a2, · · · , ar, · · · , such that

x

1− x− x2
= a0 + a1x + a2x

2 + · · ·+ arx
r + · · · .

Because computer memory is finite, the user must specify a bound N so that coef-

ficients are calculated and stored only for powers less than N .

The purpose of the study is to develop an automatic system, called AutoGF,

to calculate coefficients of generating functions. The user of AutoGF must analyze

the generating function and express it in terms of simple or standard generating

functions and operations on them. AutoGF can then carry out the manipulation of

generating functions and calculate the coefficients. For example, for the generating

function

F (x) =
x

1− x− x2
,

we can divide it into two simple generating functions,

f(x) = x,

whose coefficients are 0, 1, 0, 0, 0, · · · and

g(x) = 1− x− x2,

whose coefficients are 1,−1,−1, 0, 0, · · ·, and use the division operation

F (x) =
f(x)

g(x)

5

to express F (x).

Exponential generating functions are widely used in graph enumeration. In this

thesis, AutoGF is used with exponential generating functions to obtain the numbers of

connected labeled graphs, labeled blocks, connected labeled eulerian graphs, labeled

acyclic digraphs, labeled strong digraphs, labeled trees, and labeled forests. AutoGF

is also used with ordinary generating functions to count general integer partitions

and partitions into distinct parts. The amounts of time used to obtain these numbers

are measured and the time complexities are estimated. These experiments serve as

test cases for AutoGF since all of these numbers had been calculated previously.

Chapter 2

Algorithms For Manipulating Generating Functions

2.1 Rational Arithmetic

To calculate quantities defined by generating functions, it is desirable to calculate

the coefficients exactly rather than as floating point values. To accomplish this,

coefficients are represented as rational numbers with no preset limits on the size

of the numerator or denominator. Rational numbers can be represented as pairs of

integers (u/u′), where u′ 6= 0. The operations on two rational numbers (u/u′) (for

u′ 6= 0) and (v/v′) (for v′ 6= 0) are as follows:

u

u′
± v

v′
=

uv′ ± u′v
u′v′

,

u

u′
× v

v′
=

uv

u′v′
,

u

u′
÷ v

v′
=

uv′

u′v
(v′ 6= 0).

If the numerator a and denominator a′ of the result are not relative prime, it is usually

best for efficiency to compute the greatest common divisor d = gcd(a, a′) and reduce

the fraction to w/w′ where w = a/d and w′ = a′/d. The modern Euclidean algorithm

(Knuth 1998, Algorithm A, p. 337), described below, is used to determine greatest

common divisor in this thesis.

Given nonnegative integers u and v, this algorithm finds their greatest common

divisor. The greatest common divisor of arbitrary integers u and v may be obtained

by applying the algorithm to |u| and |v| because

gcd(u, v) = gcd(v, u)

6

7

and

gcd(u, v) = gcd(−u, v)

1. [v = 0?] If v = 0, the algorithm terminates with u as the answer.

2. [Take u mod v.] Set r ← u mod v, u ← v, v ← r, and return to step 1. Application

of step 2 decreases the value of v but leaves gcd(u, v) unchanged.

2.2 Expansions of Basic Functions

For efficiency, it is helpful for a generatingfunctionologist to have available a reference

list of known power series and other series that occur frequently in applications. In

our system for automatically calculating coefficients of complicated generating func-

tions, these basic power series serve as bricks for the building since many complicated

generating functions are obtained from the manipulations of these basic power series.

The Maclaurin series generated by a function f , which is the Taylor series for

f at x = 0, can often be used to expand functions and produce useful power series

(Finney et al. 2000, p. 671). The Maclaurin series generated by the function f is

∞∑

k=0

f (k)(0)

k!
xk = f(0) + f ′(0)x +

f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + · · · .

For example, we can use a Maclaurin series to expand ex as follows. Since

f(x) = ex, f ′(x) = ex, · · · , f (n)(x) = ex, · · · ,

we have

f(0) = e0 = 1, f ′(0) = e0 = 1, · · · , f (n)(0) = e0 = 1, · · · .

The Maclaurin series generated by f(x) = ex is

f(0) + f ′(0)x +
f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + · · · = 1 + x +

1

2!
x2 + · · ·+ 1

n!
xn + · · · .

That is,

ex = 1 + x +
1

2!
x2 + · · ·+ 1

n!
xn + · · · .

8

Here is a list of basic power series used in this study.

(1 + x)n = 1 + nx +
n(n− 1)

2
x2 + · · ·+ xn =

n∑

k=0

(
n

k

)
xk

ex = 1 + x +
1

2!
x2 + · · · =

∞∑

k=0

1

k!
xk

ln(1 + x) = x− 1

2
x2 +

1

3
x3 + · · · =

∞∑

k=0

(−1)k+1

k
xk

ln
1

1− x
= x +

1

2
x2 +

1

3
x3 + · · · =

∞∑

k=0

1

k
xk

1

1− x
= 1 + x + x2 + · · · =

∞∑

k=0

xk

1

1 + x
= 1− x + x2 − · · · =

∞∑

k=0

(−1)kxk

sin x = x− x3

3!
+

x5

5!
+ · · · =

∞∑

k=0

(−1)k x2k+1

(2k + 1)!

cos x = 1− x2

2!
+

x4

4!
− · · · =

∞∑

k=0

(−1)k x2k

(2k)!

arctan x = x− x3

3
+

x5

5
− · · · =

∞∑

k=0

(−1)k x2k+1

2k + 1

sinh x =
ex − e−x

2
= x +

x3

3
+

x5

5
+ · · · =

∞∑

k=0

x2k+1

(2k + 1)!

cosh x =
ex + e−x

2
= 1 +

x2

2
+

x4

4
+ · · · =

∞∑

k=0

x2k

(2k)!

2.3 Manipulation of Generating Functions

For two generating functions

U(x) = U0 + U1x + U2x
2 + · · ·

and

V (x) = V0 + V1x + V2x
2 + · · · ,

9

their sum, difference, product, quotient, and composition can be used to express new

generating functions. For one generating function, its powers, exponential, logarithm

and reversion can also be used to form new generating functions. Because only a finite

number of terms can be represented and stored in a computer, we work only with the

first N coefficients of any generating function, where N is a user-specified bound. In

the following sections, we use [xn]W (x) to denote the nth coefficient of generating

function W (x).

2.3.1 Sum and Difference of Generating Functions

For the sum and difference of two generating functions, W (x) = U(x) ± V (x), the

coefficients of W (x) can be computed termwize (Knuth 1998, p. 525):

[xn](U(x)± V (x)) = Un ± Vn.

2.3.2 Product of Generating Functions

The convolution rule is used to calculate the coefficients of W (x) = U(x)V (x) (Knuth

1998, p. 525):

Wn = [xn]W (x) =
n∑

k=0

UkVn−k = U0Vn + U1Vn−1 + · · ·+ UnV0.

The termwize or Hadamard product is essential to easily create exponential gen-

erating functions and obtain exact numbers from them. We use @ to represent

Hadamard product: W (x) = U(x)@V (x), where

Wn = [xn]W (x) = UnVn.

10

2.3.3 Quotient of Generating Functions

The rule to obtain the quotient W (x) = U(x)/V (x), when V0 6= 0, is to interchange

U and W in the previous formula for multiplication (Knuth 1998, p. 525):

Wn =
Un −∑n−1

k=0 WkVn−k

V0

=
Un −W0Vn −W1Vn−1 − · · · −Wn−1V1

V0

.

In some cases, the quotient of generating function W (x) = U(x)/V (x) can also be

calculated when V0 = 0. Let

U(x) = Ukx
k + Uk+1x

k+1 + · · ·

and

V (x) = Vmxm + Vm+1x
m+1 + · · ·

where Uk is the first non-zero coefficient of U(x) and Vm is the first non-zero coeffi-

cient of V (x). Coefficients of generating function W (x) = U(x)/V (x) can be calcu-

lated when k ≥ m since

U(x)

V (x)
=

U(x)/xm

V (x)/xm

and the first m zero coefficients of denominator and numerator can be removed.

2.3.4 Powers of Generating Functions

For W (x) = V (x)α, where α is an arbitrary power, and Vm is the first nonzero

coefficient of V (x), we have

V (x) = Vmxm(1 + (Vm+1/Vm)x + (Vm+1/Vm)x2 + · · ·)

and

V (x)α = V α
mxαm(1 + (Vm+1/Vm)x + (Vm+1/Vm)x2 + · · ·)α.

This will be a power series if and only if αm is a nonnegative integer. The operation

of computing W (x) = V (x)α, where α is an arbitrary power, can thus be reduced to

11

the case that V0 = 1 and

W (x) = (1 + V1x + V2x
2 + V3x

3 + · · ·)α

Clearly W0 = 1α = 1.

In 1748, Leonhard Euler published a simple and efficient way to compute powers

of power series (Knuth 1998, p. 526). If W (x) = V (x)α, then by differentiation, we

get

W1 + 2W2x + 3W3x
2 + · · · = W ′(x) = αV (x)α−1V ′(x)

and therefore

W ′(x)V (x) = αW (x)V ′(x).

Equating the coefficients of xn−1, we find

n∑

k=0

kWkVn−k = α
n∑

k=0

(n− k)WkVn−k.

This gives us a useful computational rule valid for all n ≥ 1 and thus a simple online

algorithm to successively compute W1,W2, · · ·:

Wn =
n∑

k=1

((
α + 1

n
)k − 1)VkWn−k

=
(α + 1− n)V1Wn−1 + · · ·+ (kα− (n− k))VkWn−k + · · ·+ nαVnW0

n
.

For us, α must be rational. In case α is not an integer, V (x)α is not unique so W (x)

represents just one of the possible values for V (x)α. In most applications, the desired

value for V (x)α will be W (x) or −W (x).

Online algorithms are used in this power operation and the operations discussed

below. Here online algorithm means that the calculation of the nth coefficient is based

on the n − 1 coefficients obtained previously instead of from user input numbers.

Online algorithms save space (and hence, to some extent, time) compared to offline

algorithms.

12

2.3.5 Exponential of Generating Functions

The calculation of coefficients of the exponential of a generating function, W (x) =

eU(x), where U0 = 0, is similar to the calculation of the powers of generating functions.

Differentiation of W (x) gives rise to a useful recurrence, as follows:

W (0) = eU(0) = e0 = 1;

W ′(x) = eU(x)U ′(x) = W (x)U ′(x).

Equating the coefficients of xn−1, we have for all n ≥ 1

nWn =
n∑

k=1

Wn−kkUk.

This gives us a useful computational rule valid for all n ≥ 1 and thus a simple online

algorithm to successively compute W1,W2, · · ·:

Wn =
1

n

n∑

k=1

Wn−kkUk.

2.3.6 Logarithm of Generating Functions

The reversion of the exponential of generating functions is the logarithm of gener-

ating functions. That is, if

W (x) = eU(x)

then

U(x) = ln(W (x)).

Here W0 = 1 and U0 = 0. From the exponential relation we have

Wn =
1

n

n∑

k=1

Wn−kkUk,

hence

Wn =
1

n

n−1∑

k=1

Wn−kkUk +
1

n
nUn,

13

and so (for n ≥ 1)

Un = Wn − 1

n

n−1∑

k=1

kUkWn−k.

The initial values for this formula are W0 = 1 and U0 = 0. We can also use this

formula to calculate the coefficients of U(x) = ln(1+V (x)) with V0 = 0 and U0 = 0.

2.3.7 Differentiation and Anti-differentiation of Generating Func-

tions

For a given generating function U(x) where

U(x) = U0 + U1x + U2x
2 + · · · ,

the generating function U ′(x), which is the derivative of U(x), is

U ′(x) = U1 + 2U2x + 3U3x
2 + · · · .

If we know the coefficients of U(x), denoted by Ui, the coefficients of the derivative

of U(x) can be calculated as

DIFF (Ui)(i≥0) = (iUi)(i≥1).

If we know the coefficients of the derivative U ′(x), denoted by ui, the coefficients of

U(x) can be calculated as

ANTIDIFF (ui) = (0, u0,
u1

2
,
u2

3
, · · · , ui

i + 1
).

2.3.8 Reversion of Generating Functions

The problem of reversion of series is to solve the equation

x = t + V2t
2 + V3t

3 + V4t
4 + · · ·

for t, obtaining the coefficients of the power series

t = x + W2x
2 + W3x

3 + W4x
4 + · · · ,

14

where x(t(x)) = x and t(x(t)) = t.

In 1768, Lagrange published an inversion formula that leads to a classical method

to obtain the reversion of power series:

Wn =
1

n
[tn−1](1 + V2t + V3t

2 + · · ·)−n.

Therefore, if we successively compute the negative powers (1+V2t+V3t
2 + · · ·)−n for

n = 1, 2, 3, · · ·, an online reversion algorithm can be obtained. The following is the

Lagrangian power series reversion algorithm implemented in AutoGF (Knuth 1998,

Algorithm L, p. 527).

1. [Initialize.] Set n ← 1, U0 ← 1. (The relation

(1 + V2t + V3t
2 + · · ·)−n = U0 + U1t + · · ·+ Un−1t

n−1 + O(tn)

will be maintained throughout this algorithm.)

2. [Input Vn.] Increase n by 1. If n > N , the algorithm terminates; otherwise input

the next coefficient, Vn.

3. [Divide.] Set Uk ← Uk − Uk−1V2 − · · · − U1Vk − U0Vk+1, for k = 1, 2, · · · , n− 2 (in

this order); then set

Un−1 ← −2Un−2V2 − 3Un−3V3 − · · · − (n− 1)U1Vn−1 − nU0Vn.

(We have thereby divided U(x) by V (x)/x.)

4. [Output Wn.] Output Un−1/n (which is Wn) and return to step 2.

2.3.9 Composition of Generating Functions

The problem of composition of power series is to compute the first N coefficients of

U(V (x)) for

U(x) = U0 + U1x + U2x
2 + U3x

3 + · · ·

and

V (x) = V1x + V2x
2 + V3x

3 + · · · .

15

The following algorithm provides a way to obtain the first N coefficients of compo-

sition of generating functions U(V (x)) (Knuth 1998, answer to exercise 11, p. 720).

1. [Initialize.] Set W0 ← U0. For 1 ≤ k ≤ N , set Tk ← Vk and Wk ← 0.

2. [Iteratively Compose.] For n = 1, 2, · · · , N , do the following: Set Wj ← Wj +UnTj

for n ≤ j ≤ N ; and then set Tj ← Tj−1V1 + · · ·+TnVj−n for j = N,N − 1, · · · , n+1.

The sequence W0,W1, · · · ,WN−1 are the first N coefficients of composition of

generating functions U(V (x)).

This composition algorithm, as well as the Lagrangian power series reversion

discussed in previous section, are classical algorithms and require O(n3) time com-

plexity. There are other reversion and composition algorithms which are faster

asymptotically (Brent and Kung 1978). The Brent and Kung algorithms require

O((nlogn)2/3) time complexity. Because the Lagrangian reversion algorithm and the

composition algorithm described previously are easy to implement, we use these two

algorithms in our automated system.

Chapter 3

The Implementation of AutoGF

3.1 Python

In this thesis, AutoGF, an automated system to calculate coefficients of generating

functions, is implemented in Python. The version we use is Python 1.5.2. Python is

an open source language developed by Guido van Rossum and its first public release

was in 1991. The version 1.5.2 was released in April, 1999 and the latest official

version at the time of writing is Python 2.1.

3.1.1 What is Python?

Python is an interpreted high-level programming language. It is purely object-

oriented, and provides a powerful server-side scripting language for the Web. Like

all scripting languages, Python code resembles pseudo-code and does not provide

a rich syntax. Thus Python code is readable among multiprogrammer development

teams (Lessa 2001).

Python has been in the market for more than 10 years and source code and bina-

ries for its interpreter and all standard libraries are freely available. Consequently,

Python is a very stable language. Python provides automatic memory management,

which collects unreachable Python objects and frees the user from the responsibility

for garbage collection. Python also has exception handling, which helps the user

catch errors without having to add a lot of error checking statements to the code.

The design of Python ensures that Python programs never crash and always return

16

17

a traceback message. As an interpreted language, Python is a little bit slower than

compiled languages (Lessa 2001).

3.1.2 Why Python?

The coefficients of a generating function can easily be very large integers that exceed

the built-in largest integer defined in C++ or Java. In both C++ and Java, at most

64 bits can be used to store an integer. The largest commonly supported integer

type in C++ is unsigned long long , which can be as large as 264− 1, and the largest

integer type in Java is long , which can be as large as 263 − 1. If the coefficients we

calculate are greater than the largest number defined, an overflow error will occur.

However, it is easy for a generating function to have coefficients greater than the

largest integer defined in C++ or Java. For example, The 30th coefficient of the

generating function

f(x) = ex =
∑

k≥0

1

k!
xk

is 1
29!

. The denominator is 29!, which is greater than the largest integer commonly

supported in either C++ or Java. Java provides a class called BigInteger in package

java.math to deal with arbitrary precision mathematical calculations that cannot

be represented with Java’s primitive data types. However, using class objects to

represent arbitrary precision numbers can make the program slow.

In Python, there are two types of integers, i.e., IntType and LongType. The range

for IntType is −231 to 231− 1, but the LongType in Python can represent arbitrary

precision integers, which are whole numbers of unlimited range (only limited by

available memory). Therefore, by using Python, the only thing we need to do is to

define an integer as LongType to obtain arbitrary precision.

18

3.2 The Architecture of AutoGF

AutoGF consists of one class, Ration, and the four modules support.py, basicGF.py,

funcOper.py, and AutoGF.py. We will discuss these in the subsections below.

3.2.1 Class Ration

Class Ration, which is defined in file Ration.py, provides the data structure for the

rational representation of a number and the arithmetic operations. In generating

function applications, it is desirable to compute the rational coefficients exactly

instead of with floating point arithmetic. Therefore, rational representation and

operations are necessary in this system.

In class Ration, some special methods in Python are implemented so that the

Ration objects can work with Python’s built-in operators. These special methods

include:

initilizing objects (init (self, numerator, denominator)),

adding objects (add (self, other)),

subtracting objects (sub (self, other)),

multiplying objects (mul (self, other)),

dividing objects (div (self, other)),

negating objects (neg (self)), and

creating string representation of an object (repr (self)).

For example, if we have two ration objects a and b, method add (a, b) is called

when there is a statement a+b in the program and method repr (a) is called when

there is a statement print a in the program.

19

3.2.2 support.py

Module support.py provides all the supporting functions used in this system.

These supporting functions include the computation of n! (factorial(n)),
(

a
b

)

(choose(a, b)), ab (power(a, b)), the determination of whether a string is an integer

number (isdata(str)), and the computation of the greatest common divisor of two

integers (gcd(a, b)).

3.2.3 basicGF.py

Module basicGF.py provides functions to obtain the first N coefficients for basic

generating functions listed in section 2.2. The result of the first N coefficients is

represented as a list of rational numbers.

3.2.4 funcOper.py

Module funcOper.py provides functions to obtain the coefficients of a generating

function obtained from operations on one or two generating functions. The oper-

ations are discussed in section 2.3. For two generating functions U(x) and V (x),

the operations include sum (U(x) + V (x)), difference (U(x)− V (x)), series product

(U(x)V (x)), Hadamard product U(x)@V (x), quotient (U(x)/V (x)), power (U(x)α),

exponential (eU(x)), logarithm (ln(1 + U(x))), derivative, anti-derivative, reversion,

and composition (U(V (x)). There are pre-conditions for some of these operations

such as that the constant coefficient of f(x) in the exponential operation ef(x) must

be zero (f0 = 0). An error message will be printed if a pre-condition of the operation

is violated.

20

3.2.5 AutoGF.py

The user of this automated generating function system should write a text file related

to his problem and pass the text file to the automated system. The next section will

discuss how to write the text file. Module AutoGF.py provides the main function,

which tokenizes and analyzes the text file provided by the user and prints out the

result, which is the first N coefficients of the generating function.

3.3 How to Use The System

The main function is in module AutoGF.py. Suppose the text file the user provided

is named test and the user wants the results to be written in the file named result .

The command

python AutoGF.py test result

can be used to obtain the coefficients.

3.3.1 How to Compose the Input File

The following is a sample text file that is used to calculate the first 20 coefficients

of the generating function F(x) defined by

F (x) = eA(x)

A(x) = U(x) + V (x)

U(x) =
∑

n≥0

(2n− 1)!!xn

V (x) = −1

(1) 20

(2) U(x) in def V(x) = -1

(3) def U(x)

(4) r=1L

21

(5) for i in range(n):

(6) result.append(Ration(r))

(7) r=r*(2*i+1)

(8) endef

(9) begin

(10) A(x) = U(x) + V(x)

(11) F(x) = e ^ A(x)

(12) F(x)

Here, the line numbers are printed for reference purposes and would not be in the

actual input file. The first line of the text file is the number of coefficients the user

needs. All the basic generating functions should be declared in the second line of the

text file. Because the program uses spaces to tokenize, all the spaces in the second

line are necessary. There are two basic generating functions in this example, U(x)

and V (x). U(x) is a user defined generating function and V (x) is a basic generating

function specified in the declaration. Lines (3) through (8) contain the definition

provided by the user for U(x). The format for user defined functions is discussed in

the next section. If the user wants to define more than one function, the definitions

are listed one by one before the begin statement. The begin statement in line (9)

marks the beginning of the generating function operations, which are in lines (10)

and (11). The program uses spaces to tokenize, so the spaces in lines (10) and (11) are

necessary. The last line of the file notifies the program which function’s coefficients

should be written to the output file. There is a dictionary in AutoGF program, which

associates the names of the generating functions (such as U(x), V (x), A(x), and

F (x)), with the lists of rational numbers that are the first N coefficients of the

functions.

3.3.2 How to Define a User Function

The user defined function should begin with def followed by the function name and

end with endef , as in lines (3) and (8) of the example. The statements between

22

def and endef are passed as a string to the exec statement (Beazley 2001) in the

program. Therefore, Python syntax is used in the function definition, so the user

must know a little bit of Python. The number of the coefficients the user needs are

represented in variable n, and the coefficient list to be output must be specified by

variable result, as in lines (5) and (6) of the example.

Chapter 4

Applications of AutoGF to Labeled Graph Enumeration

Exponential generating functions have been widely applied to labeled graph enumer-

ation, that is, to counting labeled graphs and digraphs. A labeled graph or digraph is

one with a linear ordering on the vertices. Often this is indicated by naming the ver-

tices 1, 2, · · · , n. The exponential generating function for the sequence (a0, a1, a2, · · ·)
is

g(x) = a0 + a1x + a2
x2

2!
+ a3

x3

3!
+ · · ·+ ar

xr

r!
+ · · ·

Therefore, the Hadamard product < i! > @g(x) can be used to calculate ai once g(x)

is determined. In this chapter, we will discuss the application of AutoGF to counting

several types of labeled graphs: connected graphs, blocks, connected eulerian graphs,

acyclic digraphs, strong digraphs, trees and forests.

4.1 Connected Labeled Graphs

Definition Let G be a graph and let v0, v1, v2, · · · , vn be a sequence of vertices of G

such that vi is adjacent to vi+1 for i = 0 to n− 1. Such a sequence together with the

n edges is called a walk of length n. If the edges {vi, vi+1} for i = 0 to n are distinct,

the walk is called a trail . If all the vertices and edges are distinct, it is called a path

of length n. A connected graph is a graph in which any two vertices are joined by a

path (Harary and Palmer 1973, p. 6).

The exponential generating function for the number of labeled graphs is:

A(x) =
∑

n≥0

2(n
2)xn

n!

23

24

This is because each of the
(

n
2

)
unordered pairs of distinct vertices presents a binary

choice, to be included as an edge or not, in building an arbitrary graph on n vertices.

The following theorem (Harary and Palmer 1973, p. 8) describes the relationship

between labeled graphs and labeled connected graphs.

Theorem 1 The exponential generating functions A(x) and C(x) for labeled graphs

and labeled connected graphs satisfy the following relation:

A(x) = eC(x).

That is,

C(x) = log A(x),

from which the text file below was composed. When input to AutoGF, the numbers

of labeled connected graphs are obtained. The results are shown in Table 4.1 and

the time performance is in Table 4.2. In Table 4.2 and time performance tables in

following sections, i equals vertices/10, which is used to simplify the calculation.

From Table 4.2, we can see that if i is the number of vertices then time/i4 seems to

approach a constant. So, the time complexity for labeled connected graphs could be

Θ(n4), or perhaps Θ(nc) for some constant c near 4.

29

A(x) in def f(x) in def

def A(x)

for i in range(n):

a=choose(i, 2)

b=factorial(i)

c=power(2, a)

d=Ration(c)/Ration(b)

result.append(d)

endef

def f(x)

for i in range(n):

a=factorial(i)

result.append(Ration(a))

25

endef

begin

C(x) = ln A(x)

c(x) = C(x) @ f(x)

c(x)

4.2 Labeled Blocks

Definition The removal of a vertex v from a graph G results in the subgraph

G − v of G consisting all vertices of G except v and all edges not incident with v.

A cutpoint of a graph is one whose removal increases the number of components. A

block or nonseparable graph is connected, nontrivial, and has no cutpoints (Harary

and Palmer 1973, p. 9).

Let B(x) denote the exponential generating function for labeled blocks and C(x)

denote the exponential generating function for connected labeled graphs. The fol-

lowing theorem (Harary and Palmer 1973, p. 10) describes the relationship between

B(x) and C(x).

Theorem 2 The two exponential generating functions B(x) and C(x) for labeled

blocks and connected graphs are related by:

logC ′(x) = B′(xC ′(x)).

So, we have

xC ′(x) = xeB′(xC′(x)).

Let ϕ(x) = reversion of xC ′(x), then

x = ϕ(x)eB′(x)

log
x

ϕ(x)
= B′(x)

26

Table 4.1: Number of Connected Labeled Graphs

Vertices Connected Labeled Graphs
0 0
1 1
2 1
3 4
4 38
5 728
6 26704
7 1866256
8 251548592
9 66296291072

10 34496488594816
11 35641657548953344
12 73354596206766622208
13 301272202649664088951808
14 2471648811030443735290891264
15 40527680937730480234609755344896
16 1328578958335783201008338986845427712
17 87089689052447182841791388989051400978432
18 11416413520434522308788674285713247919244640256
19 2992938411601818037370034280152893935458466172698624
20 1569215570739406346256547210377768575765884983264804405248
21 16454716025370648777224855178001761643740015163273062875613

10208
22 34508369722950116062601714914260936851437546115328069963470

23345844224
23 14473931784581530777452916362195345689326195578125463551466

449404195748970496
24 12141645838784034832247737828641414668703840762841807733278

3529218671227143860518912
25 20370329409143419676922561585800800631483979568699568444273

55893688994716051486372603625472
26 68351532186533737864736355381396298734910952426503780423683

990730318777915378756861378792989392896
27 45869953864873439868450361909803259294922972126320661426113

60844233962960637520118252235915249481987129344
28 61565621838274124223450863197683805128241193119763036274703

3724174222395343543109861028695816566950855890811486208

27

Table 4.2: Time Performance of Connected Labeled Graphs

i Vertices time (s) time/i3.5 time/i4 time/i4.5

1 10 0.17 0.1700 0.1700 0.1700
2 20 0.48 0.0424 0.0300 0.0212
3 30 1.53 0.0327 0.0189 0.0109
4 40 4.07 0.0318 0.0159 0.0079
5 50 9.24 0.0331 0.0148 0.0066
6 60 18.35 0.0347 0.0142 0.0058
7 70 33.64 0.0371 0.0140 0.0053
8 80 56.55 0.0391 0.0138 0.0049
9 90 90.32 0.0413 0.0138 0.0046

Applying AutoGF on the following text file can obtain the number of labeled blocks.

The results are shown in Table 4.3 and the time performance is in Table 4.4. From

Table 4.4, we see that time/i5 seems to approach a constant. So, the time complexity

for labeled blocks could be Θ(n5), or perhaps Θ(nc) for some constant c near 5.

29

A(x) in def f(x) in def a(x) = 1x^1

def A(x)

for i in range(n):

a=choose(i, 2)

b=factorial(i)

c=power(2, a)

d=Ration(c)/Ration(b)

result.append(d)

endef

def f(x)

for i in range(n):

a=factorial(i)

result.append(Ration(a))

endef

begin

C(x) = ln A(x)

c(x) = C(x) @ f(x)

28

diffC(x) = diff C(x)

b(x) = a(x) * diffC(x)

fi(x) = reverse b(x)

fi1(x) = a(x) / fi(x)

diffB(x) = ln fi1(x)

B(x) = antidiff diffB(x)

b(x) = B(x) @ f(x)

b(x)

4.3 Connected Labeled Eulerian Graphs

Definition The degree of a vertex v in a graph G, denoted deg v , is the number of

edges of G that are incident with v. If every vertex of G has even degree, G is called

even. An eulerian graph is a connected, even graph (Harary and Palmer 1973, p.

11).

Let Wp denote the number of labeled, even graphs of order p. A rather surprising

result occurs (Harary and Palmer 1973, p. 11).

Theorem 3 The number of labeled, even graphs of order p equals the number of

graphs of order p− 1:

Wp = 2(p−1
2).

Let W (x) be the exponential generating function for labeled even graphs and U(x)

be the exponential generating function for labeled eulerian graph. That is,

W (x) =
∞∑

p=1

2(p−1
2)xp/p!

and

U(x) =
∞∑

p=1

Upx
p/p!.

Theorem 4 The exponential generating function U(x) for labeled eulerian graphs

satisfies

U(x) = log(W (x) + 1).

29

Table 4.3: Number of Labeled Blocks

Vertices Labeled Blocks
0 0
1 0
2 1
3 1
4 10
5 238
6 11368
7 1014888
8 166537616
9 50680432112

10 29107809374336
11 32093527159296128
12 68846607723033232640
13 290126947098532533378816
14 2417684612523425600721132544
15 40013522702538780900803893881856
16 1318905990470432841835158414680983552
17 86729469201341176673139807635235309647872
18 11389812766956519246499302706007209976149344256
19 2989038044408739458062537897781870163082021604720640
20 1568078917475015462617039525293492901934452537182902878208
21 16448127468736970632063070994303249368960994959603467329113

29280
22 34500769021328908890523074390192120265436815097346271377978

32562704384
23 14472185835901911075939339272410939146526627818815205088630

763041366328213504
24 12140846921749124902302708650124614591779037735281752223140

4135788955905275160166400
25 20369600932363773774786416095639266260102145662228030038060

46180498401345029725801110044672
26 68350208136903849382501718699793235835557818853441949630240

001716817665982399618700131891184402432
27 45869474041407437965287581983075202953749565649431838397055

00965527951355438838570980311077795796271235072
28 61565275063102293583487307796090899080191744625775957442248

6470642052109423377288299621933060142975550411258200064

30

Table 4.4: Time Performance of Labeled Blocks

i Vertices time (s) time/i4 time/i5 time/i6

1 10 0.35 0.350 0.350 0.350
2 20 2.35 0.147 0.073 0.037
3 30 11.62 0.143 0.048 0.016
4 40 38.19 0.149 0.037 0.009
5 50 100.96 0.162 0.032 0.006
6 60 234.85 0.181 0.030 0.005
7 70 480.81 0.200 0.029 0.004

The number of connected labeled eulerian graphs can be obtained by applying

AutoGF on the following text file. The results are shown in Table 4.5 and the time

performance is in Table 4.6. From Table 4.6, we can see that time/i4 seems to

approach a constant. So, the time complexity for connected labeled eulerian graphs

could be Θ(n4), or perhaps Θ(nc) for some constant c near 4.

30

W(x) in def f(x) in def

def W(x)

result.append(Ration(1))

for i in range(1, n):

a=choose(i-1, 2)

b=factorial(i)

c=power(2, a)

d=Ration(c)/Ration(b)

result.append(d)

endef

def f(x)

for i in range(n):

a=factorial(i)

result.append(Ration(a))

endef

begin

U(x) = ln W(x)

31

u(x) = U(x) @ f(x)

u(x)

4.4 Labeled Acyclic Digraphs

Definition A walk of length n in a digraph D is determined by its sequence of

vertices v0, v1, v2, · · · , vn in which vi is adjacent to vi+1 for i < n. A closed walk has

the same first and last vertices. A cycle is a nontrivial closed walk with all vertices

distinct except the first and last. An acyclic digraph has no cycles (Harary and

Palmer 1973, p. 18).

Let g(x) be the special exponential generating function (with weight 1/(n!2(n
2))

instead of 1/n!) for the set of labeled acyclic digraphs. We have (Robinson 1973)

g(x) =
1

f(x)

and

f(x) =
∞∑

i=0

(−1)ixi

i!2(i
2)

The number of labeled acyclic digraphs can be obtained by g(x)@(2(i
2)i!). Applying

the following text file to AutoGF can obtain the number of labeled acyclic digraph.

The results are shown in Table 4.7 and the time performance is in Table 4.8. From

Table 4.8, we see that time/i5 seems to approach a constant. So, the time complexity

for labeled acyclic digraphs could be Θ(n5), or perhaps Θ(nc) for some constant c

near 5.

26

f(x) in def fact(x) in def c(x) = 1

def f(x)

for i in range(n):

a=choose(i, 2)

b=factorial(i)

c=power(2, a)

32

Table 4.5: Number of Connected Labeled Eulerian Graphs

Vertices Connected Labeled Eulerian Graphs
0 0
1 1
2 0
3 1
4 3
5 38
6 720
7 26614
8 1858122
9 250586792

10 66121926720
11 34442540326456
12 35611003057733928
13 73321307277341501168
14 301201690357187097528960
15 2471354321681605983102370864
16 40525241311304939167532163726672
17 1328538730167391008731100260521480832
18 87088366030214648381879697292246665507840
19 11416326635434367335852139273129517546817518976
20 2992927010171160301866142857726200975958361271065728
21 1569212579981796284434400267519657360415587312508151217408
22 16454700339530451359024830804863915826828211432301128864387

78880
23 34508353271874795891874674233715177108905115177521001847552

72223751424
24 14473928334162515846638214596417526677787291548160298089549

521495020615267072
25 12141644391486445470209298866826569662207491374208788584136

1822359088763379530867712
26 20370328195022402551394801101435954482828794989816814465049

69241249014873033618827837153280
27 68351530149540378819666723147229445654570198213092656662768

225251533171131016002342231340920974336
28 45869953181365288368897400817381238796643968164071866862947

47872739237691976733834790416820083081968944128
29 61565621379577176099639635945335275528341816323598265597874

4629411945957290928874550900890570953815490865545361408

33

Table 4.6: Time Performance of Connected Labeled Eulerian Graphs

i Vertices time (s) time/i3.5 time/i4 time/i4.5

1 10 0.17 0.1700 0.1700 0.1700
2 20 0.49 0.0433 0.0306 0.0217
3 30 1.58 0.0338 0.0195 0.0113
4 40 4.16 0.0325 0.0163 0.0081
5 50 10.07 0.0360 0.0161 0.0072
6 60 19.29 0.0365 0.0149 0.0061
7 70 34.14 0.0376 0.0142 0.0054
8 80 56.98 0.0393 0.0139 0.0049
9 90 95.68 0.0437 0.0146 0.0049

10 100 148.76 0.0470 0.0149 0.0047
11 110 219.13 0.0496 0.0150 0.0045

d=b*c

e=(-1) ** i

f=Ration(e)/Ration(d)

result.append(f)

endef

def fact(x)

for i in range(n):

a=factorial(i)

b=choose(i, 2)

c=power(2, b)

d=c*a

result.append(Ration(d))

endef

begin

g(x) = c(x) / f(x)

r(x) = g(x) @ fact(x)

r(x)

34

Table 4.7: Number of Labeled Acyclic Digraphs

Vertices Labeled Acyclic Digraphs
0 1
1 1
2 3
3 25
4 543
5 29281
6 3781503
7 1138779265
8 783702329343
9 1213442454842881

10 4175098976430598143
11 31603459396418917607425
12 521939651343829405020504063
13 18676600744432035186664816926721
14 1439428141044398334941790719839535103
15 237725265553410354992180218286376719253505
16 83756670773733320287699303047996412235223138303
17 62707921196923889899446452602494921906963551482675201
18 99421195322159515895228914592354524516555026878588305014783
19 33277190122710759173617757331126112588358307625842190258354

6773505
20 23448804510510889881525598552290991888990811922342912987958

03236068491263
21 34698768283588750028759328430181088222313944540438601719027

559113446586077675521
22 10758229217257614936529561793276243265737276628091852181040

90000500559527511693495107583
23 69743329837281492647141549700245804876504274990515985894109

106401549811985510951501377122074625
24 94357834486618508938161152848393652139840190649830971425387

76232515861210619999018077882548839455391743
25 26595736077837381797589415611381864213634144630228868053872

37791664160209221179044776702988190938181603615047681

35

Table 4.8: Time Performance of Labeled Acyclic Digraphs

i Vertices time (s) time/i4.5 time/i5 time/i5.5

1 10 0.17 0.1700 0.1700 0.17
2 20 1.06 0.0468 0.0331 0.0234
3 30 5.35 0.0381 0.0220 0.0127
4 40 19.65 0.0384 0.0192 0.0096
5 50 57.94 0.0415 0.0185 0.0083
6 60 146.23 0.0461 0.0188 0.0077
7 70 329.00 0.0518 0.0196 0.0074

4.5 Labeled Strong Digraphs

Definition A digraph G is strongly connected or strong if for every ordered pair

u, v ∈ V (G) there is a u, v-path in G (West 1996, p. 88).

Let D(x) be the special exponential generating function for the set of all digraphs

and S(x) be the special exponential generating function for the set of all strong

digraphs. The special exponential generating function is weighted by (1/(i!2(i
2)))i≥0

instead of (1/i!)i≥0. Thus

D(x) =
∑

i≥0

2(i
2)xi

i!
,

since there are 4(i
2) labeled unrestricted digraphs with i vertices. The following for-

mula describes the relationship between D(x) and S(x) (Robinson, 1973):

D(x) =
1

e−S(x)
.

So, the following two formulas describe how to obtain S(x):

E(x) = (
1

D(x)
)@(2(i

2))i≥0,

S(x) = −logE(x).

36

The following text file can be used to obtain the numbers of labeled strong digraphs.

The result is shown in Table 4.9 and the time performance is in Table 4.10. From

Table 4.10, we can see that time/i4 is seems to approach a constant. So, the time

complexity for labeled strong digraphs could be Θ(n4), or perhaps Θ(nc) for some

constant c near 4.

24

D(x) in def fact(x) in def c(x) = 1 a(x) in def f(x) in def

def D(x)

for i in range(n):

a=choose(i, 2)

b=factorial(i)

c=power(2, a)

f=Ration(c)/Ration(b)

result.append(f)

endef

def fact(x)

for i in range(n):

a=choose(i, 2)

c=power(2, a)

result.append(Ration(c))

endef

def a(x)

for i in range(n):

result.append(Ration(-1))

endef

def f(x)

for i in range(n):

a=factorial(i)

result.append(Ration(a))

endef

begin

d(x) = c(x) / D(x)

E(x) = d(x) @ fact(x)

e(x) = ln E(x)

S(x) = e(x) @ a(x)

r(x) = S(x) @ f(x)

r(x)

37

Table 4.9: Number of Labeled Strong Digraphs

Vertices Labeled Strong Digraphs
0 0
1 1
2 1
3 18
4 1606
5 565080
6 734774776
7 3523091615568
8 63519209389664176
9 4400410978376102609280

10 1190433705317814685295399296
11 1270463864957828799318424676767488
12 5381067966826255132459611681511359329536
13 90765788839403090457244128951307413371883494400
14 6109064462821545704046426032465737763224760635732888576
15 16424942092009591525859256759939115165943340472011211026326

75328
16 17651224434079884458050335525533552660769075629873272973608

36809051559936
17 75846144198058811756804332211790789408476795856235771995725

35817868820823643095040
18 13033449999158690952742049890953773459062526917965995110362

6888752043097479468849813827977216
19 89576803802275831962288753469640684080747501266298859748316

39836872252340695270762269383803608333221888
20 24624375108553869772331593489405576878844787393033664278117

50062439152254793081361653154862086185511457020552216576
21 27075767957901951427215692106344363440185025935601601711915

88440833903486828501437858808457787221705290533079569526240
346112000

22 11908275810609150902836264434089592873327631591679768607769
46422376490007400140895593655763479186824298483861059776375

6541389852215473340416
23 20949470131074520450476808161964881060432244983511064780763

78607150625190473998586219691425517859805606183649452249422
56115801325843844436151264771309568

38

Table 4.10: Time Performance of Labeled Strong Digraphs

i Vertices time (s) time/i3.5 time/i4 time/i4.5

1 10 0.22 0.2200 0.2200 0.2200
2 20 0.90 0.0796 0.0562 0.0398
3 30 2.86 0.0612 0.0353 0.0204
4 40 7.91 0.0618 0.0309 0.0154
5 50 18.17 0.0650 0.0291 0.0130
6 60 37.17 0.0703 0.0287 0.0117
7 70 67.73 0.0746 0.0283 0.0107
8 80 112.72 0.0778 0.0275 0.0097
9 90 185.61 0.0849 0.0283 0.0094

10 100 292.88 0.0926 0.0293 0.0093

4.6 Labeled Trees and Forests

Definition A tree is a connected acyclic graph. A forest is an acyclic graph (West

1996, p. 51).

The exponential generating function for labeled trees is:

t(x) =
∑

k≥1

kk−2xk

k!
.

The relationship between the exponential generating function for labeled trees t(x)

and the exponential generating function for labeled forests f(x) is:

f(x) = et(x).

Applying the Hadamard product of t(x) and f(x) with i! for i ≥ 0 will produce the

numbers of labeled trees and labeled forests. The following text file can be used to

obtain the number of labeled forests and the number of labeled trees can be obtained

by substituting f(x) with t(x) in the second to last line and removing the third to

last line which calculates f(x).

39

The number of labeled trees are shown in Table 4.11 and time used to obtain

these numbers are shown in Table 4.12. From Table 4.12, we can see that time/i3

seems to approach a constant. So, the time complexity for labeled trees could be

Θ(n3), or perhaps Θ(nc) for some constant c near 3.

The number of labeled forests are shown in Table 4.13 and time performance

of labeled forests is shown in Table 4.14. From Table 4.14, we can see that time/i4

seems to approach a constant. So, the time complexity for labeled trees could be

Θ(n4), or perhaps Θ(nc) for some constant c near 4.

30

t(x) in def fact(x) in def

def t(x)

result.append(Ration())

result.append(Ration(1))

b=0L

for i in range(2, n):

a=i-2

b=power(i, a)

c=factorial(i)

d=Ration(b)/Ration(c)

result.append(d)

endef

def fact(x)

for i in range(n):

a=factorial(i)

result.append(Ration(a))

endef

begin

f(x) = e ^ t(x)

r(x) = f(x) @ fact(x)

r(x)

40

Table 4.11: Number of Labeled Trees

Vertices Labeled Trees
0 0
1 1
2 1
3 3
4 16
5 125
6 1296
7 16807
8 262144
9 4782969

10 100000000
11 2357947691
12 61917364224
13 1792160394037
14 56693912375296
15 1946195068359375
16 72057594037927936
17 2862423051509815793
18 121439531096594251776
19 5480386857784802185939
20 262144000000000000000000
21 13248496640331026125580781
22 705429498686404044207947776
23 39471584120695485887249589623
24 2315513501476187716057433112576
25 142108547152020037174224853515625
26 9106685769537214956799814036094976
27 608266787713357709119683992618861307
28 42277452950578284263485622772148731904
29 3053134545970524535745336759489912159909

41

Table 4.12: Time Performance of Labeled Trees

i Vertices time (s) time/i2.5 time/i3 time/i3.5

5 50 0.35 0.00626 0.00280 0.00125
10 100 1.17 0.00370 0.00117 0.00037
15 150 3.31 0.00380 0.00098 0.00025
20 200 7.15 0.00400 0.00089 0.00020
25 250 14.01 0.00448 0.00090 0.00018
30 300 22.67 0.00460 0.00084 0.00015
35 350 39.21 0.00541 0.00091 0.00015
40 400 53.44 0.00528 0.00084 0.00013
45 450 81.86 0.00603 0.00090 0.00013
50 500 109.69 0.00621 0.00088 0.00012
55 550 147.76 0.00659 0.00089 0.00012
60 600 192.66 0.00691 0.00089 0.00011
65 650 248.87 0.00731 0.00091 0.00011

42

Table 4.13: Number of Labeled Forests

Vertices Labeled Forests
0 1
1 1
2 2
3 7
4 38
5 291
6 2932
7 36961
8 561948
9 10026505

10 205608536
11 4767440679
12 123373203208
13 3525630110107
14 110284283006640
15 3748357699560961
16 137557910094840848
17 5421179050350334929
18 228359487335194570528
19 10239206473040881277575
20 486909744862576654283616
21 24476697610849074911900371
22 1296922170326967017021456192
23 72242343946250474765375216097
24 4220408604052795050630693937600
25 258025823948690959340164992423001
26 16476325133131206856388531345000832
27 1096881543024898799690775415474876711
28 76004217718178366542848556101866327168
29 5473008907162709455528258930972402876875

43

Table 4.14: Time Performance of Labeled Forests

i Vertices time (s) time/i3.5 time/i4 time/i4.5

1 10 0.20 0.2000 0.2000 0.2000
2 20 0.55 0.0486 0.0344 0.0243
3 30 1.89 0.0404 0.0233 0.0135
4 40 4.78 0.0373 0.0187 0.0093
5 50 10.51 0.0376 0.0168 0.0075
6 60 20.29 0.0383 0.0157 0.0064
7 70 37.07 0.0391 0.0148 0.0056
8 80 59.37 0.0406 0.0143 0.0051
9 90 91.68 0.0419 0.0140 0.0047

10 100 137.21 0.0434 0.0137 0.0043
11 110 207.04 0.0469 0.0141 0.0043
12 120 297.39 0.0497 0.0143 0.0041

Chapter 5

Applications of AutoGF to Counting Integer Partitions

Definition A partition of a positive integer n is a representation of n as a sum of

positive integers

n = r1 + r2 + · · ·+ rk,

where r1 ≥ r2 ≥ · · · ≥ rk ≥ 1. The numbers r1, r2, · · · , rk are the parts of the

partition and thus the above is a partition of n into k parts (Wilf 1990, p. 91).

There are 7 partitions of 5, namely 5 = 5, = 4+1, = 3+2, = 3+1+1, = 2+2+2, =

2 + 1 + 1 + 1, = 1 + 1 + 1 + 1 + 1. The number of partitions of n is denoted by p(n).

The following theorem describes the generating function of p(n) (Hall 1986, p. 34).

Theorem 5 The ordinary generating function of p(n),

P (x) = 1 + p(1)x + p(2)x2 + · · ·+ p(n)xn + · · ·

is given by

P (x) =
∞∏

i=1

1

1− xi
.

The text file below is used to calculate p(n) based on the theorem. The results

are shown in Table 5.1 and the time performance is in Table 5.2. From Table 5.2, we

can see that time/i3 seems roughly to approach a constant for unrestricted integer

partitions. So, the time complexity for unrestricted integer partitions could be Θ(n3),

or perhaps Θ(nc) for some constant c near 3.

44

45

31

A(x) in def B(x) = 1

def A(x)

coeff1=[]

coeff2=[]

for i in range(n):

coeff1.append(Ration())

coeff2.append(Ration())

result.append(Ration())

result[0]=Ration(1)

result[1]=Ration(-1)

i=2

while i<=30:

for l in range(n):

coeff1[l]=Ration()

coeff2[l]=Ration()

coeff2[0]=Ration(1)

coeff2[i]=Ration(-1)

for j in range(n):

coeff1[j]=result[j]

for a in range(n):

b=a+1

s=Ration()

for c in range(b):

s=s+coeff1[c]*coeff2[a-c]

result[a]=s

i=i+1

endef

begin

C(x) = B(x) / A(x)

C(x)

A partition is said to be into distinct parts if the parts are all different. There are

3 partitions into distinct parts of 5, namely 5 = 5, = 4 + 1, = 3 + 2. The generating

function for partitions into distinct parts is (Hall 1986, Chapter 4, Problem 3, p. 46)

D(x) =
∞∏

i=1

(1 + xi).

The following text file is used to calculate the numbers of partitions into distinct

parts. The results are shown in Table 5.3 and the time performance is in Table

46

Table 5.1: Number of Unrestricted Partitions

n Unrestricted Partitions p(n)
0 1
1 1
2 2
3 3
4 5
5 7
6 11
7 15
8 22
9 30

10 42
11 56
12 77
13 101
14 135
15 176
16 231
17 297
18 385
19 490
20 627
21 792
22 1002
23 1255
24 1575
25 1958
26 2436
27 3010
28 3718
29 4565
30 5604

47

Table 5.2: Time Performance of Unrestricted Partitions

i n time (s) time/i2.5 time/i3 time/i3.5

1 10 0.31 0.310 0.310 0.3100
2 20 1.38 0.244 0.173 0.1220
3 30 4.63 0.297 0.171 0.0990
4 40 10.08 0.315 0.158 0.0788
5 50 18.64 0.333 0.149 0.0667
6 60 32.46 0.368 0.150 0.0614
7 70 54.80 0.423 0.160 0.0604
8 80 73.82 0.408 0.144 0.0510
9 90 109.68 0.451 0.150 0.0502

10 100 147.06 0.465 0.147 0.0465
11 110 193.54 0.482 0.145 0.0438

5.4. From Table 5.4, we can see that time/i3 roughly approaches a constant for the

distinct integer partitions. So, the time complexity for distinct integer partitions

could be Θ(n3) or Θ(nc) for some constant c near 3.

31

A(x) in def

def A(x)

coeff1=[]

coeff2=[]

for i in range(n):

coeff1.append(Ration())

coeff2.append(Ration())

result.append(Ration())

result[0]=Ration(1)

result[1]=Ration(1)

i=2

while i <=30:

for l in range(n):

coeff1[l]=Ration()

coeff2[l]=Ration()

coeff2[0]=Ration(1)

coeff2[i]=Ration(1)

48

for j in range(n):

coeff1[j]=result[j]

for a in range(n):

b=a+1

s=Ration()

for c in range(b):

s=s+coeff1[c]*coeff2[a-c]

result[a]=s

i=i+1

endef

begin

A(x)

49

Table 5.3: Number of Partitions with Distinct Parts

n Partitions with Distinct Parts D(n)
0 1
1 1
2 1
3 2
4 2
5 3
6 4
7 5
8 6
9 8

10 10
11 12
12 15
13 18
14 22
15 27
16 32
17 38
18 46
19 54
20 64
21 76
22 89
23 104
24 122
25 142
26 165
27 192
28 222
29 256
30 296

50

Table 5.4: Time Performance of Partitions into Distinct Parts

i n time (s) time/i2.5 time/i3 time/i3.5

1 10 0.36 0.36 0.36 0.36
2 20 1.35 0.239 0.169 0.119
3 30 4.57 0.293 0.169 0.0977
4 40 9.87 0.308 0.154 0.0771
5 50 19.14 0.342 0.153 0.0684
6 60 32.24 0.366 0.149 0.0609
7 70 51.20 0.395 0.149 0.0564
8 80 77.13 0.426 0.151 0.0533
9 90 110.87 0.456 0.152 0.0507

10 100 152.57 0.482 0.153 0.0482
11 110 196.32 0.489 0.147 0.0445

Chapter 6

Conclusion

We have developed an automated system, AutoGF, to calculate coefficients of gener-

ating functions. The user of AutoGF must analyze the generating function problem

and express it as a series of operations on basic generating functions which are defined

in the system or supplied by the user. The user then creates a text file listing these

operations and passes the text file to AutoGF. In turn, AutoGF tokenizes and analyzes

the text file, computes the requested coefficients and writes them to an output file.

Exponential generating functions have been widely applied to count classes of

labeled graphs and digraphs. The numbers of graphs or digraphs with different

numbers of vertices can be found by applying the Hadamard product of the fac-

torial number series to the coefficients of exponential generating functions. In this

thesis, AutoGF is used to count the numbers of connected labeled graphs, labeled

blocks, connected labeled eulerian graphs, labeled acyclic digraphs, labeled strong

digraphs, and labeled forests. The time performances of these graph enumerations

are measured and their time complexities are estimated. The time complexities are

summarized in Table 6.1. The time used to count the number of graphs of a given

type is determined by the number of operations and time used for each operation.

The latter depends on the implementation of arithmetic operations and the size and

growth rate of the numbers. From Table 6.1, we can see that the time complexities

for these graph enumerations appear to lie in the range Θ(n4) to Θ(n5) except for

labeled trees. The latter seems to be in the class Θ(n3), presumably because it only

requires simple manipulations of numbers of size Θ(nlogn) instead of Θ(n2).

51

52

Table 6.1: Time Complexity of Graph Enumerations

Graphs Time Complexity
Connected Labeled Graph Θ(n4)

Labeled Blocks Θ(n5)
Connected Labeled Eulerian Graph Θ(n4)

Labeled Acyclic Digraphs Θ(n5)
Labeled Strong Digraphs Θ(n4)

Labeled Trees Θ(n3)
Labeled Forests Θ(n4)

Table 6.2: Time Complexity of Integer Partition Enumerations

Partition Type Time Complexity
General Partition Θ(n3)
Distinct Partition Θ(n3)

Generating functions can also be used to count partitions of integers. In this

thesis, AutoGF is used to count general partitions and partitions into distinct parts.

Time complexities are estimated and summarized in Table 6.2. Both types of parti-

tions can apparently be counted in time complexity Θ(n3).

There are two obvious directions for future improvements to AutoGF. One would

be to allow for arbitrary polynomials with rational coefficients to be used as coef-

ficients of generating functions. At present, only generating functions with rational

coefficients can be calculated and manipulated by AutoGF. Arbitrary rational poly-

nomial coefficients would allow for applications in which there is more than one

parameter to keep track of, such as graphs or digraphs by numbers of edges or

numbers of components as well as by numbers of vertices.

53

The second direction would be to allow for problems defined implicitly by equa-

tions, which would then be automatically expressed in terms of fundamental opera-

tions on basic series.

Bibliography

D. M. Beazley, Python Essential Reference, 2nd ed., New Riders, Indianapolis, IN

(2001).

R. P. Brent and H. T. Kung, Fast Algorithms for Manipulating Formal Power

Series, J. Assoc. Comput. Mach. 25 (1978) 581-595.

R. L. Finney, M. D. Weir, and F. R. Giordano, Thomas’s Calculus, Part I, 10th

ed., Addison Wesley, Reading, MA (2000).

M. Hall, Jr., Combinatorial Theory, 2nd ed., John Wiley & Sons, New York (1986).

F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, New York

(1973).

D. E. Knuth, The Art of Computer Programming, Volume 2, Seminumerical Algo-

rithms, 3rd ed., Addison Wesley, Reading, MA (1998).

A. Lessa, Python Developer’s Handbook, Sams Publishing,Indianapolis, IN (2001).

R. W. Robinson, Counting Labeled Acyclic Digraphs, New Directions in the Theory

of Graphs (F. Harary, ed.) Academic Press, New York (1973) 239-273.

A. Tucker, Applied Combinatorics, 3rd ed., John Wiley & Sons, New York (1995).

D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ

(1996).

H. S. Wilf, Generatingfunctionology, Academic Press, San Diego, CA (1990).

54

