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ABSTRACT

By a common definition, flood risk assessments are comprised of two parts: a hazard and vulnerability assessment. The hazard assessment investigates
the extent and magnitude of usually large flood events, which are associated to a certain exceedance probability, whereas the vulnerability part assesses
the impact of the flooding on specified targets, e.g., building, people or infrastructure. Being inherently speculative flood risk assessments should
always be accompanied by an uncertainty assessment in order to assist consequent decision properly. In this paper a dynamic-probabilistic method
is proposed, which enables a cumulated flood risk assessment of a complete river reach considering dike failures at all dike locations. The model
uses simple but computational efficient modules to simulate the complete process chain of flooding. These modules are embedded into a Monte Carlo
framework thus enabling a risk assessment which is physically based thus mapping the real flooding process, and which is also probabilistic and not
based on scenarios. The model also provides uncertainty estimates by quantifying various epistemic uncertainty sources of the hazard as well as the
vulnerability part in a second layer of Monte Carlo simulations. These uncertainty estimates are associated to defined return intervals of the model
outputs, i.e., the derived flood frequencies at the end of the reach and the risk curves for the complete reach, thus providing valuable information
for the interpretation of the results. By separating single uncertainty sources a comparison of the contribution of different uncertainty sources to the
overall predictive uncertainty in terms of derived flood frequencies and monetary risks could be performed. This revealed that the major uncertainties
are extreme value statistics, resp. the length of the data series used and the discharge-stage relation used for the transformation of discharge into water
levels in the river.

Keywords: Flood risk assessment; dynamic-probabilistic model; uncertainty analysis; Monte Carlo analysis.

1 Introduction events. Therefore, uncertainty is a characteristic aspect of risk
assessments (e.g., Carrington and Bolger, 1998). However, many
Commonly, flood risk is defined as the exceedance probability risk assessments do not take into account the associated uncer-
of events of a given magnitude and a given loss. Therefore, risk tainties, and the reliability of such assessments cannot be judged
is commonly defined as a composition of two aspects, hazard (Amendola, 2001; Felter and Dourson, 1998). In such cases the
and vulnerability. However, it has to be noted that other defini- recipients of risk analyses, such as spatial planners, disaster man-
tions exist (Kelman, 2002), but in the context of this work the agers or municipal administrations, tend to assume that the results
described definition is used. Flood hazard is described by the of risk analyses are correct, e.g., the 500-year flood, its inunda-
exceedance probability of damaging flood situations in a given tion area and the calculated losses are used without reflections
area and within a specified period of time, and by the characteris- about their reliability. Or, in case awareness about uncertainties
tics of the flood situations (e.g., extent and depth of inundation). of these assessments is present, the lack of quantifications of the
The impact of floods on society is quantified by its vulnerability. uncertainties leaves often no choice but to use these assessment
Usually, vulnerability is expressed by the exposure of people and as they are.
assets to floods, and by the susceptibility of these elements at Risk assessments that are accompanied by an indication of the
risk to suffer from flood damage (e.g., Merz and Thieken, 2004). reliability of the risk quantifications are a much better basis for
Comprehensive risk assessments that take into account the haz- decision-making. Optimal decisions can only be expected when
ard and the vulnerability aspect of flood risk are gaining more all relevant uncertainties are taken into consideration (USACE,
and more attention in the fields of flood design and flood risk 1992; Aven and Porn, 1998). The lack of quantitative characteri-
management. By quantifying the flood risk, they allow to bet- sation of uncertainty may yield a qualitatively and quantitatively
ter prepare for disasters. They are an essential element for the different answer than that derived from a reasoned treatment of
appraisal of cost-effectiveness of prevention measures and for uncertainty (Morgan and Henrion, 1990; Frank, 1999). Zerger
optimised investments. et al. (2002) give an example how an uncertainty indication may
Risk assessments always contain probabilities as result influence prevention strategies. The analysis of the storm surge
of the inability to deterministically forecast future damage risk in Cairns, Australia, showed that, due to small topographic
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gradients, small errors in the digital elevation model may lead to
large deviations in the predicted inundation area. In such a case,
where only very uncertain statements can be made, it may not be
sufficient to display flooded and safe areas. It may be necessary to
prepare for the situation that the risk analysis underestimates the
real, but unknown risk. Furthermore, the level of uncertainty can
help guide the boldness of a decision. For example, people are
more willing to accept an irreversible decision if its uncertainty
is low (Moore and Brewer, 1972).

Another important argument for uncertainty assessments is the
insight in the system under study that can be gained from compre-
hensive uncertainty analyses. The question whether the available
information suffices to make an informed decision, or whether
additional information has to be collected, cannot be answered
without an estimation of the associated uncertainty. Further, the
consideration of different uncertainty sources and of their respec-
tive contribution to the overall uncertainty may guide additional
investments for better information (Haimes et al., 1994): The
largest gain in terms of uncertainty reduction is obtained when
information is collected for the uncertainty source with the largest
reduction of the overall uncertainty. Risk assessments are usually
based on many assumptions. Uncertainty analyses illustrate the
implications of different assumptions, and, thus, help to improve
the underlying models in order to yield more reliable results.

Due to their speculative nature, risk assessments are approx-
imations for the unknown risk. Usually, assessments of extreme
events and their consequences cannot be validated in the tradi-
tional sense (Hall and Anderson, 2002). Since risk assessments
contain statements about events that have not been observed
before, the traditional way of comparing observed and simulated
data is not or only partially applicable. Uncertainty analyses are
one way for alternative validation: Quantifying the overall uncer-
tainty and the effects of different uncertainty sources helps to
judge the plausibility of the risk assessment. In case of highly
uncertain model elements, i.e., sources of large uncertainties,
the appropriateness of the selected approaches or data has to be
questioned, or the plausibility of the results, if the model and data
selection is appropriate.

There are comprehensive taxonomies of uncertainty in the
literature which discuss different sources and kinds of uncertainty
in detail (e.g., Morgan and Henrion, 1990; Haimes, 1998).

For the purpose of this paper, it is important to recognise
two basic kinds of uncertainty that are fundamentally differ-
ent from each other: natural and epistemic uncertainty. Natural
uncertainty stems from variability of the underlying stochastic
process, whereas epistemic uncertainty results from incomplete
knowledge about the system under study (Tang and Yen, 1972;
Morgan and Henrion, 1990; Plate, 1992, 1993; Hoffmann and
Hammonds, 1994; NRC, 1995, 2000; Ferson and Ginzburg,
1996; Zio and Apostolakis, 1996; Haimes, 1998; Cullen and
Frey, 1999; van Asselt and Rotmans, 2002). It is often stated
that natural uncertainty is a property of the system, whereas epis-
temic uncertainty is a property of the analyst (Cullen and Frey,
1999). Different analysts, with different states of knowledge,
different resources for obtaining data etc., may have different
levels of epistemic uncertainty regarding their predictions. The

central issue is that the differentiation in natural and epistemic
uncertainty separates uncertainty which can be reduced (epis-
temic uncertainty) and uncertainty which is not reducible (natural
uncertainty).

There are many examples for uncertainty considerations of
flood hazard assessments (for a review see (Pappenberger et al.,
2005b). Much less has been done on the uncertainty of flood
loss estimation. Examples are the study of Jonkman et al. (2002)
concerning the number of fatalities due to large-scale flooding
in The Netherlands or the uncertainty analysis of Merz et al.
(20044a) concerning direct economic flood damage to buildings.
Systematic analyses of the uncertainty of comprehensive flood
risk analyses, considering both aspects of flood risk, i.e., the
hazard and the vulnerability part, are rare. One example is given
by (Hall et al., 2005a).

The purpose of this paper is threefold. One aim is to develop
a method for assessing the flood risk along river reaches in a
comprehensive way, including the identified uncertainty sources
in the hazard and in the vulnerability estimation. The method is
developed for a 150 km reach of the Lower Rhine, however, it can
be transferred to other river reaches. The second aim is to quan-
tify the contributions of the different sources of uncertainty, thus
helping to demonstrate where the largest uncertainty reduction
of the risk assessment can be gained by improved process under-
standing or modelling techniques. The third aim is to compare
the uncertainty reducing effect of additional information in order
to enhance the data base for the risk assessment. Since former
studies (e.g., Merz et al., 2002) have shown that the uncertainty
of the flood frequency analysis contributes a large share to the
overall uncertainty, the uncertainty reducing effect is analysed by
using two discharge series (30-years-series and a synthetic series
extended to 1000 years) for the flood frequency analysis.

The flood risk assessment approach presented here is based on
the works of Apel et al. (2004, 2006), who presented a dynamic
probabilistic model system to assess flood risks and associated
uncertainties. However, the present work presents some signifi-
cant changes to the prior model versions. The most significant is
the extension of the dike failure testing from two selected sites to a
quasi continuous testing along the complete reach, thus enabling
realistic cumulated flood risk assessments for the complete reach.
In Apel et al. (2008) the effect of such a system on the flood
frequency distribution at downstream gauges of the river reach
was investigated. It could be shown that the model system gave
more realistic estimates of the magnitude of large floods, because
it could consider the retention effect of dike failures and inun-
dated hinterlands on the discharges downstream. This cannot be
achieved by a classical approach using extreme value statistics
based on relatively short time series without inherent information
about dike breach effects.

Additionally the uncertainty assessment has been revised and
adapted to the extended model system. In comparison to the first
uncertainty analysis (Apel et al., 2004) the analysis presented
here also considers uncertainties in the inundation estimation and
damage assessment to residential buildings. Also, in the former
model version the uncertainty caused by dike breach widths was
not incorporated in the uncertainty assessment, but considered by
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different scenarios. This has been revised in the present model
version.

2 Investigation area

This study was applied to a reach of the Lower Rhine in the
federal state Northrhine-Westphalia, Germany. The study reach
starts at the gauge Cologne (Rhine-km, 688) and ends at the gauge
Rees (Rhine-km, 837) near the Dutch-German border. Within this
reach two major tributaries, the rivers Ruhr and Lippe, join the
Rhine from the East. Both tributaries were considered in this
study (Fig. 1). The width of the Lower Rhine is 300—400 m at
mean water, with a bottom slope of 0.002.

Along the Lower Rhine the population density as well as the
accumulation of large industry is one of the highest in Germany
resulting in a huge damage potential. Consequently almost the
complete reach is protected by dikes, except the rare areas where
high natural river banks are present. The dike lines are in general
parallel to the river course and amount to 330 km in total within
the reach. The engineering standard of the dikes is up to date,
i.e., zonated dikes with a protection aim of 500 years were built
all along the reach within the last decades. This construction
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Figure 1 The investigation area Lower Rhine in North-Rhine West-
phalia, Germany.
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type reduces possible failure mechanisms to failure caused by
overtopping and ship accidents or sabotage.

Because of the high population and industrial density the
damage potential is.

3 Dynamic probabilistic model setup

Apel et al. (2004, 2006) proposed a dynamic-probabilistic mod-
elling system for the calculation of flood risks of a complete
river reach. The system is comprised of simple but computational
efficient modules each representing a link in the flood process
chain. This process oriented model approach allows a realistic
modelling of floods, including flood wave routing, test for dike
breaches, reduction of flood peaks by dike breaches and finally an
estimation of the inundated area and associated damage. With the
exception of the module “Hydraulic transformation”, all mod-
ules contain probabilistic elements. This approach reflects the
inherent variability of flood processes and our inability to deter-
ministically describe such processes as the superposition of flood
peaks of the Rhine and its tributaries. Because of the computa-
tional efficiency of the system it can be embedded into a Monte
Carlo simulation framework evaluating a large number of flood
scenarios, which serve as the basis for the assessment of flood
risks of a complete river reach. Additionally the model structure
also allows an uncertainty assessment of the risk estimates by
calculating uncertainty distributions for defined quantiles of the
resulting risk curves.

However, prior to this publication the problem of dike breach-
ing was only partially covered in the model, because breaching
was restricted to a small number of predefined breach locations.
This does not represent the real situation where breaches could
occur everywhere along the reach. Since the breach location has
a significant influence on the damage, the risk assessments per-
formed with the old model can only be regarded as case studies.
In order to overcome this weakness, a method was developed
which enables a test for dike failures along the complete reach.

The chain of modules is listed below, separated into the hazard
and vulnerability part of the risk assessment:

Hazard 1. Hydrological input (upstream boundary):
A synthetic flood wave is generated for the gauge Cologne
by normalised hydrographs scaled to randomly drawn peak
discharges and at gauge Cologne.

Hazard 2. Tributary input:
The inflows of the main tributaries Ruhr and Lippe to the
Rhine were considered by retaining the correlation between
discharges and hydrographs in the tributaries to the Rhine.

Hazard 3. Discharge — Stage relation:
This module calculates water levels in the river reach for given
discharges.

Hazard 4. Dike failure and breach outflow:
The probability of a dike breach caused by overtopping is given
by a two-dimensional dike fragility curve. The breach proba-
bility is conditioned on the overtopping height and duration. In
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case of a breach the outflow through the reach and the reduction
of the flood wave in the main channel is determined.

Vulnerability 1. Estimation of inundation depths and areas:
The estimation of the inundation areas and depths are deter-
mined by the calculated outflow volume and lookup tables
relating outflow volume to inundation depths and extend.

Vulnerability 2. Damage estimation
The damage estimation is restricted to residential buildings
only. It is performed using a simple stage-damage degree
relationship. The damage degree is converted into monetary
damage figures using mean asset values.

The following sections give a short description of the modules of
the system, with an emphasis on the newly developed dike breach
and inundation module. Detailed information about the existing
modules can be found in Apel et al. (2004, 2006, 2008).

3.1 Hydrological input at Cologne

The input, i.e., the upstream boundary of the system is defined by
a flood peak value, and a typical normalised flood hydrograph,
which is scaled to the flood peak. For the generation of the flood
peak discharge extreme value statistics were used. Because the
“correct” distribution function for the river system is not known a
priori and may be subject to changes when the data basis changes,
we use a selection of five different extreme value distribution
functions: Gumbel, LogNormal, Generalized Logistic, Pearson
IIT and Generalized Extreme Value (GEV) (Robson and Reed,
1999; Stedinger et al., 1993). The functions are fitted to the
data sets by the method of L-moments. The ability of the dif-
ferent functions to describe the characteristics of the data series
was assessed by a maximum likelihood estimator. These estima-
tors were used as weights to construct a composite distribution
function from all five distributions (Wood and Rodriguez-Iturbe,
1975).

Because the shape of the flood wave has also a significant influ-
ence on the inundated area, normalised hydrographs were derived
from the time series of the event associated to the annual max-
imum discharge. These normalised hydrographs were analysed
by a cluster analysis yielding seven distinct flood types ranging
from short single peak to long lasing multiple peak events. For
details of this method see (Apel et al., 2004).

3.2 Tributary inflow

A correlation analysis of the peak discharges of corresponding
flood events of the Rhine and the tributaries showed a tight lin-
ear correlation. For this analysis the annual maximum discharge
series of gauges Hattingen (Ruhr) and Schermbeck (Lippe) for
the period 1961-1995 was selected. These correlations were used
to drawn randomly correlated peak discharges for Ruhr and Lippe
for each peak discharge in the Rhine (cf. Apel et al., 2004).

In order to retain the dependency of the flood events in the
Rhine and the tributaries, the normalised hydrographs of the trib-
utaries were derived from the same time window as the event in

the Rhine. By this method the time lag between peak discharges in
Rhine and tributaries was preserved. Additionally, the clustering
of the tributary hydrographs was identical to the clustering of the
Rhine hydrographs, i.e., the clusters contain the corresponding
hydrographs of the tributaries to the flood events in the Rhine. By
this procedure the observed interplay of the flood waves in Rhine
and tributaries was retained in the simulations. Consequently, in
the Monte-Carlo analysis the cluster selected for the tributary
hydrographs was the same as for the main river. Figure 2 shows
the superposition of the standardised flood waves in Rhine and
Ruhr and Lippe.

3.3 Flood routing and discharge-stage relation

The attenuation and translation of flood waves in the river reach
was investigated by 1D-hydrodynamic simulations. I could be
shown that these effects are negligible within this reach (Apel
et al., 2008). Therefore a flood routing for the translation of
the flood waves was not performed in the model system. In
order to test for dike overtopping the discharges had to be trans-
formed into stages at each model breach location (see below) by
discharge-stage relation curves. These were derived from a 1D-
hydrodynamic model (HEC-RAS, (Brunner, 2002) of the Lower
Rhine with cross sections every 500 m. The model was calibrated
to the large flood event of 1995. An exponential regression model
was fitted to the discharge-stage data given by the hydraulic model
for every cross section. The discharges generated by the dynamic-
probabilistic model were transformed into stage elevations at the
model breach locations using these regression formulae in order
to test for dike failures.

3.4 Dike failure, breach outflow and inundation area
estimation

Dike failures could principally occur everywhere within the
reach, because dikes protect from flooding everywhere except the
few locations where natural high embankments are present. As a
consequence this would induce that a risk assessment consider-
ing dike failures needs to test for dike failures all along the reach.
However, this continuous test for dike failures would require
enormous CPU-time and would not be suitable for a Monte-Carlo
framework. Therefore scheme was developed, which test for dike
failures in a quasi continuous way. These scheme is based on the
idea of similarities of inundation patterns and areas caused by
dike breaches along a certain segment of the dike lines. In order
to determine these similar inundation patterns, 2D inundation
simulations were performed every flow km to both sides of the
river. Fore these simulations a constant breach width of 100 m and
aconstant outflow with water levels at the dike crest was assumed.
The outflow through the breach was calculated by a standard for-
mula for broad crested weirs. The assumed breach locations were
grouped by their similarities in the associated inundation areas.
The midpoint of each group of dike sections was assumed as a
“model breach location” in the risk assessment. By this proce-
dure 41 model breach locations were identified on both sides of
the river along the complete reach (Fig. 1). More details about
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Figure 2 Superposition of the synthetic flood waves of the Rhine and the tributaries Ruhr and Lippe for the flood types identified in the cluster

analysis. The flood waves are scaled in time, but normalised to flood peak. P denotes the probability of occurrence derived from the number of events

in the respective cluster in relation to all 35 events. (Figure originally published in Apel et al., 2008.)

the derivation of the model breach locations can be found in Apel
et al. (2008).

At these model breach locations the test for dike failure was
performed. For this conditional dike fragility curves were con-
structed, which determine the probability of failure conditioned
by the overtopping height and duration of a flood wave over the
dike crest. The method is an extension of the method proposed
in (USACE, 1999) and is explained in detail in Apel ez al. (2006,
2008).

Beside the water level in the river the width of the dike breach
determines the outflow volume and hence the inundation area and
depth in the hinterland. However, the determination of the breach
width depends strongly on dike properties like material composi-
tion, geometry, construction type, maintenance, etc. is hence very
difficult to calculate deterministically. Therefore we assessed the
breach width based on a statistic of historical dike breaches at
the Rhine in the period 1882-1883 (Merz et al., 2004), where 14
breaches occurred. The mean breach width of 70.3 m was used for
the risk assessment, whereas for the uncertainty assessment the
standard deviation of 31.5 m was additionally taken into account
(see section 5).

The outflow through a dike breach serves as the boundary
condition for the estimation of the inundation extent and depths.
However, 2D-inundation simulations could not be used within
the Monte Carlo framework because of their high computational
demand. Therefore inundation lookup tables were constructed
for every model breach location by a priori 2D-inundation

simulations with constant outflow approximating the outflow
through a 100 m breach at water levels at dike crest elevation.
These lookup tables relate distinct outflow volumes to the inunda-
tion depths within affected postal zones. This spatial aggregation
was chosen, because the asset values for the damage estima-
tion were available as aggregated mean values for postal zones
only. For every postal zone the percentage of the whole area
covered by the zone inundated to predefined stage intervals was
recorded. The intervals were < 0.2m, 0.21-0.4m, 0.41-0.6m,
0.61-0.8m, 0.81-1.0m, 1.01-1.5m, 1.51-2.0m, 2.01-2.5m,
2.51-3.0m, 3.01-3.5m, 3.51-4.0m, 4.01-4.5m, and > 4.51m.
This pre-processing step was the most demanding in terms of
CPU-time of the whole analysis and was performed on a high
performance computational Linux-cluster with 18 nodes. How-
ever, it has to be performed only once for a reach under study.
Every following risk assessment using e.g., different asset values
utilizes the same lookup tables.

For the damage estimation the area inundated to the defined
inundation levels was interpolated from the lookup tables given
the calculated cumulated outflow through the breach.

3.5 Damage estimation

In this study, the damage estimation is restricted to the damage
at residential buildings. In the basic model a stage-damage func-
tion is applied that has been used in different flood risk mapping
projects in Germany (ICPR, 2001, LfUG, 2005). The model is
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suitable for applications on the meso-scale, i.e., for the appli-
cation to land cover units. Damage at residential buildings is
estimated by the relation y = (2x> 4 2x)/100, where y is the
damage ratio and x is the water level given in meter.

First, the function is combined with the estimation of inunda-
tion depths per land cover unit in order to determine damage
ratios. These are then multiplied by the specific asset value
assigned to each land cover unit. The total asset value of resi-
dential buildings is taken from the work of Kleist et al. (2006).
Since only the sum of all residential assets is provided for each
municipality, the assets were reallocated to postal zones. Within
a postal zone the assets were concentrated on the settlement areas
of the CORINE land cover data 2000 (CLC2000).

3.6 Monte Carlo framework

The modules described above are linked in a Monte Carlo simula-
tion framework representing the flood process chain: generation
of flood waves for the Rhine and the tributaries = superposition
of the flood waves = transformation of discharges into stages
at each model breach location = testing for dike failures = in
case of failure calculation of breach outflow and reduction of the
flood wave = and finally the calculation of the damage caused
by the inundation of the hinterland. Figure 3 shows the flowchart
of a single Monte-Carlo run of the model.

Within the Monte Carlo framework 10° model runs were per-
formed, i.e., 10° synthetic flood events were created for the reach.
this number of model runs proved to yield stable results for return
periods up 1000 years. Model results are derived flood frequen-
cies for every gauge within the reach and a cumulated risk curve
for the whole river reach. Sections 6 and 7 present and discuss
the results of the model in these terms. However, in this study,
the derived flood frequencies at the end of the river reach, gauge
Rees, is discussed only. A detailed discussion of the influence
of dike breaches on the flood frequencies of downstream gauges
can be found in Apel et al. (2008).

For the risk assessment of the whole river reach, a series of
n=10 damage estimates is calculated, which constitutes the
risk curve for the complete reach. The return period T for each
single damage estimate are empirically derived from the rank in
the ordered data series. In this procedure the calculated damage
values are sorted in ascending order, and the empirical occurrence
probability is calculated using the rank r of the value in the series
(1 for the lowest value and 10° for the largest) as follows:

1
1=/t D)

In order to derive uncertainty estimates for the derived flood
frequency curve at Rees and the risk curve a second level of
Monte Carlo simulations was implemented. Within this level the
various quantified uncertainty sources described in section 5 are
randomised for selected return periods T. By this method uncer-
tainty distributions for each T are derived, which are equivalent
to variance estimations of the respective quantiles of the derived
flood frequencies and risk curve. Figure 3 illustrates the mod-
ules considered in the uncertainty assessment, whereas section 5
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Figure3 Flow chartof a single Monte Carlo run of the modelling system
with distinction of deterministic, probabilistic and modules considered
in the uncertainty assessment. (Figure taken from Apel et al., 2008;
modified to illustrate uncertainty assessment.)

gives details about the quantification and types of uncertainty
sources considered, as well as about the method of combining
the uncertainties in the model system.

4 Data series

For the hazard assessment the continuous and annual maximum
discharge series (AMS) of the gauge Cologne (Rhine) of the
period 1961-1995 was used. For the tributaries the discharge
series of the flood events corresponding to the flood events in the
Rhine were extracted from the records of the gauges Hattingen
(Ruhr) and Schermbeck I (Lippe). The length of the series was
determined by the length of the records at all three gauges and the
fact that considerable structural hydraulic works were undertaken
at the Rhine in the 1950’s (Lammersen et al., 2002).
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In order to show the influence of the length of the data series
on the uncertainty of flood risk assessments, a synthetic AMS
of 1000 years length was derived on the basis of the recorded
AMS 1961-1995 and a synthetic discharge series for the gauge
Andernach upstream of Cologne. The synthetic series was derived
from a 1000 year rainfall series generated by a stochastic rain-
fall simulator in combination with a hydrological model for the
upper and middle Rhine. (Lammersen, 2004) published the 10
largest discharges of the resulting discharge series considering
dike breaches along the Middle Rhine for the gauge Andernach.
The 1000 year synthetic discharges series for Cologne was con-
structed according to the guideline of the German Association of
Water Resources for the assimilation of historical flood records
in discharge data series (DVWK, 1999). Utilizing this method,
we interpreted the 10 synthetic discharges published by Lam-
mersen and the two discharges of the recorded series larger than
the smallest synthetic discharge as historical records. The remain-
ing 988 records for the synthetic 1000 year series were drawn
uniformly from the remaining recorded discharges thus creating
a continuous record set with 1000 values. Figure 4 shows the fit
of the different extreme value distributions using L-Moments to
the recorded and synthetic AMS. It can be seen that the longer
data series causes less spread of the different functions for rare
events, i.e., for return periods 7> 100 a.

5 Uncertainty sources

The final aim of this study is an estimate of the predictive uncer-
tainty of the model, which includes data (DU), parameter (PU)
and model (MU) uncertainties. According to (Merz and Thieken,
2005) the different uncertainty sources considered for the pre-
dictive uncertainty assessment can be categorised as epistemic.
All three different types of uncertainty are treated simultaneously
and equally weighed for the assessment of the predictive uncer-
tainty. Table 1 lists the uncertainty sources considered along with
a categorisation and short description of the quantification.

In line with the model setup, the uncertainty sources con-
sidered in this study can be separated into sources affecting the
hazard and the vulnerability side of the risk assessment. On the
hazard side the uncertainties caused by the estimation of the
inflow into the modelled reach by EVS, the Q-H-relation trans-
forming discharge into stages at the model breach locations and
the width of an eventual dike breach are considered. For the final
risk assessment the uncertainties in the interpolated inundation
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Figure 4 Fit of the selected extreme value distribution function and the
weighed composite function for the (a) recorded (short) and (b) the syn-
thetic AMS of Cologne. The numbers in brackets indicate the maximum
likelihood weights.

depths and the estimation of the damage ratio to buildings were
additionally considered. Details about the quantification of the
uncertainty source provide the following sections.

In order to derive an uncertainty assessment of the final prod-
ucts of the modelling system, the derived flood frequency statistic
at Rees and the risk curves for the complete reach, it is necessary
to assess the uncertainty for different return periods, i.e., quan-
tiles of the resulting discharge and damage distributions. In this

Table 1 Uncertainty sources considered in the modelling system.

Hazard (derived EVS) Risk assessment

Uncertainty Discharge Extreme value Q-H-relation Dike breach width Inundation depths Damage

source series (DU) statistics (MU, PU) (PU) (MU, PU, DU) (DU) estimation (MU)

Quantification two discharge weighed combined variance of statistically by variance of set of 3 different
series of variance of quantile regression normal distribution  interpolated damage models
different length estimators parameters with upper and inundation depths

lower bounds

(DU = data uncertainty; PU = parameter uncertainty; MU = model uncertainty.)
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study we selected the return periods of T = 1.5, 2, 5, 10, 20,
50, 100, 200, 500, 1000, 2000, 5000 and 10000 a. The general
procedure of the uncertainty assessment is outlined as follows:

(1) randomisation of the discharges for the selected return
periods at Cologne based on the variance of these quantiles,

(2) transformation of discharges into stages at the breach loca-
tions by randomised regression parameters of the Q-H-
relation for the testing for dike failures,

(3) in case of a breach width randomisation of the breach width
for the outflow calculation,

(4) superimposition of a random error on the interpolated inun-
dation depth,

(5) application of three different damage models for the trans-
formation of inundation depths to damage ratios.

Following this procedure an uncertainty distribution of dis-
charges at Rees and cumulated damage in the reach for all selected
return periods at Cologne is derived. These distributions are
drawn in the derived flood frequency statistics and risk curves
at appropriate locations. The locations are determined by tracing
the discharge of the selected return period of the input series in the
sorted output series. This is necessary because e.g., a 1000-year
discharge at the input is not necessarily the 1000-year discharge
in the output series due to possible dike breaches and randomised
tributary inflow. By this procedure it is guarantied that the
uncertainty distributions are drawn at the correct location of the
derived flood frequency and risk curves. The following sections
describe the different uncertainty sources and their combination
in detail.

x 10° Gumbel x 10"

5.1 Extreme value statistics and distribution functions

The variance of quantile estimators for the selected extreme
value functions was quantified by a bootstrapping approach. The
respective data series used was resampled 1000 times to the orig-
inal length and the extreme value functions fitted by L-moments.
The variance of the quantile estimators was estimated from the
resulting data set of quantile predictors of the different functions.
Figure 5 shows the variance of the quantile estimators of the
extreme value distribution functions in terms of a 95% confi-
dence intervals for both the recorded (short) and synthetic AMS.
The reduction of the variance of estimators of extreme events
using a longer time series is clearly visible for all functions.

The variance of the quantile estimators of the composite distri-
bution was derived by random sampling of quantile estimators of
the extreme value functions based on the variance derived from
the confidence intervals. Under the assumption of normal dis-
tribution the standard deviation to each quantile estimator was
calculated from the confidence intervals. Using these standard
deviations a set of 10* random samples was assembled for every
quantile of the composite distribution. Every extreme value func-
tion contributed a number of samples to the overall 10* according
to the maximum likelihood weights of the goodness of fit test (cf.
section 3.1). These composite random discharge sets provided
an estimate of the variance of the quantiles of the composite
distribution function.

5.2 Discharge-stage relation

The discharge-stage relation at each model breach location
is described by an exponential regression model fitted to

LN3

Q[m¥s]

Q [m%s]

EVS short series

----- 97.5% quantile short series
----- 2.5% quantile short series
— EVS synthetic series
mrm—— 97.5% quantile synth. series

""" 2.5% quantile synth. series

0 ) 4 0
10 10 10 10 10

Figure 5 95% confidence intervals of the extreme value distribution functions for the recorded (short) and synthetic AMS derived by resampling of

the original data set.
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discharge-stage data given by a 1D hydraulic model of the lower
Rhine (Fig. 6, small panel). The function used was:

H=axexpbx Q)+ cxexp(dx Q) 2)

with a, b, c, d as regression parameters.

The error estimate for the translation of discharges into stages
is derived from the confidence intervals of the parameters of the
regression. Under the assumption of normal distributed parame-
ter errors standard deviations for all four parameters were derived,
which were consequently used for the randomisation of the
parameters. Figure 6 shows the effect of the parameter uncer-
tainty on the discharge-stage relationship in terms of a 95%
confidence interval exemplarily for model breach location #]1.
The confidence interval was calculated by a Monte Carlo anal-
ysis varying the regression parameters, whereby the regression
parameter space was sampled by a Latin Hypercube scheme with
80 quantile divisions.

5.3 Breach width

The width of a dike breach is hard to predict, because of the com-
plex breaching mechanisms, insufficient knowledge about the
processes itself and their modelling and most of all because of
the absence of detailed structural and geometric data of the dikes.
Therefore and because of the large influence of the breach on the
extent of the inundation area, the breach width is a considerable
uncertainty factor. Because of the lack of knowledge about breach
formation the width was assumed as normal distributed random
process, with mean and variance given in section 3.4. In order
to obtain reasonable breach widths in the randomisation, the dis-
tribution was bounded at the lower end to the smallest recorded
value (35m) and to 200 m at the upper end, which is an expert
judgement about maximum breach widths in the investigation
area.

For the risk assessment the breach width was kept constant at
the mean value (70.4 m). However, for the uncertainty assessment

45 T
50
441 e
45
43 f 40 /ﬁ‘/
| L35
42 / + data (1D hydrodynamic)|
— 30 —regression, R* = 0.9948
= 41+
g 2 0.5 1 15 2 25
£ 40 Q[m’s] x 10°
I
39 b
38 N
371 H (regression) *

"""""""" 95% conf. interval

36

35 Il Il Il Il Il Il Il Il
0 100 200 300 400 500 600 700 800 900

t[h]

Figure 6 Uncertainty caused by Q-H-relation for model breach
location #1.
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the width was randomised assuming a normal distribution with
the standard deviation of 31.5 m in order to assess the uncertainty
caused by variations in the breach development.

5.4 Inundation depths

Errors in inundation simulations mainly origin in errors in the
underlying DEM and incorrect ground surface roughness param-
eterization (Bates et al., 2003; Mason et al., 2003). Assuming a
well calibrated hydraulic model, the uncertainty of the inundation
predictions can be derived by putting a random error representing
the accuracy of the DEM on the elevation points used in the model
and run the model in a Monte Carlo framework. However, this
approach is not viable with the proposed model structure, since
the inundation depth are not simulated explicitly every model
run, but interpolated from the inundation tables (cf. section 3.4).
Therefore the interpolated inundation depths were modified with
a random error within every postal zone. The random error was
assumed normally distributed with mean © = O m and a standard
deviation of o = 0.5m. This assumption is based on the error
estimate of 1 m of the DEM in lowland areas given by the land
survey authorities. This error estimate is mapped in the uncer-
tainty assessment by imposing a random error on the simulated
inundation depths. This method does not take the effects of a
different topography on the inundation process into account, but
it gives a rough estimate about possible errors in the inundation
simulation caused by errors in the DEM.

5.5 Damage estimation

The uncertainty of the damage estimation is dominated by model
uncertainty. At present no universally accepted damage model
exists for damage estimations in Germany, resp. North-Rhine
Westphalia. In order to assess the uncertainty caused by the trans-
lation of inundation depth into relative damage to buildings, we
applied three different damage models, all developed for North-
Rhine Westphalia, resp. the whole catchment of the Rhine, and
evaluated the range of damage ratio predictions given by the dif-
ferent models. All three models define a functional relationship
between inundation depth and damage ratio. The functions used
were:

(1) The damage function of the International Commission for
the Protection of the Rhine (ICPR, 2001),

(2) alinear damage function developed by the Ministry of Envi-
ronment, Spatial Planning and Agriculture of North-Rhine
Westphalia MURL (2000), and

(3) the square root damage function developed by HYDROTEC
(2001) consulting civil engineers.

Figure 7 shows a comparison of the different function in terms
of damage ratio related to inundation depth. The absolute dam-
age is achieved by combing the damage ratios with the assets
of residential buildings given by Kleist et al. (2006) that were
disaggregated within the postal zones (see section 3.5).
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Figure 7 Damage functions used for the uncertainty assessment.

5.6 Combination of uncertainty sources

Since the model system separates the hazard and vulnerability
part of the risk assessment, the uncertainty assessment is also
splitted in two parts: The first part considers the uncertainties
affecting the hazard, i.e., the uncertainties caused by the EVS, the
Q-H-relation and the breach width. These uncertainty sources can
be analysed separately or in various combinations analogously
to a sensitivity analysis as presented e.g., in (Hall et al., 2005b;
Pappenberger et al., 2006a; Pappenberger et al., 2006b). In order
to reduce computation time, a Latin Hypercube Sampling with
n = 80 quantile divisions was applied for each selected return
interval. The hypercube dimension ranged fromn x 1ton x 5
depending on the uncertainty sources considered.

In the second part, i.e., the uncertainty assessment of the risk
estimates, a random error was superimposed on the interpolated
inundation depths according to section 5.4. Finally, the resulting
building damage was calculated with all three damage functions.
This results in 240 damage estimates per selected return interval,
which were all used without any weighting in the uncertainty
assessment thus including the model uncertainty of the damage
estimation.

6 Results

The proposed uncertainty assessment method allows the distinc-
tive assessment of the influence of single uncertainty sources
as well as various combinations of different sources. However,
we focus on the comparison of the total predictive uncertainty,
i.e., the combination of all considered sources, to the uncertain-
ties caused by single sources alone. Figure 8 shows the results
obtained for the derived extreme value statistic at gauge Rees,
i.e., the predicted hazard, for the recorded AMS 1961-1995.
It can be shown that the predictive uncertainty considering all
sources is comparatively high, with rising uncertainty for extreme
events, as expected: the more it is extrapolated beyond the length
of the data series to extreme events, the higher gets the uncer-
tainty of the predictions. Analysing the uncertainties caused by

the different single sources, it can be seen that the total uncer-
tainty associated to lower return intervals is exclusively caused
by the extreme value distributions, whereas the uncertainty of
the higher return intervals is composed of all hazard relevant
sources, with uncertainties caused by the distributions and Q-H-
relation almost equally high. The range of the uncertainty caused
by the breach width is approximately half of the range of the
others. However, the single uncertainties are not additive. The
total uncertainty range is only slightly higher than considering
the uncertainty by distributions or Q-H-relation separately. This
implies that the single uncertainties partially compensate each
other when combined.

Figure 9 shows the equivalent graphics as Fig. 8 but for the
synthetic AMS. Using this data series, the uncertainty caused by
the distributions is significantly reduced, especially for the more
frequent events. However, the total uncertainty associated to large
discharges is only slightly lower than for the short series, because
the uncertainty caused by the Q-H-relation is still considerable
for large events.

The results of the uncertainty assessment for the risk curves
generally show a similar behaviour than for the derived extreme
value statistics. The obvious differences can be explained by the
additional uncertainty sources and the model characteristics: The
comparatively larger reduction of the total uncertainty using the
long synthetic AMS (Figs 10 and 11) can be attributed to the
additional uncertainty imposed by the damage models. Because
of the large differences of the predicted damage ratio (cf. Fig. 7) a
wide range of damage values is predicted by the different damage
models. Therefore even small changes of the inundation depths
have a large impact on the predicted damage range.

Another difference is the lack of uncertainty for low return
periods. This is caused by the model setup calculating damage
in case of dike breaches only. Up to a certain discharge level the
model predicts no dike breaches and consequently no damage.
For low return periods even the largest discharge in the uncer-
tainty range is lower than the breach threshold, i.e., the water
stage is below the dike crest und hence the uncertainty estimate
equals zero.

Surprisingly the errors imposed on the inundation depths cause
only small uncertainties. This is possibly an effect of the inde-
pendent randomisation of the inundation error for every postal
zone, which may result in an averaging of the imposed errors to
the mean, i.e., 0.

7 Discussion

The proposed model system and uncertainty quantification
approach is able to provide a derived flood frequency statistic and
a probabilistic cumulated risk assessment for a complete river
reach, both based on process based models which are embed-
ded into a probabilistic framework. Moreover, the system allows
for a comparative uncertainty assessment of different relevant
uncertainty sources. Using these capabilities a total predictive
uncertainty assessment could be performed. Moreover, the major
sources of uncertainty could be identified. The major sources
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Figure 11 Uncertainty of the risk curve for the Lower Rhine caused by different sources for the 1000-year synthetic AMS of Cologne.
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of the hazard assessment part of the risk assessment were the
model and data uncertainty of the extreme value statistics and
the used AMS and the uncertainty of the Q-H-relation. For the
final risk assessment the model uncertainty of the damage estima-
tion proved to be another significant uncertainty source, which
produced an uncertainty range almost equal to the uncertainty by
distribution and Q-H-relation.

However, the combination of the single uncertainty sources
showed that they are not strictly additive, but compensate each
other to some extent. This implies that a reduction of one of the
major uncertainty sources does not necessarily reduce the total
predictive uncertainty. In order to reduce the total uncertainties
all the three major uncertainty sources have to be reduced for a
reduction of the overall predictive uncertainty.

The uncertainty assessment presented here considered a com-
paratively large number of uncertainty sources, however it cannot
be regarded as complete in a sense that all possible uncertainty
sources were considered or described in a satisfactory way. For
example, the uncertainties caused by the roughness parameteri-
sation for the a priori inundation simulations or the 1D model for
the Rhine were not taken into account explicitly. A detailed study
as e.g., performed in (Pappenberger et al., 2005a) would possibly
lead to a more realistic assessment of the uncertainty caused by
the Q-H-relation as presented here. The selection of the uncer-
tainty sources was based on the expert judgement of the authors
and thus subjective. It would be surely worthwhile to discuss
the inclusion of additional uncertainty sources in future studies,
which would be feasible with the proposed method. However,
this study showed that sources considered cause large uncertain-
ties in flood risk assessments already. In order to increase the
reliability of flood risk assessments the identified main sources
of uncertainty should be reduced.
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