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Abstract

Two new remote sensing vegetation parameters derived from spaceborne spectrometers and
simulated with a three dimensional radiative transfer model have been evaluated in terms of
their prospects and drawbacks for the monitoring of dense vegetation canopies: (i) sun-induced
chlorophyll fluorescence (SIF), a unique signal emitted by photosynthetically active vegeta-
tion and (ii) the canopy scattering coefficient (CSC), a vegetation parameter derived along
with the directional area scattering factor (DASF) and expected to be particularly sensitive to
leaf optical properties. Here, we present the first global data set of DASF/CSC and examine
the potential of CSC and SIF for providing complementary information on the controversially
discussed vegetation seasonality in Amazon forests. A comparison between near-infrared SIF
derived from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument and the Or-
biting Carbon Observatory-2 (OCO-2) (overpass time in the morning and noon, respectively)
reveals the response of SIF to instantaneous photosynthetically active radiation (PAR). Large-
scale seasonal swings of GOME-2 SIF amount up to 21% (regarding the annual maximum)
and peak in October and around February, while OCO-2 SIF peaks in February. However,
both time series agree very well if SIF is normalized by overpass time and wavelength. We
further examine anistropic reflectance characteristics with the finding that the hot spot effect
significantly impacts observed GOME-2 SIF values. On the contrary, our sensitivity analysis
suggests that CSC is highly independent of sun-sensor geometry as well as atmospheric effects.
The slight annual variability of CSC (3%) shows no clear seaonal cycle, while a relatively high
spatial standard deviation points to a high degree of spatial heterogeneity in our study domain
within the central Amazon Basin.

Keywords: GOME-2, OCO-2, sun-induced chlorophyll fluorescence, concept of canopy spec-
tral invariants, canopy scattering coefficient, directional area scattering factor, Amazon forest
dynamics



1 Introduction

The importance of the Amazon rainforest re-
garding its role in the global carbon cycle (e.g.,
Tian et al., 2000) and its species diversity
(e.g., Ter Steege et al., 2013) is represented
by a tremendous number of studies. Simul-
taneously, these studies also reveal the chal-
lenge posed by the complex ecosystem. Poorly
accessible areas and the large extent of the
Amazon Basin constrain ground-based obser-
vation capacities. Satellite-based remote sens-
ing provides a crucial opportunity to continu-
ally monitor these areas, but even recent find-
ings of satellite-based analyses addressing veg-
etation dynamics, seasonality, and responses to
drought events remain contradictory.

The majority of studies report an increase
(’green-up’) in photosynthetic activity during
months with less intense precipitation (usu-
ally June-October; e.g., Huete et al., 2006;
Samanta et al., 2012; Bi et al., 2015). In con-
trast, Morton et al. (2014) claim that struc-
ture and greenness and thus photosynthetic ac-
tivity remain constant if the satellite data is
accurately corrected for directional reflectance
effects in the measurement. These controver-
sial results might be explained due to the fact
that the monitoring of dense vegetation repre-
sents a complicated case in optical remote sens-
ing. Reflected solar radiation saturates and be-
comes weakly sensitive to vegetation changes,
and there is a substantial influence of changing
sun-sensor geometry and residual atmospheric
effects (Verrelst et al., 2008; Hilker et al., 2015;
Maeda and Galvao, 2015).

Thanks to recent advances in the analysis
of spaceborne spectroscopic measurements two
new and promising vegetation parameters have
become available - sun-induced chlorophyll flu-
orescence (SIF) and the canopy scattering co-
efficient (CSC). While SIF is directly related
to photosynthesis, CSC is a structural parame-
ter assumed to be particularly sensitive to leaf
properties (Samanta et al., 2012; Knyazikhin
et al., 2013). Considering that Roberts et al.
(1998) observed a 10% increase in the near-
infrared (NIR) absorption in matured tropical
leaf spectra, the CSC may capture leaf age-
effects. A strong argument to lay particular
emphasis on such effects was recently raised
by Wu et al. (2016). They specifically exam-

ined seasonal variations of several vegetation
parameters from ground, tower, and satellite
measurements at four sites in the Amazon and
concluded that the canopy phenology, i.e. the
leaf age, drives the photosynthetic seasonal-
ity rather than seasonal variations of climate
It would clearly be beneficial if
a basin-wide measure of leaf phenology could
be established. Three characteristics of SIF
might be advantageous compared to traditional
reflectance-based vegetation indices (VIs): (i) a
saturation of SIF has not yet been observed,
(ii) SIF appears to be less affected by sub-
pixel clouds (Frankenberg et al., 2012; Guanter
et al., 2015), (iii) SIF is expected to provide
a direct link to actual photosynthetic rates,
while greenness based indices indicate potential
photosynthesis represented by their response to
chlorophyll content. Both SIF and CSC may
therefore contain relevant information to re-
assess vegetation dynamics in the Amazon re-
gion.

Global SIF data sets are available from sev-
eral spaceborne sensors, including:

conditions.

(i) Greenhouse Gases Observing Satellite-
Fourier Transform Spectrometer
(GOSAT-FTS; Frankenberg et al.,
2011a; Joiner et al., 2011, 2012; Guanter
et al., 2012; Kohler et al., 2015a),

SCanning Imaging Absorption Spec-
troMeter for Atmospheric CHartogra-
phY (SCIAMACHY; Joiner et al., 2012;
Kéhler et al., 2015b; Wolanin et al., 2015),

Global Ozone Monitoring Experiment-2
(GOME-2; Joiner et al., 2013; Kohler
et al., 2015b; Wolanin et al., 2015),

Orbiting Carbon Observatory-2 (OCO-2;
Frankenberg et al., 2014).

However, only a few studies relating SIF to pro-
ductivity in tropical forests can be found in
published research so far. Lee et al. (2013) and
Parazoo et al. (2013) reported that wet season
productivity (estimated using SIF') exceeds the
"dry’ season productivity in southern Amazon
forest regions where pronounced precipitation
variations occur. Guan et al. (2015) examined
global tropical evergreen forest regions and con-
cluded that the photosynthetic activity can be



maintained during the drier season if the an-
nual water availability is sufficient.

Based on the concept of canopy spec-
tral invariants (e.g., Knyazikhin et al., 2011),
Samanta et al. (2012) expressed the spectral
reflectance in terms of directional area scat-
tering factor (DASF; Knyazikhin et al., 2013)
and CSC (Smolander and Stenberg, 2005). By
means of detailed theoretical considerations
with respect to this expression, Samanta et al.
(2012) argues that changes in NIR reflectance
of Amazon forests could be explained by both
changes in leaf area and leaf optical properties,
but unlikely by changes in leaf area alone. Leaf
optical property variations due to leaf aging ef-
fects translate into changes in CSC. However,
Samanta et al. (2012) simultaneously acknowl-
edges that leaf optical variations might also be
caused by coating substances like water or dust.

GOME-2 is at present the only spaceborne
spectrometer that provides time series of spec-
troscopic measurements in the 650-800 nm
wavelength range, enabling simultaneous com-
putations of DASF, CSC, SIF, and NDVI. An
encouraging aspect for retrieving several veg-
etation parameters from GOME-2 data lies in
the wide range of covered observation geome-
tries, allowing to address directional effects.
While the importance of directional effects has
increasingly been recognized when analyzing
Vs, less is known about the effects on satellite-
based SIF data sets. However, several stud-
ies suggest considering changing illumination
and view conditions (van der Tol et al., 2009;
Guanter et al., 2012; Damm et al., 2015; Liu
et al., 2016). Another benefit of simultane-
ous retrievals of different vegetation parame-
ters from a single sensor is the consistent spatial
sampling, even though GOME-2 measurements
have a relatively coarse spatial resolution as op-
posed to the more frequently used products ob-
tained from the Moderate Resolution Imaging
Spectroradiometer (MODIS). The large foot-
print size of GOME-2 (40 km x 40 km) likely
involves undetected sub-pixel clouds, which in-
dicates a further limiting factor.

We primarily aim to evaluate prospects and
drawbacks of both SIF and CSC for tracking
vegetation dynamics and productivity in Ama-
zon forests by examining simulated and real
satellite data. We present SIF time series de-

rived from measurements of the GOME-2 in-
strument (Kohler et al., 2015b) and from OCO-
2 (Frankenberg et al., 2014) for a region within
the central Amazon Basin and subsequently
discuss limitations due to sun-sensor geome-
try and illumination conditions at the overpass
DASF and CSC have been computed
from atmospherically corrected GOME-2 data,
which enables us to present the first global data
set of these parameters. We have also com-
puted the well-established Normalized Differ-
ence Vegetation Index (NDVI) and made use
of supplementary data sets to provide a basis
for interpreting the obtained results. Finally,
we present long-term monthly averages to il-
lustrate the large-scale seasonality of SIF, CSC,
and NDVI in the Amazon forest, as seen from
the GOME-2 instrument.

time.

2 Data & Methods

2.1 GOME-2

We use spectral radiance measurements from
the GOME-2 instrument onboard EUMET-
SAT‘s polar orbiting Meteorological Opera-
tional Satellite MetOp-A (Munro et al., 2006)
acquired between August 2013 and August
2016. This time period has been selected be-
cause the swath width has changed since July
15th, 2013 from 1920 km to 960 km, resulting
in a reduced ground pixel size of about 40 km
x 40 km (previously 80 km x 40 km). Spectra
acquired by the fourth detector channel, cov-
ering the 600 to 790 nm spectral range with
a resolution of 0.5 nm and a signal-to-noise
ratio up to 2000, are relevant for our analy-
sis. The effective cloud fraction from the Fast
Retrieval Scheme for Clouds from the O2 A-
band (FRESCO, Wang et al., 2008) was used
for cloud screening.

2.2 Study Domain & Spatial Averag-
ing

Our analysis of large-scale vegetation dynamics
(Sect. 4.4) is focused on a domain in south-
ern Amazonia, indicated by the red box in
Fig. 1 (latitudes between 0° - 10° S and longi-
tudes between 70°W-50°W). Special care has
been taken to minimize the impact of struc-
tural composition effects on the resulting time
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Figure 1: IGBP land classification (Friedl et al., 2002).
domain.

series.

At first, GOME-2 measurements are pre-
selected based on the International Geosphere
and Biosphere Program (IGBP) land classifica-
tion (Friedl et al., 2002) shown in Fig. 1. The
main land cover is determined under considera-
tion that each GOME-2 footprint has a spatial
extent represented by a polygon. Measurement
polygons, classified as evergreen broadleaf for-
est with a land cover fraction higher than 0.9,
formed the basis for the spatial average. Pre-
selected polygons were subsequently averaged
on a monthly basis on a 0.2° x 0.2° grid (about
22 km x 22 km), while a value contributes to
the grid cell average if the polygon covers the
center of a grid cell. The study domain is
further confined by masking grid cells, which
potentially own differing structural properties
when compared to the majority of grid cells.
In particular, a k-means approach has been
applied to the supplementary leaf area index
(LAI) data set (see Sect. 2.8) to identify such
grid cells. The remaining grid cells, shown as
darkened areas in Fig. 1, define the underlying
region for the actual analysis. It is remarkable
that particularly grid cells close to the Amazon
River and other water bodies were identified
to have different structural properties, which
might be associated with large floodplain areas
(Varzea forests).

longitude

The darkened areas within the red box define the study

2.3 Sun-Induced Chlorophyll Fluo-
rescence (SIF)

Chlorophyll pigments in terrestrial vegetation
absorb sunlight to cover the energy demand
during the process of photosynthesis. A part
of the excess energy dissipates as sun-induced
fluorescence (SIF) emitted by chlorophyll a in
the red and NIR spectral region (650-800 nm).
Though the amount of SIF represents only
a few percent of the total light energy ab-
sorbed, SIF measurements can serve as a valu-
able tool to assess the photosynthetic perfor-
mance of vegetation. In this context, it is
important to consider the instantaneous na-
ture of satellite-based SIF data when evaluat-
ing seasonal cycles. For example, SIF intrin-
sically depends on the illumination condition
at the overpass time, while temporal trajec-
tories of illumination at certain daytimes can
result in different seasonalities (i.e. shifted an-
nual maximum/minimum, discussed in detail
in Sect. 4.2). Here, we analyze SIF estimates
from GOME-2 (overpass time at ~9:30 local
solar time, LST) and OCO-2 (overpass time at
~13:30 LST) data derived with fundamentally
different retrieval approaches as discussed be-
low.



2.3.1 GOME-2 SIF

The retrieval methodology of the GOME-2
SIF data set used in this study was de-
scribed by Kohler et al. (2015b).  This
data set has been extended until August
2016 (previously 2007-2011) and can be
retrieved from ftp://ftp.gfz-potsdam.de/
home/mefe/GlobFluo/. GOME-2 SIF re-
trievals generally rely on a statistically based
approach to separate the SIF emission from
spectral features related to atmospheric ab-
sorption, scattering, and surface reflectance.
This specific retrieval essentially reconstructs
the radiance spectrum in the 720-758 nm inter-
val and provides a value for the second of two
characteristic peaks of the fluorescence emis-
sion spectrum at 740 nm. Modeled spectra
are compared to the original measurements to
exclude corrupted retrievals. This is done by
a radiance residual check, which has been re-
inforced for our investigation in the Amazon
Basin to reduce the impact of potential error
sources on resulting time series. Joiner et al.
(2013) and Kohler et al. (2015b) reported that
the South Atlantic Anomaly, a region with an
anomalously reduced strength in the Earth‘s
magnetic field, leads to an increased retrieval
noise in large parts of the South American con-
tinent. Therefore, we limited the residual sum
of squares (RSS) to 0.5 (mW m~2 sr~! nm~1)2
instead of using the 2 (mW m~2 sr~! nm~1)2
threshold documented by Kohler et al. (2015b).
The number of evaluated retrievals within the
study domain is consequently reduced by about
two thirds.

2.3.2 0OCO-2 SIF

The OCO-2 instrument was launched in July
2014 and provides spectrally high resolved mea-
surements in the Oy A-band (757-775 nm,
FWHM=0.042 nm), which allows to evaluate
the in-filling of solar Fraunhofer lines at 757
and 770.1 nm by SIF (Frankenberg et al., 2014).
0OCO-2 acquires 24 spectra per second with
a much smaller ground-pixel size (1.3 km x
2.25 km) as compared to GOME-2 (40 km x
40 km). The high spectral resolution enables
robust and accurate retrieval results (Franken-
berg et al., 2014), but the fine spatial sampling
with the narrow swath width of 10.3 km in-

creases the revisit time up to 16 days (GOME-
2: 3 days) and involves a lack of continuous
global coverage (i.e. gaps between swaths for
a full repeat cycle). Here, we use cloud free
nadir observations of offset corrected OCO-2
SIF (version B7101) between September 2014
and August 2016. We average both OCO-2 SIF
retrieval results (valid at 757 and 770.1 nm, re-
spectively) after multiplying SIF at 770.1 with
1.7, as documented in the OCO-2 Data Prod-
uct User’s Guide (Version F, page 33).

2.3.3 SIF normalization

In order to facilitate an inter-sensor/retrieval
comparison, the influence of instantaneous il-
lumination conditions has to be removed and
a wavelength correction has to be applied.
A common approach is to normalize the re-
trieved SIF value by the cosine of the solar
zenith angle (e.g., Joiner et al., 2013). This
approach is assumed to extract a possible un-
derlying seasonality (besides the instantaneous
PAR driven seasonality), but might only be ap-
plicable in areas where SIF is relatively high
throughout the year. Noise in SIF would other-
wise be amplified, especially for low SIF values
in combination with inclined illumination an-
gles. Furthermore, second order characteristics
such as the amount of sunlit/shaded leaves are
likely to become more pronounced.

Another normalization method was proposed
by Frankenberg et al. (2011b), taking into ac-
count variations in overpass time, length of day,
and solar zenith angle. In particular, this ap-
proach provides a first order approximation for
a daily SIF average

SIF = SIF/cos(0o(tm)):

t=t;m+12h
/ cos(0y(t)) dt,
t=tm—12h

(1)

where 6y is the solar zenith angle and t,,
is the measurement time. The normalization
is applied to individual GOME-2 soundings by
computing the numerical integral in 10 minute
time-steps (dt), which is consistent with correc-
tion factors provided in the OCO-2 data set.
The SIF value at 740 nm (second characteris-
tic peak) is typically assumed to be about 1.5
times higher than SIF at 757 nm (e.g., Joiner
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et al., 2013). The 1.5 conversion factor is con-
sistent with leaf-level studies on passive SIF
across a wide range of species and individuals
using the instrumentation described in Magney
et al. (2017). We, therefore, multiply OCO-
2 SIF by this factor to account for the differ-
ence in evaluated wavelengths in addition to
the daily correction when we directly compare
both data sets in Sect. 4.2.

2.4 Atmospheric Correction of

GOME-2 Radiance Spectra

Radiance received by GOME-2 at the top-of-
atmosphere (TOA) is composed of direct and
diffuse irradiance contributions from both at-
mosphere and surface. The magnitude of at-
mospheric effects can vary largely depending on
the atmospheric state, surface properties and
wavelength. Thus, it is necessary to correct the
TOA signal for atmospheric effects to estimate
the actual surface reflectance (ps), which is in
turn used to derive other parameters (pnig,
DASF, CSC, and NDVI).

We based the atmospheric correction on sim-
ulations performed with the Matrix Opera-
tor MOdel (MOMO) radiative transer code
(Fell and Fischer, 2001), mostly consistent to
a subset of simulations used in Joiner et al.
(2013); Guanter et al. (2015); Kohler et al.
(2015b). Simulations were performed between
500 nm and 800 nm with a spectral sampling of
0.005 nm and included three viewing zenith an-
gles (0°, 16°, 27°), four solar zenith angles (15°,
30°, 45°, 70°), a mid-latitude summer temper-
ature profile, four surface pressures (955, 980,
1005, 1030 hPa), four water vapour columns
(0.5, 1.5, 2.5, 4.0 g cm™?2), an aerosol layer
height between 600-800 hPa using a continen-
tal aerosol model, and five aerosol optical thick-
nesses at 550 nm (0.05, 0.12, 0.2, 0.3, 0.4).

A solution for the radiative transfer in a
plane-parallel atmosphere with a perfectly dif-
fuse (Lambertian) surface can be formulated as

Eq - ps

Froa=Fy+ —————,
7T(1 - psSatm>

(2)
where Froga is the (measured) TOA radiance,
Fjy is the atmospheric path radiance, E, is the
transmitted global irradiance (direct and dif-
fuse), Satm is the atmospheric spherical albedo
(i.e. the reflectance of the atmosphere for

isotropic light entering it from the surface), and
ps is the surface reflectance (all variables own
a spectral component). Froa, Fo, E4, and S
are assumed to be functions of solar zenith an-
gle (SZA), viewing zenith angle (VZA), mean
sea level pressure (MSL), water vapour col-
umn (WVC), and aerosol optical thickness at
550 nm (AOD). Azimuthal resolution of sun-
sensor geometry and adjacency effect are not
included. Although a natural surface reflects
solar radiation anisotropically, we assume that
Lambertian equivalent surface reflectance esti-
mates through Eq. (2) satisfy the requirements
for this analysis. Hu et al. (1999) evaluated
relative errors in canopy reflectance estimates
for MODIS data when using a Lambertian as-
sumption. They reported that MODIS relative
errors are about 5% in the red band and 2%
in the NIR band (for hardwood forest and an
AOD of 0.2; median AOD of observations used
here is about 0.15).
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Figure 2: Sample measurement spectrum of GOME-2
and atmospherically corrected surface reflectance esti-
mate between 660-790 nm (633 spectral points). The
measurement within the study domain (center latitude
1.1° S, center longitude 57.3° W) was carried out at
07/04/2014, atmospheric correction was performed with
following input parameters: SZA = 46.8°, VZA = 10.7°,
AOD = 0.06, WVC = 3.87 g/cm?, MSL = 1015.4 hPa.
A second order polynomial fit using the 743-758 mn and
774-782 nm spectral intervals (blue) is applied to replace
the unreasonable reflectance estimates inside the O A-
band (759-774 nm) by fitted values.

A lookup table approach in conjunction with
supplementary data sets (see Sect. 2.8) of MSL,
WVC, and AOD is applied to estimate the



spectral bidirectional reflectance. Fig. 2 depicts
a sample measurement spectrum of GOME-
2 together with the atmospherically corrected
surface reflectance estimate in the relevant
wavelength range between 660-790 nm. It
needs to be mentioned that the highly com-
plex radiative transfer in the strong absorp-
tion Oy A-band (759-774 nm) causes a high
frequency spectral pattern in pg, although veg-
etation has a spectrally smooth reflectance sig-
nature in the considered wavelength range. We
therefore fitted a second order polynomial to
the reflectance in two spectral windows around
the O A-band, assumed to be mostly devoid of
atmospheric absorption (743-758 mn and 774-
782 nm), and replaced the unreasonable re-
flectance estimates.

2.5 Directional Area Scattering Fac-
tor (DASF) & Canopy Scattering
Coefficient (CSC)

We adopted the approach of Knyazikhin et al.
(2013) to retrieve CSC from atmospherically
corrected NIR reflectances using GOME-2
data. This approach relies on the idea to
scale scattering processes from the leaf to the
canopy level. The theory of such a scaling has
made significant progress since one of the ini-
tial attempts from Knyazikhin et al. (1998).
In particular, the concept of canopy spec-
tral invariants (summarized in Huang et al.,
2007) provides the basis for a physically consis-
tent, and thus more direct, approach to relate
reflectance-based measurements to leaf struc-
ture and biochemistry.

It should be mentioned that the recollision
probability (p) for scattered photons within a
canopy is wavelength independent (spectral in-
variant), because scattering objects are large
compared to the wavelengths of solar radia-
tion (Lewis and Disney, 2007). Smolander and
Stenberg (2005) have shown that a combination
of different recollision probabilities on the leaf
level, namely for shoots and needles as the most
important scattering elements within conifer-
ous canopies, results in one equivalent recol-
lision probability on the canopy scale. When
neglecting leaf surface reflection (Lewis and
Disney, 2007), the scaling even applies from
the leaf interior to the canopy level. Besides
simulation based studies (Knyazikhin et al.,

1998; Smolander and Stenberg, 2005; Huang
et al., 2007; Lewis and Disney, 2007), the p
theory has been succesfully applied to remote
sensing applications (e.g, Schull et al., 2011;
Knyazikhin et al., 2013). Particularly the study
from Knyazikhin et al. (2013) may have long-
term consequences for the remote sensing as-
sessments of biochemistry. They introduced
the following representation of the canopy bidi-
rectional reflectance (BRF)

BRF)\(2) = DASF(Q) - Wy, (3)
where 2 is the direction towards the sensor,
DASF is the directional area scattering factor
and W, the (wavelength dependent) canopy
scattering coefficient. It might be noted that
BRF), is equivalent to ps in Eq. (2). The
wording is changed in this section to remain
consistent with the literature. Furthermore,
it should be emphasized that W) refers to
the spectral canopy scattering coefficient, while
the abbreviation CSC refers to the canopy
scattering coefficient at NIR wavelengths (dis-
cussed below in Sect. 2.5.2). The DASF is
a spectral invariant estimate of the BRF), for a
non-absorbing canopy and encapsulates canopy
structure properties such as the tree spatial dis-
tribution. The key benefit of the approach from
Knyazikhin et al. (2013) is that no prior knowl-
edge is needed to estimate the DASF from re-
flectance spectra in the 710 to 790 nm spectral
interval.

2.5.1 DASF Estimation

Assuming that the observed canopy is suf-
ficiently dense (background/surface effects
are negligible), the spectral bidirectional re-
flectance (BRF) can be approximated as
(Knyazikhin et al., 2011)

P(§2)io(Q0)wx

BRF\(Q) = ==~ oY

(4)
where p() is the directional gap density giving
the escape probability for scattered photons in
direction €2, ig(€) is the initial collision prob-
ability or canopy interceptance for the direc-
tion of incoming radiation 2y (fraction of pho-
tons that initially collide with foliage elements,
close to unity in dense vegetation canopies), p is
the mean probability that a scattered photon



will interact within the canopy again (recolli-
sion probability) and w) is the canopy albedo.
Eq. (4) is still formulated on the canopy level,
but p implicitly incorporates the scaling to the
leaf level. Specifically, the scaling to the next
smaller structural organization (i.e. from the
canopy to the leaf level) can be expressed by ac-
cumulated scattering orders of local recollision
probabilities (Smolander and Stenberg, 2005)

o0

= w1 —p)] =

n=0

WX

1—pL
1—prwp

wr, (5)

where the leaf scale is indicated by the sub-
scripted L. Specifically, pr characterizes the
probability of photons being scattered inside
the leaf and wy, y is the leaf-level single scatter-
ing albedo. An empirical analysis of measured
leaf albedo spectra suggests that one fixed ref-
erence leaf albedo (wp x) can be used instead of
the actual single leaf albedo (wy, x) without vi-
olating the spectral invariant relationship from
Eq. (5) in the 710 to 790 nm spectral interval
(Schull et al., 2011). It is further necessary to
decompose w) into

(6)

where 77 is the leaf interceptance, w)y is the
transformed leaf albedo giving the fraction of
photons scattered by the interior of leaves and
sr, is the portion of photons reflected from the
leaf surface. Assuming that the scattering by
the leaf interior dominates in the 710 to 790 nm
spectral region, Eq. (5) becomes (Knyazikhin
et al., 2013)

wx = irwy + s,

1—-pL

1 — prwo,x

Wy R LWy = iLWo N, (7)
where wp ) is the fixed reference leaf albedo,
which has been derived with the PROSPECT
model (chlorophyll content of 16 pug cm™2,
equivalent water thickness of 0.005 cm™!, dry
matter content of 0.002 g cm™2 as suggested
by Knyazikhin et al., 2013). By substituting
Eq. (7) into Eq. (4) and rearranging terms,
Knyazikhin et al. (2013) arrived at

BRF\(Q)
o )\( ) = peffBRF)\(Q)-i-
0,

iLp(Q2)io(Q0)(1 —pL), (8)

with perr = pr + iLp(1 — pr). pesy is equiva-
lent to the spectral invariant relationship be-
tween recollision probabilities of shoots and
needles documented by Smolander and Sten-
berg (2005). Here, pcss describes the scatter-
ing within leaves as seen from the canopy level,
i.e. the probability of being scattered inside the
leaf (pr,) is combined with the probability that
a photon escapes the leaf (1 — pr) and enters
another leaf within the canopy (izp). A simple
linear regression between BRF) /wp ) vs. BRF
(see Eq. 8) gives the slope m = p.rs and inter-
cept n = irp(Q)ig(1 — pr). Finally, the ratio
n/(1 — m) results in the following representa-
tion of the DASF (Knyazikhin et al., 2013)

ir.p(2)io(o) '

DASF(9) = #40

(9)
DASF becomes independent of pr; moreover,
the DASF appears to be independent of the
choice of wp ) (Schull et al., 2011), which both
seem reasonable considering that the DASF
conveys macro-structural properties. The R?
value of the linear fit in the 710-790 nm spectral
region indicates the retrieval quality and appli-
cability of assumptions (e.g., sufficiently dense
vegetation). Our analysis is therefore based on
DASF retrievals with a R? value above 0.9 (this
threshold will be further discussed in Sect. 4.1).
It is further worth noting that NIR reflectance
and DASF are closely related in terms of their
sensitivity to view-illumination conditions.

2.5.2 CSC Estimation

When expressing BRF) in terms of DASF and
Wy (Eq. 3), and considering that the DASF
conveys macro-structural properties, leaf prop-
erties (represented by W)) can potentially
be extracted from reflectance measurements
through the ratio BRF)/DASF. In contrast to
visible wavelengths, where pigment absorption
dominates, residual variations in the NIR are
mostly due to canopy/leaf structure (Hikosaka
et al., 2015). Here, the 780-785 nm NIR spec-
tral interval serves as weakly absorbing wave-
length range to compute CSC (or Wi Rr).
An analytical representation of W) is given
by (Knyazikhin et al., 2013)
L—pip .

Wi =————wx,

- 1
1= dnpip (10)



with Wy = wy/ir. In this case, p is the probabil-
ity that a scattered photon will interact again
within the canopy (recollision probability), wy
is the leaf albedo and iy, is the leaf intercep-
tance (fraction of radiation that enters the leaf
interior). Note that Eq. (10) includes no ex-
plicit dependency on illumination or observa-
tion geometry, although the leaf albedo is in
principle subject to a certain bidirectional re-
flectance distribution function (BRDF). How-
ever, considering that the ground pixel size of
GOME-2 (40 km x 40 km) involves a vast num-
ber of leaves, it can be anticipated that any
angular preference will tend to average out.
Conceptually, this vegetation parameter should
therefore be independent of sun-sensor geome-
try, which is supported by our results in Fig. 9
of Sect. 4.3.

W increases as the albedo increases, but as
can be seen from Eq. (10), W), is also subject
to changes in canopy structure through the de-
pendency on the p value. More specifically, p
increases with LAI (Knyazikhin et al., 1998;
Smolander and Stenberg, 2005), which can be
explained by a higher chance for photons to be
absorbed (Samanta et al., 2012). Consequently,
the absolute value of W) decreases with in-
creasing LAI, which potentially complicates the
interpretation of time series to account for ac-
tual leaf properties. We will evaluate this sen-
sitivity based on simulated data in Sect. 3.2.

The formalism to compute DASF and CSC
can be summarized as follows:

1. Perform atmospheric correction of mea-
sured BRF) (Sect. 2.4).

2. Perform a linear fit between BRF) /wp ) vs.
BRF) in the 710-790 nm spectral window
(389 spectral points), where wy  is a ref-
erence leaf albedo (Sect. 2.5.1).

3. The ratio n/(1—m) of slope, m, and inter-
cept, n, from the linear fit results in DASF
as represented by Eq. (9).

4. CSC (Wyyg) results from the ratio
BRFN[R/DASF, where BRF ;g is the
averaged atmospherically corrected re-
flectance between 780-785 nm.

It must be noted that the approach of
Knyazikhin et al. (2013) considers green foliage

elements only, even though photons interact
with the whole canopy (green, non-green, or
woody foliage elements). This is a further lim-
itation of our study, which may result in in-
accurate estimates of DASF/CSC in terms of
absolute values. However, in the framework
of this analysis we consider seasonal changes
to be more important than accurate absolute
values. We assume that the portion of green
foliage elements dominates and that there are
only minor temporal changes in the ratio be-
tween green/brown material in the canopy at
the spatial scale under investigation.

2.6 Normalized Difference Vegeta-
tion Index

For the sake of comparison, the simple but
effective Normalized Difference Vegetation In-
dex (NDVI, Tucker, 1979) has been computed
from GOME-2 data. The standard definition
is given by the band ratio

PNIR — PRED

NDVI = ,
PNIR + PRED

(11)
where pyrr and prep are computed from av-
eraged atmospherically corrected reflectances
between 780-785 nm and 660-665 nm. Joiner
et al. (2013) reported that GOME-2 NDVI spa-
tial patterns are similar to those of the MODIS
NDVI product, even when atmospheric effects
are not considered.

We acknowledge that the large-scale NDVI
seasonality in the central Amazon Basin will
potentially result from seasonal variations in
cloud cover (Kobayashi and Dye, 2005; Hilker
et al., 2015). Nevertheless, we believe that
a spatially consistent comparison of GOME-2
SIF and CSC with a conventional VI provides
an improved basis for interpretation.

2.7 Characterization of Sun-Sensor
Geometry

Four angles are needed to characterize the il-
lumination and observation geometry namely:
solar zenith angle (6y), solar azimuth angle
(¢0), viewing zenith angle (6,), and viewing az-
imuth angle (¢,). The position of the azimuth
angles to each other can also be expressed by
the relative azimuth angle (¢), where ¢ = 180°
means that the sun and satellite sensor are op-
positely aligned. It is further convenient to



combine 6y, 0, and ¢ to the phase angle (7)
by applying the spherical law of cosines

v = acos|cos(0y)cos(0,)+

sin(60y)sin(0,)cos(p)], (12)
which gives the angle between the directions
to the sun and detector as seen from the sur-
face (Hapke, 2012). Here, ~ is defined positive
if the solar azimuth angle is larger than the
viewing azimuth angle and negative otherwise,
to be able to separate those cases. The phase
angle replaces three angles to characterize the
sun-sensor geometry, while approaching v = 0°
corresponds to the situation when the sun and
sensor are located along one axis.

Fig. 3 depicts the illumination and viewing
conditions for GOME-2 measurements within
our study domain. The seasonality of the sun-
sensor geometry is comparable to MODIS ob-
servations shown by Bi et al. (2015). Sev-
eral studies (Morton et al., 2014; Maeda and
Galvao, 2015; Verrelst et al., 2008; Hilker et al.,
2015) highlight the importance to take such
a seasonality into account when evaluating
VIs. In the case of MODIS, measurements
are typically related to a fixed sun-surface-
sensor geometry. We follow another strategy in
Sect. 4.4; GOME-2 observations are limited to
phase angles from —65° to —40°, because this
range of angles occurs in all considered months.
This way, a seasonality in sun-sensor geometry
and a potential influence on time series can be
avoided.

2.8 Supplementary Data

A series of data is required for our atmospheric
correction and for providing a basis to interpret
the results obtained. The following list briefly
summarizes all supplementary data sets used
in this study.

a) Cloud free nadir observations of offset cor-
rected OCO-2 SIF at 757 nm and 770.1 nm
(Frankenberg et al., 2014, version B7101)
between September 2014—August 2016.

b) IGBP land cover (Friedl et al., 2002) pro-
vided on a 0.05° x 0.05° (about 5 km x 5 km)
grid.

c) LAI (Baret et al., 2013) from the Coper-
nicus Global Land Service. Specifically,
the SPOT-VGT LAI (version 1.3) is used
between 08/2013 and 05/2014 and the
PROBA-V LAT (version 1.4) from 06/2014
to 08/2016. Both data sets are provided on
a 10-day basis with a spatial resolution of
1 km and have been aggregated to monthly
averages on a 0.2° x 0.2° grid.

d) Collection 5 of the Aqua MODIS NDVI data
provided on a 0.05° x 0.05° grid (MYD13C1,
2016, 16-day Vegetation Indices) quality
flagged as good ('use with confidence’), ag-

gregated to monthly averages on a 0.2° x
0.2° grid.

e) Monthly precipitation data from the Trop-
ical Rainfall Measuring Mission (TRMM,
2011, product 3B43 version 7) on a 0.25°
x 0.25° grid.

f) ERA-Interim re-analysis data (Dee et al.,
2011) of photosynthetically active radiation
(PAR, 400-700 nm, 3-hourly), WVC (6-
hourly) and MSL (6-hourly). Here, WVC
and MSL (PAR) data sets on a 0.75° x 0.75°
(0.125° x 0.125°) grid have been used.

g) AOD (6-hourly) from the Monitoring Atmo-
spheric Composition and Climate (MACC,
2016) re-analysis data set on a 0.75° x 0.75°
grid.

2.9 Simulated SIF and Reflectance

Radiative transfer simulations of SIF and re-
flectance provide a possibility to review the ba-
sic validity of assumptions made. Furthermore,
a discrepancy of observations with respect to
the simulated data may point to specific char-
acteristics and problems.

Simulations of incoming PAR, top of canopy
(TOCQ) reflectance, and TOC SIF between 650
and 850 nm have been computed by the spa-
tially explicit three dimensional plant canopy
radiative transfer model (FLIES, Kobayashi
and Iwabuchi, 2008), which is capable of simu-
lating the multiple scattering within the plant
canopy. We adopted the boundary condi-
tions from the sun-sensor geometry of GOME-2
(Sect. 2.7) in combination with monthly aver-
ages of the LAI data set for 2014. Monthly av-
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Figure 3: Viewing and illumination geometry of GOME-2 within our study domain. Shown are (a) solar zenith
angle, (b) viewing zenith angle, (c¢) relative azimuth angle and (d) phase angle (Eq. 12).

erages of the solar zenith angle represent a sim-
plified annual cycle of illumination, whereas all
discrete viewing zenith angles as well as aver-
ages of the two separate regimes of the relative
azimuth angle represent the observation geome-
try. The LAI ranges from 4.02 to 5.39 units, in-
corporating a changing canopy structure. Fur-
ther, a realistic tropical forest landscape has
been simulated by the empirical forest struc-
ture dynamics model (Yang et al., 2017). De-
tailed information about simulations of SIF and
bidirectional reflectance can be found in A.

3 Sensitivity Analysis

3.1 Sensitivity to Cloud Effects

Even though the impact of clouds on computed
GOME-2 vegetation parameters can be limited
by means of the FRESCO cloud fraction data
attached to GOME-2 measurements, residual
cloud contamination (i.e. undetected sub-pixel
clouds) might be unavoidable due to the fre-
quent cloud cover in tropical rainforest areas in
combination with the large GOME-2 footprint
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Figure 4: Simulated relative intensity changes of SIF,
NDVI, rhonrr, DASF and CSC as a function of cloud
optical thickness (COT) for optically thin clouds.

size. It is therefore crucial to examine potential
cloud effects before a possible seasonality can
be identified.

Here, simulated TOA radiance spectra as de-
scribed in Sect. 2.4 have been used by incorpo-
rating different levels of cloud optical thickness
(COT) values. Notably, the simulations are
consistent with those used by Guanter et al.
(2015).

Fig. 4 illustrates the sensitivity of SIF,
NDVI, pn1r, DASF and CSC to COT values



ranging from 0-3, corresponding to optically
thin cirrus or scattered cumulus clouds. Sur-
prisingly, CSC appears to be highly indepen-
dent of atmospheric effects (+3% at a COT
of 3), because the dependencies of DASF and
pNIR on cloud contamination tend to compen-
sate by rationing. SIF appears to be only mod-
erately affected by cloud contamination, which
basically reflects previous findings of decreas-
ing SIF values through the shielding effect by
clouds (Frankenberg et al., 2012; Guanter et al.,
2015). On the contrary, considerably decreas-
ing NDVI values with an increasing COT may
complicate the further evaluation. This strong
effect can essentially be explained by the im-
pact of clouds on both red and NIR wave-
lengths in addition to the shielding of the green
vegetation.

Overall, it should be mentioned that the un-
known degree of undetected cloud contamina-
tion of GOME-2 measurements represents the
most limiting factor of this analysis.

3.2 Sensitivity of DASF & CSC to
LAI

The question may arise, to which extent DASF
and CSC are influenced by canopy structure
(through the sensitivity of p to LAI) un-
der the conditions in the Amazon rainforest.
It is therefore essential that the simulations
(Sect. 2.9) allow us to review this aspect.

The simulations include soil absorption and
are driven with constant leaf properties, while
LAI and sun-sensor geometry vary similarly to
real GOME-2 observations. Given that DASF
is an estimate for the non-absorbing canopy’s
reflectance, the DASF should be consistently
higher than the NIR reflectance (pnyrr) to sup-
port the basic applicability of the p theory in
our simulations. A similar seasonality of CSC
and LAI would then indicate the expectable
magnitude of a response of CSC to LAIL

The upper panel of Fig. 5 reveals that the
DASF is indeed higher than py;gr, which is
consistent with the underlying theory. NIR re-
flectance/DASF intensity changes highly corre-
lates with the LAI input values (R = 0.97/0.98)
and amount up to 8.3%/10.5% (from March to
September). The bottom panel of Fig. 5 indi-
cates that the CSC is sensitive to changes in
LAI (R = —0.88), even though this sensitiv-
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Figure 5: pnrr (upper panel, blue), DASF (upper
panel, orange), and CSC (bottom panel, purple) com-
puted from simulated data for a realistic tropical forest
observed under a simplified GOME-2 sun-sensor geome-
try. The standard deviations (shaded areas) result from
two relative azimuth angles and 14 viewing zenith an-
gles (value depends on month, see Fig. 3). The LAI
input value (bottom panel, black) corresponds to the
monthly average of the study domain for 2014.

ity is rather low. There is a 25% increase in
LAI from March to September, which trans-
lates into a 2.9% decrease in CSC. The low
sensitivity can be explained by the asymptotic
behavior of the recollision probability, which
reflects the saturation effect in dense vegeta-
tion canopies. A significant impact of viewing
zenith angle variations on absolute CSC values
has not been found, but the standard deviation
increases with viewing zenith angles.

4 Results & Discussion

4.1 Spatiotemporal Composites

We performed global DASF retrievals from
GOME-2 soundings with relative cloud frac-
tions (from FRESCO, Wang et al., 2008) be-
low 0.5 for the 08/2013-08/2016 time period.
The processed data can be retrieved from
http://is.gd/GOME_2_DASF. As described in
Sect. 2.5.1, the R? value of the underlying lin-
ear fit Eq. (8) is a measure of retrieval qual-
ity and applicability of assumptions. We have
therefore tested different R? value thresholds
to examine the impact on resulting composites.
In general, it appeared that non-vegetated ar-
eas and regions with sparse vegetation (e.g.,
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Figure 6: Monthly (a) DASF(R? >= 0.9) and (b) SIF
composites for July 2014 on a 0.2° x 0.2° grid derived
from GOME-2 soundings with relative cloud fractions
(from FRESCO, Wang et al., 2008) below 0.5. The
center of the SAA at 40°W and 30°S, the extent of the
region shown in Fig. 1, 7 (blue) and our study domain
(red) are in addition depicted in map (b).

deserts and ice sheets) are masked by a RZ
value above 0.7. It has emerged that a more
stringent R? filter criterion also results in re-
duced relative cloud fraction averages:

1. R? > 0.7: 7.4% of remaining soundings
own a cloud fraction larger than 0.3

2. R?> > 0.9: 3.5% of remaining soundings
own a cloud fraction larger than 0.3

Global monthly composites of DASF(R? >=
0.9) and GOME-2 SIF for July 2014 on a 0.2° x
0.2° grid are shown in Fig. 6. It is interesting to
note the high DASF and SIF average in north-
ern mid-latitudes with peak values in the US
Corn Belt region. This peak in SIF and DASF
in large cropland and grassland areas might
be explained by the rather less complex veg-
etation structure associated with an enhanced
escape probability for scattered/emitted pho-
tons. Equally remarkable is that spatial DASF
patterns apparently reproduce spatial SIF av-
erages. This characteristic can be attributed

to a similar sensitivity to canopy structure and
illumination conditions. For example, a com-
plex canopy structure leads to enhanced mul-
tiple scattering by which less photons escape
regardless whether photons originate from the
sun or from SIF.

Even though the ratio py;r/DASF (CSC)
appears to be robust against cloud contami-
nation (see Sect. 3.1), we performed the fur-
ther analysis on DASF retrievals with a R?
value above 0.9 in combination with a strict
cloud filter (cloud fraction equal zero) to en-
sure that the impact of clouds is as low as pos-
sible. Fig. 7 depicts composites of CSC, SIF,
and NDVI derived from GOME-2 data in the
Amagzon region for the July—September 2014
period. The MODIS NDVI (MYD13C1, 2016)
composite for the same time period illustrates
the largely consistent spatial patterns as well as
consistent absolute values with respect to the
GOME-2 NDVI composite. Both composites
clearly demonstrate the saturation effect of the
NDVI in dense vegetation canopies. The con-
sistency is particularly remarkable against the
background of a considerable difference in the
spectral and spatial sampling of the satellite
instruments. While spectral broadband mea-
surements in channel 1 (red band: 620-670 nm)
and channel 2 (NIR band: 841-876 nm) with
a fine spatial sampling of 250 m form the ba-
sis to compute the NDVI in case of MODIS,
we used 2 subsets of the fourth channel from
the GOME-2 instrument (660-665 nm, 780—
785 nm) with a large ground pixel size of 40 km
x 40 km for the same purpose.

In view of the sensitivity of CSC to the
canopy p value (Eq. 10) and subsequently to
the LAI (Sect. 3.2), it seems reasonable that
grasslands and savannas (see Fig. 1 for the
regional land cover distribution) reach high,
partly saturated CSC levels, while evergreen
broadleaf forest regions are clearly separated
through lower CSC values. In contrast to the
NDVI, the saturation effect appears to be re-
versed - the CSC saturates in regions covered
by less dense vegetation. This supports the
CSC as a valuable vegetation parameter partic-
ularly for dense vegetation canopies such as the
Amazon forests. The GOME-2 SIF composite
in Fig. 7b also reveals a few interesting aspects.
First, a spatially highly variable structure can
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Figure 7: Composites of (a) CSC, (b) SIF, and (c) NDVI derived from GOME-2 data with relative cloud fractions
equal zero for the July—September 2014 period on a 0.2° x 0.2° grid in the Amazon region. Figure (d) shows a
MODIS NDVI composite (MYD13C1, 2016, see Sect. 2.8) on a 0.05° x 0.05° grid for the same time period. White
areas indicate missing values. The spatial sampling of CSC is consistent with that of GOME-2 NDVI, missing
values are primarily due to underlying DASF retrievals with R? < 0.9 (see Sect. 2.5.1). Missing values in the
GOME-2 SIF composite are mostly due to our restrictive RSS filter criterion in order to reduce the impact of the

SAA (see Sect. 2.3.1).

be observed, which might indicate an elevated
noise level or may point to a high degree of
spatial heterogeneity in the SIF emission. As
mentioned in Sect. 2.3.1, we reduced the im-
pact of the SAA on GOME-2 SIF by a restric-
tive filtering of potentially corrupted retrievals.
This lead to a concentrated appearance of miss-
ing values in south-eastern regions of the shown
region. The large extent of the affected region
on the South American continent can be seen
from the global composite in Fig. 6b. Although
the SA A represents a limiting factor, remaining
grid cells in Fig. 7b reveal reasonable SIF aver-
ages with respect to the land cover distribution.
For example, sparsely vegetated areas at Peru’s
largely arid Pacific coast and the Andes moun-
tains (south-western sector of the map) show
SIF values consistently close to zero.

4.2 Comparison between SIF from
0CO-2 & GOME-2

This section addresses the question of whether
SIF from GOME-2 data is consistent with SIF
from OCO-2 data. Fig. 8 depicts monthly SIF
averages from both instruments for our study
domain. We will discuss a few properties and
assumptions, which complicate comparisons in
the following paragraph.

First, it should be noted that the spatial cov-
erage is substantially limited since only grid
cells, which contain SIF retrievals from both
0CO-2 and GOME-2 measurements are com-
pared. Additionally, GOME-2 measurements
have been filtered for soundings with viewing
zenith angles lower than 10° to match OCO-2
nadir observations. The cloud filter threshold
of GOME-2 SIF retrievals had to be relaxed
(maximum cloud fraction is 0.5, mean cloud
fraction is 0.11) to ensure that there are over-
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Figure 8: Comparison of the cosine of the solar zenith
angle (), phase angle, SIF and normalized (daily illu-
mination cycle and wavelength corrected) SIF740 from
0OCO-2 (blue) and GOME-2 (green). Only study do-
main grid cells which contain SIF retrievals from both
instruments form the basis of the shown monthly av-
erages. Additionally, GOME-2 time series have been
filtered for soundings with viewing zenith angles lower
than 10° to match OCO-2 nadir observations. Shaded
areas indicate the spatial standard deviation.

lapping regions in all evaluated months. Kohler
et al. (2015b) have shown (for a similar area)
that absolute SIF values decrease by relaxing
the cloud filter threshold, while the temporal
pattern remains almost unaffected. This can
also be concluded from Fig. 10 in Sect. 4.4.
However, the number of overlapping grid cells
per month is rather low and ranges from 16-
368, which corresponds to 0.4%-10% of total
grid cells. It might also be considered that
absolute SIF values are expected to be differ-
ent, which is primarily due to different overpass
times (GOME-2: ~9:30 LST, OCO-2: ~13:30
LST) and evaluated wavelengths (GOME-2:
740 nm, OCO-2: 757 nm).

The most obvious difference in the time se-

ries lies in the seasonal cycle, which highlights
the instantaneous nature of the SIF signal, i.e.
the annual maximum of SIF retrieved from
0OCO-2 occurs in February, while the maximum
SIF obtained from GOME-2 data is observed
around October. Both SIF time series roughly
follow the course of illumination, while annual
peak values coincide with the associated max-
imum of the cosine of the solar zenith angle,
which can be regarded as a proxy for instanta-
neous PAR (under cloud free conditions), and
the minimum of the average phase angle. Con-
sidering the relaxed cloud filter in case of SIF
from GOME-2 and the maximum of OCO-2
SIF during the wet season, it is remarkable
that the large agreement of SIF with instanta-
neous PAR seem to discard a seasonality being
driven by clouds. The OCO-2 SIF time series
seems to be out of the illumination phase only
in October and November 2014 where SIF val-
ues slightly increase, while instantaneous PAR
declines (proxied by the cosine of the solar
zenith angle). A similar feature is present in
the GOME-2 SIF time series, where the high
November 2014 SIF average is not explained
by illumination.

The bottom panel of Fig. 8 shows the nor-
malized SIF time series, corrected for the differ-
ent evaluated wavelengths and overpass times
(see Sect. 2.3.3). Both time series agree very
well in terms of absolute values and coverging
seasonal swings, while a high level of normal-
ized SIF is maintained throughout the covered
time period.

In summary, OCO-2 and GOME-2 SIF show
consistent seasonal cycles driven by instanta-
neous PAR, clearly demonstrating the need to
consider the time of measurement in addition
to the observation geometry.

4.3 Directional Effects

The necessity to address the sun-surface-sensor
geometry arises from anisotropic reflectance
characteristics of natural surfaces, also known
as directional effects. It has already been
proven that a significant impact on reflectance
data (which consequently translates into VIs)
complicates the interpretation of satellite re-
mote sensing products, particularly in the
Amazon rainforest (Maeda and Galvao, 2015;
Hilker et al., 2015). Simulations (van der Tol
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Figure 9: Relative intensity of NIR, NDVI, CSC, SIF
and normalized SIF as a function of phase angle. Un-
derlying absolute values of broken lines are averages de-
rived from GOME-2 data in the study domain for Oc-
tober 2014, sampled in 5° phase angle steps. The solid
lines depict relative intensities computed from FLiES
simulations based on the average SZA, VZA, LAI and
RAA per phase angle step.

et al., 2009) and measurements (Liu et al.,
2016) at the TOC level reveal that SIF is
also subject to the hot spot effect. Guanter
et al. (2012) have shown that even satellite-
based SIF measurements from GOSAT data are
strongly affected by directional effects. There-
fore, it is reasonable to examine the sensitivity
of GOME-2 SIF to view-illumination effects,
which previously has not been considered.

A wide range of phase angles from GOME-
2 observations within the study domain occurs
in October (see Fig. 9) and provides the oppor-
tunity to estimate and compare intensities and
characteristics of directional effects on all re-
trieved vegetation parameters. Although there
is a lack of a controlled environment and a cer-
tain level of change may be anticipated, we as-
sume that the canopy remains sufficiently in-
variant during one month and that the study
domain is fairly homogeneous to tentatively es-
timate the directional effects. Fig. 9 depicts rel-
ative intensities of pyrr, NDVI, CSC, SIF and
normalized SIF for simulated and real GOME-
2 data as a function of phase angle in Octo-
ber 2014. It has emerged that the FRESCO
algorithm preferentially detects higher effec-
tive cloud fractions when the phase angle ap-
proaches 0°. We therefore relaxed the cloud
filter threshold in a similar way to Sect. 4.2 (av-

erage cloud fraction is 0.11) in order to cover
the largest possible phase angle range.

Overall, our results confirm that NIR re-
flectance is significantly affected by phase angle
variations (e.g., Maeda and Galvao, 2015). In
particular, the NIR reflectance shape illustrates
the hot spot effect, which exhibits the most
pronounced directional effect among the tested
parameters (intensity varies within 35%). The
FLIiES simulations show a slightly less pro-
nounced effect on NIR reflectance, which might
be due to the challenge of modeling the re-
flectance around the hot spot region. More
specifically, the modeled reflectance may have
limitations because of a lack of detailed forest
structure information with respect to the Ama-
zon forest. A less clear directionality is visible
in the NDVI-phase angle dependency. Values
tend to decrease with lower absolute phase an-
gles, while the substantial variation amounts
up to 30%. With the simulated NDVI and
its sensitivity to cloud effects (Sect. 3.1), it
can be anticipated that this behavior results
from cloud contaminated GOME-2 footprints.
Compared to NIR reflectance and NDVI, SIF
seems to be significantly less affected by chang-
ing phase angles (intensity changes are in the
order of 20%, change in terms of absolute val-
ues amounts up to 0.5 mW m~2 sr=! nm™1).
Nevertheless, there appears to be a tendency
for higher SIF values towards 0° phase angle,
which is in agreement with our FLiES simu-
lations. The fluctuations in our SIF observa-
tions might be caused by noise and/or a high
variability in fluorescence yields across the for-
est canopy. This similar directionality as ob-
served in simulations (van der Tol et al., 2009)
and GOSAT SIF data (Guanter et al., 2012)
confirms that there is a similar hot spot ef-
fect compared to NIR reflectance. The actual
magnitude of this effect might even be larger
because the solar zenith angle increases (from
~ 31° to ~ 39°) with decreasing absolute phase
angle values (not shown). Accordingly, a de-
cline of SIF values could be expected because
of the decrease in instantaneous PAR with in-
clined illumination angles. However, the oppo-
site behavior is observed, which suggests that
the hot spot effect overcompensates the slight
decrease in illumination. It should be noted
that this effect is even amplified by normaliz-
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ing SIF, resulting in intensity changes slightly
above 20%. Seasonal changes in average phase
angles will therefore likely affect the SIF time
series in our study domain if they are not ac-
counted for. In contrast to the previously eval-
uated parameters, it is remarkable that CSC is
almost unaffected by phase angle variations as
predicted by theory (Sect. 2.5). This character-
istic combined with the benefit of being highly
independent of atmospheric effects (Sect. 3.1)
makes CSC a promising tool for the monitoring
of leaf properties in dense canopies. However,
the remaining sensitivity to canopy structure as
suggested by our sensitivity analysis is a lim-
iting factor regarding the assessment of actual
leaf properties.

4.4 Large-Scale Vegetation Dynam-
ics

The persistence of recurring phase angles in
GOME-2 observations (see Fig. 3) allows us
to suppress seasonal changes in sun-sensor ge-
ometry by limiting the phase angle range. By
contrast, OCO-2 observations are subject to
an inseparable seasonality in average phase an-
gle values (not explicitly shown, but essentially
consistent with the course shown in the second
panel of Fig. 8). For this reason, we focus on
retrieved vegetation parameters from phase an-
gle limited (between —65° and —40°) GOME-2
measurements in this section.

Fig. 10 depicts long-term monthly averages
from August 2013 to August 2016 of computed
vegetation parameters (SIF, normalized SIF,
CSC and NDVI) and of environmental con-
ditions (PAR, precipitation, LAI) within our
study domain (Sect. 2.2). The spatial coverage
of each month is also depicted in Fig. 10 where
differences for the retrieved vegetation param-
eters arise from individual filter criteria.

The strict/relaxed filter (denoted by cir-
cles/crosses) constrains all underlying measure-
ments to own a relative cloud fraction equal
0/below 0.5. In addition, SIF (strict filter) and
NDVT retrievals are only included if the phase
angle ranges between —65° and —40°. The
phase angle restriction is not necessary for CSC
as it can be concluded from Fig. 9. However,
the number of selected CSC retrievals might
be reduced through the quality filter of the
underlying DASF computation (R? > 0.9, see

2.5.1). The remaining SIF retrievals (strict fil-
ter) result in the lowest spatial coverage, which
is mainly due to the restrictive RSS threshold
(see Sect. 2.3.1).

Fig. 10 reveals that the spatial coverage is
reduced during months with intense precipita-
tion. The supplementary data sets have there-
fore been collocated with valid SIF grid cells
(strict filter) to avoid a spatial mismatch, while
monthly averages for the entire study domain
are denoted by triangles. The minor differ-
ences between the sparsest (SIF) and the full
spatial coverage for the supplementary data
sets suggest that the spatial sampling is suf-
ficiently representative for the entire study do-
main. Nevertheless, it should be noted that the
coverage of SIF observations (strict filter) is re-
duced to about 50% for the average in March.

In contrast to Fig. 8 (evaluating only grid
cells which contain retrievals from both OCO-
2 and GOME-2), two annual peaks can be ob-
served in the SIF time series. The maximum in
October can be linked to the maximum in PAR,
while the lower peak around January /February
is not explained by the shown environmental
variables. It seems that the SIF time series is a
superposition of monthly averaged PAR (based
on 3-hourly data, R=0.84) and an additional
seasonality. In view of the comparison between
OCO-2 and GOME-2 SIF (Sect. 4.2), it is re-
markable that the illumination conditions at
the overpass time of GOME-2 (9:30 LST) track
seasonal variations of instantaneous as well as
monthly PAR. As expected, the time series is
consistently higher than the one using a relaxed
cloud filter. Slightly larger deviations arise dur-
ing the wet season, which might be explained
by the abundance of clouds. The magnitude
of seasonal swings in SIF amounts up to 21%
(27% for the relaxed filtering) with regard to
the annual maximum.

The normalization of SIF emphasizes the
peak around January/February (wet season),
which now represents the annual maximum.
Interestingly, the peak of the simulated, nor-
malized SIF time series can still be observed at
the end of the dry season (September), reflect-
ing the response to variations in LAI and ob-
servation geometry only. We hypothesize that
the observed seasonality might be explained by
a combination of effects, some of which have
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C) CSC (purple), and D) NDVI (red) retrieved from GOME-2 data together with simulation results (blue) and
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of a realistic tropical forest landscape are subject to

standard deviations are depicted by shaded areas.
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recently attracted attention: i) variations in
vertical canopy structure (Tang and Dubayah,
2017), and ii) leaf age effects (Wu et al., 2016).
First, the wet season peak could result from
fewer gaps in the canopy during this time of
year (Tang and Dubayah, 2017), meaning that
most of the detected SIF signal emanates from
sunlit leaves in the uppermost vegetation layer.
This might go along with a leaf-age distribu-
tion shifted toward mature leaves, which ap-
pear to have a higher photosynthetic capac-
ity than flushing and old leaves (Wu et al.,
2016). Second, the annual dip during the early
dry season (May and June) might be driven
by flushing leaves in combination with an in-
creased gap density in the canopy, whereby
more shaded leaves (emitting less SIF) are ob-
served. Finally, the adjacent increase in nor-
malized SIF could be explained by increasing
understory LAI (Tang and Dubayah, 2017),
decreasing gap density (Tang and Dubayah,
2017), and increasing the number of mature
leaves (Wu et al., 2016), water availability, and
PAR coincidentally.

The seasonality of CSC is less variable (in-
tensity change amounts up to 3%), and reveals
a peak in March and minimum in September.
The CSC time series is weakly anti-correlated
with LAI (R=-0.64) and equally weak posi-
tively correlated with the amount of precipi-
tation (R=0.58). Although the sensitivity to
LAI and cloud contamination appeared to be
small, the low variability of CSC could entirely
be controlled by these effects (LAIL: 3%, cloud
contamination:0-3%).

The NDVI simulation results (with constant
leaf, wood and soil properties; LAI > 4) and
the MODIS NDVI indicate that the sensitivity
of NDVI to LAI is almost saturated. At the
same time, results from our sensitivity analy-
sis (Sect. 3.1) and previous investigations (e.g.,
Kobayashi and Dye, 2005; Hilker et al., 2015)
demonstrate the strong sensitivity to atmo-
spheric conditions. Hence, it seems likely that
the GOME-2 NDVI time series is dominated
by undetected sub-pixel clouds, which in turn
may point to an insufficient cloud filtering.

5 Summary

We have evaluated two new vegetation pa-
rameters, SIF and CSC, with respect to their
prospects and drawbacks for the monitoring
of vegetation dynamics and productivity in
the central Amazon Basin. For this purpose,
we have used data derived from currently op-
erating satellite sensors as well as simulated
data from the MOMO and the FLiES radiative
transfer models.

The comparison between OCO-2 and
GOME-2 SIF emphasizes the instantaneous
nature of SIF measurements. The annual cycle
is closely related to illumination conditions at
the overpass time (instantaneous PAR). To
this end, OCO-2 and GOME-2 SIF show con-
sistent seasonal cycles, and a strong agreement
in terms of absolute values when correcting
SIF for differences in illumination angle and
wavelength.  We have illustrated that the
seasonality of daily averaged illumination is
in general not represented by the seasonality
The GOME-2
overpass time around 9:30 LST appears to
be an exception, its seasonality is indeed
representative for variations in PAR (based on
3-hourly data) on the monthly time scale. A
drawback of using SIF in the Amazon region
arises from the South Atlantic Anomaly, as
increased noise requires a strict filtering and
leads to a considerably reduced number of
reliable SIF retrievals. Nevertheless, large-
scale averages of GOME-2 SIF reveal two
distinct contributions to the seasonality of
photosynthetic activity. First, the dominant
seasonality is associated with variations in
PAR with a peak in October. Second, a
peak around January/February indicates an
increase in photosynthetic activity, which is
not directly linked to seasonal variations in
PAR or precipitation and may be associated
with leaf age effects and variations in the
vertical canopy structure. The wet season
peak becomes even more pronounced (forming
the annual maximum) as SIF is normalized.
Our analysis of phase angle effects provides
evidence for a significant impact of the hot
spot effect on GOME-2 SIF data.

Contrastingly, CSC appears to be highly in-
dependent of sun-sensor geometry or atmo-
spheric effects. Compared to NDVI, a major

of instantaneous illumination.
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benefit of CSC for the monitoring of dense veg-
etation lies in the reversed saturation. How-
ever, the slight response to LAI variations lim-
its the informative value regarding the assess-
ment of actual leaf properties. We have found
an overall low variability of CSC from GOME-
2 data within the central Amazon Basin, while
a relatively high spatial standard deviation
points to a high degree of spatial heterogene-
ity. Nevertheless, it should be noted that the
seasonality of CSC could also be explained by
cloud contamination in combination with vari-
ations in LAIL

The frequent cloud cover in tropical rain-
forests in combination with the relatively large
pixel size of GOME-2 complicates the analysis,
because undetected sub-pixel clouds and areas
of less dense vegetation are likely to occur. The
comparison between GOME-2 NDVI and sim-
ulated/MODIS NDVI suggests that cloud con-
tamination represents the most limiting factor
of our study, although both SIF and CSC are
significantly less affected by fractional cloud-
cover than traditional VIs. However, further
studies are needed to fully exploit the poten-
tial of space-based SIF and CSC observations
in the Amazon region. Even though OCO-
2 already provides a fine spatial sampling in
case of SIF, it is nevertheless crucial that si-
multaneous and spatially continuous retrievals
of both SIF and CSC will also be possible
for the next generation of satellite instruments
with a similar spectral resolution/coverage as
GOME-2.  These instruments/satellites in-
clude the TROPOspheric Monitoring Instru-
ment (TROPOMI; 7 km x 7 km, Veefkind et al.,
2012) and the FLuorescence EXplorer (FLEX,
0.3 km x 0.3 km; Rascher et al., 2008).
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A Radiative transfer simulation of SIF and bidirectional re-
flectance

A three-dimensional Monte Carlo ray-tracing radiative transfer simulation was performed to examine the cause
of seasonality in satellite SIF and spectral reflectance in a region within the Amazon Basin. In this study, a
spatially explicit three-dimensional model, the Forest Light Environmental Simulator (FLIiES), was employed to
simulate SIF and spectral bidirectional reflectance seasonality in the wavelength between 650 and 850 nm with
a 10 nm interval (Kobayashi and Iwabuchi, 2008; Kobayashi, 2015a, source code: http://flies.sakura.ne.jp/
WP/radiative-transfer-code/).

FLiES is capable of simulating exact higher order photon scattering under the heterogeneous landscape
created by 3D tree objects. When the photons intersected the crowns, we determined the photon path
length inside the crowns. The photon path lengths and the scattering directions were determined by ran-
dom numbers according to a probability distribution function of Lambert—Beers law and a scattering phase
function. For the bidirectional reflectance simulation, ray-tracing was initiated from the top of canopy. For
the SIF simulation, ray-tracing was initiated on the leaf surface within crowns: The initial positions of pho-
tons were determined by the random number. While ray-tracing was performed, bidirectional reflectance and
SIF were computed by the local estimation method, which samples the reflectance contributions at every scat-
tering event. The performance and reliability of FLiES for simulating light transmittance through a canopy
and bidirectional reflectance factors have been investigated in previous works (Widlowski et al., 2011, 2013).

Required inputs for the model include simulated forest

A landscape data including individual tree position and

size. The shape of the tree crown was abstracted as a

spheroid and the crown objects were divided into two

domains: The outer domains were filled with leaves

and inner domains were filled with woody materials.

Forest landscape data were constructed based on the

empirical forest structure model by Yang et al. (2017).

1 OOm The foresf simulation includes a tree density of 2398

trees ha™ ", a canopy height of 5 to 50 m following a

Weibull distribution and a 99% crown cover. The pa-

rameters of the forest structure dynamics model were

determined based on the allometric relationships ob-

tained in tropical forests. Figure 1 shows the nadir

view of the constructed forest landscape used in the ra-

v diative transfer simulation. We adopted the boundary

-« > conditions from the sun-sensor geometry of GOME-

1 O Om 2 (Sect. 2.7) in combination with monthly averages

of the LAT data set for 2014 (Fig. 2 C). Specifically,

monthly averages of the solar zenith angle represent

Figure 1: The forest landscape for radiative transfer sim- a simplified annual cycle of illumination, whereas all

ulation. discrete viewing zenith angles as well as averages of

the two separate regimes of the relative azimuth angle

represent the observation geometry (Fig. 2 A & B).

The LAI ranges from 4.02 to 5.39 units, incorporating

a changing canopy structure (Fig. 2 C). Optical parameters consist of a broadleaf type leaf spectral reflectance

and transmittance, woody reflectance (medium reflectivity), and soil reflectance (medium reflectivity) data sets

(Fig. 3). These optical data were compiled from the existing literature and publicly available data sets (Kobayashi,
2015b).
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Figure 2: Radiative transfer simulation conditions.

A: Monthly solar zenith angle, B: Relative azimuth an-
gle between sun and GOME-2 sensor, and C: Seasonal
landscape scale LAI.

The broadband SIF (integral between 600-800 nm) ra-
diance coming from the leaf surface was derived by
the fluorescence yield ¢F, which has been computed
based on the fluorescence parameterization framework
from van der Tol et al. (2014) in combination with the
photosynthesis model by Farquhar et al. (1980) (see
red line in Fig. 4). Then, the broadband SIF radiance
was converted to spectral SIF radiances at adaxial and
abaxial leave sides using the FluorMODleaf (Pedrds
et al., 2010) module, which is embedded in the Fluor-
MODgui software (Zarco-Tejada et al., 2006). For pho-
tosynthesis and broadband SIF simulations, we used a
leaf temperature range of 25-36°C, a relative humid-
ity of 50-95%, and a photosynthetically photon flux
density (PPFD) ranging from 0-2000 pgmol m™2 s 1.
The maximum carboxylation capacity (Vcmax) was
set to 50 pmol m~2 s~!, according to the Vemax of
the canopy’s top leaves measured by Carswell et al.
(2000). We used the Vemax of the canopy’s top layer
leaves, because those leaves (mostly sunlit) are ex-
pected to contribute the most to canopy scale broad-
band SIF. In this study, leaf demography variations
(seasonal changes in the amount of leaves in each leaf-
age class) as observed by Wu et al. (2016) were not
incorporated. For the conversion from broadband to
spectral SIF with FluorMODleaf, we used a leaf inter-
nal structure parameter of 1.5, chlorophyll a+b con-
tent of 80 g cm™2, leaf water content of 0.025 cm,
dry matter content of 0.01 g cm~2, and a fluorescence
quantum efficiency of 0.04 as input parameters. All
leaves (sunlit/shaded) in the canopy were assumed to
have the same fluorescence yield ¢F, which depends
only on the PAR level as shown in Fig. 4. This sim-
plification will likely affect our results, because ¢F is
in general different for sunlit and shaded leaves. How-
ever, the contribution of shaded leaves to canopy scale
SIF in our simulation is rather low (0.32, data are not
shown). This means the sunlit contribution dominates,
while uncertainties in the SIF yield of shaded leaves
represent only a second order effect. Also, a thereby

introduced error affects absolute SIF values rather than seasonal patterns, which is our main objective here.
Incident PAR on the leaf surface was computed by the atmospheric module of FLiES. The atmospheric condition
is characterized by a tropical temperature profile and a continental aerosol model with an aerosol optical thickness
of 0.2 for a cloud-free sky. All of the aforementioned assumptions are likely to deviate from real conditions, which
will eventually translate into differences between satellite observations and radiative transfer modeling. However,
this strategy enables us to compare a realistic baseline SIF time series under controlled conditions with satellite-

based measurements of SIF.
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Figure 3: Leaf reflectance and transmittance,

woody reflectance and soil reflectance. Figure 4: Leaf level fluorescence yield used in this

study.
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