From 27627929528e24a547d1058a5444b35491057a56 Mon Sep 17 00:00:00 2001 From: Tom Lane Date: Thu, 19 Dec 2024 16:23:45 -0500 Subject: Convert SetOp to read its inputs as outerPlan and innerPlan. The original design for set operations involved appending the two input relations into one and adding a flag column that allows distinguishing which side each row came from. Then the SetOp node pries them apart again based on the flag. This is bizarre. The only apparent reason to do it is that when sorting, we'd only need one Sort node not two. But since sorting is at least O(N log N), sorting all the data is actually worse than sorting each side separately --- plus, we have no chance of taking advantage of presorted input. On top of that, adding the flag column frequently requires an additional projection step that adds cycles, and then the Append node isn't free either. Let's get rid of all of that and make the SetOp node have two separate children, using the existing outerPlan/innerPlan infrastructure. This initial patch re-implements nodeSetop.c and does a bare minimum of work on the planner side to generate correctly-shaped plans. In particular, I've tried not to change the cost estimates here, so that the visible changes in the regression test results will only involve removal of useless projection steps and not any changes in whether to use sorted vs hashed mode. For SORTED mode, we combine successive identical tuples from each input into groups, and then merge-join the groups. The tuple comparisons now use SortSupport instead of simple equality, but the group-formation part should involve roughly the same number of tuple comparisons as before. The cross-comparisons between left and right groups probably add to that, but I'm not sure to quantify how many more comparisons we might need. For HASHED mode, nodeSetop's logic is almost the same as before, just refactored into two separate loops instead of one loop that has an assumption that it will see all the left-hand inputs first. In both modes, I added early-exit logic to not bother reading the right-hand relation if the left-hand input is empty, since neither INTERSECT nor EXCEPT modes can produce any output if the left input is empty. This could have been done before in the hashed mode, but not in sorted mode. Sorted mode can also stop as soon as it exhausts the left input; any remaining right-hand tuples cannot have matches. Also, this patch adds some infrastructure for detecting whether child plan nodes all output the same type of tuple table slot. If they do, the hash table logic can use slightly more efficient code based on assuming that that's the input slot type it will see. We'll make use of that infrastructure in other plan node types later. Patch by me; thanks to Richard Guo and David Rowley for review. Discussion: https://postgr.es/m/1850138.1731549611@sss.pgh.pa.us --- src/backend/executor/execUtils.c | 43 +++ src/backend/executor/nodeSetOp.c | 537 ++++++++++++++++++-------------- src/backend/optimizer/README | 2 +- src/backend/optimizer/plan/createplan.c | 81 ++--- src/backend/optimizer/prep/prepunion.c | 156 ++++++---- src/backend/optimizer/util/pathnode.c | 50 +-- 6 files changed, 516 insertions(+), 353 deletions(-) (limited to 'src/backend') diff --git a/src/backend/executor/execUtils.c b/src/backend/executor/execUtils.c index 740e8fb1486..df0223129c4 100644 --- a/src/backend/executor/execUtils.c +++ b/src/backend/executor/execUtils.c @@ -526,6 +526,49 @@ ExecGetResultSlotOps(PlanState *planstate, bool *isfixed) return planstate->ps_ResultTupleSlot->tts_ops; } +/* + * ExecGetCommonSlotOps - identify common result slot type, if any + * + * If all the given PlanState nodes return the same fixed tuple slot type, + * return the slot ops struct for that slot type. Else, return NULL. + */ +const TupleTableSlotOps * +ExecGetCommonSlotOps(PlanState **planstates, int nplans) +{ + const TupleTableSlotOps *result; + bool isfixed; + + if (nplans <= 0) + return NULL; + result = ExecGetResultSlotOps(planstates[0], &isfixed); + if (!isfixed) + return NULL; + for (int i = 1; i < nplans; i++) + { + const TupleTableSlotOps *thisops; + + thisops = ExecGetResultSlotOps(planstates[i], &isfixed); + if (!isfixed) + return NULL; + if (result != thisops) + return NULL; + } + return result; +} + +/* + * ExecGetCommonChildSlotOps - as above, for the PlanState's standard children + */ +const TupleTableSlotOps * +ExecGetCommonChildSlotOps(PlanState *ps) +{ + PlanState *planstates[2]; + + planstates[0] = outerPlanState(ps); + planstates[1] = innerPlanState(ps); + return ExecGetCommonSlotOps(planstates, 2); +} + /* ---------------- * ExecAssignProjectionInfo diff --git a/src/backend/executor/nodeSetOp.c b/src/backend/executor/nodeSetOp.c index b40d81f3ffa..09089204e8b 100644 --- a/src/backend/executor/nodeSetOp.c +++ b/src/backend/executor/nodeSetOp.c @@ -3,29 +3,30 @@ * nodeSetOp.c * Routines to handle INTERSECT and EXCEPT selection * - * The input of a SetOp node consists of tuples from two relations, - * which have been combined into one dataset, with a junk attribute added - * that shows which relation each tuple came from. In SETOP_SORTED mode, - * the input has furthermore been sorted according to all the grouping - * columns (ie, all the non-junk attributes). The SetOp node scans each - * group of identical tuples to determine how many came from each input - * relation. Then it is a simple matter to emit the output demanded by the - * SQL spec for INTERSECT, INTERSECT ALL, EXCEPT, or EXCEPT ALL. + * The input of a SetOp node consists of two relations (outer and inner) + * with identical column sets. In EXCEPT queries the outer relation is + * always the left side, while in INTERSECT cases the planner tries to + * make the outer relation be the smaller of the two inputs. * - * In SETOP_HASHED mode, the input is delivered in no particular order, - * except that we know all the tuples from one input relation will come before - * all the tuples of the other. The planner guarantees that the first input - * relation is the left-hand one for EXCEPT, and tries to make the smaller - * input relation come first for INTERSECT. We build a hash table in memory - * with one entry for each group of identical tuples, and count the number of - * tuples in the group from each relation. After seeing all the input, we - * scan the hashtable and generate the correct output using those counts. - * We can avoid making hashtable entries for any tuples appearing only in the - * second input relation, since they cannot result in any output. + * In SETOP_SORTED mode, each input has been sorted according to all the + * grouping columns. The SetOp node essentially performs a merge join on + * the grouping columns, except that it is only interested in counting how + * many tuples from each input match. Then it is a simple matter to emit + * the output demanded by the SQL spec for INTERSECT, INTERSECT ALL, EXCEPT, + * or EXCEPT ALL. + * + * In SETOP_HASHED mode, the inputs are delivered in no particular order. + * We read the outer relation and build a hash table in memory with one entry + * for each group of identical tuples, counting the number of tuples in the + * group. Then we read the inner relation and count the number of tuples + * matching each outer group. (We can disregard any tuples appearing only + * in the inner relation, since they cannot result in any output.) After + * seeing all the input, we scan the hashtable and generate the correct + * output using those counts. * * This node type is not used for UNION or UNION ALL, since those can be - * implemented more cheaply (there's no need for the junk attribute to - * identify the source relation). + * implemented more cheaply (there's no need to count the number of + * matching tuples). * * Note that SetOp does no qual checking nor projection. The delivered * output tuples are just copies of the first-to-arrive tuple in each @@ -54,65 +55,28 @@ /* * SetOpStatePerGroupData - per-group working state * - * These values are working state that is initialized at the start of - * an input tuple group and updated for each input tuple. - * - * In SETOP_SORTED mode, we need only one of these structs, and it's kept in - * the plan state node. In SETOP_HASHED mode, the hash table contains one - * of these for each tuple group. + * In SETOP_SORTED mode, we need only one of these structs, and it's just a + * local in setop_retrieve_sorted. In SETOP_HASHED mode, the hash table + * contains one of these for each tuple group. */ typedef struct SetOpStatePerGroupData { - long numLeft; /* number of left-input dups in group */ - long numRight; /* number of right-input dups in group */ -} SetOpStatePerGroupData; + int64 numLeft; /* number of left-input dups in group */ + int64 numRight; /* number of right-input dups in group */ +} SetOpStatePerGroupData; + +typedef SetOpStatePerGroupData *SetOpStatePerGroup; -static TupleTableSlot *setop_retrieve_direct(SetOpState *setopstate); +static TupleTableSlot *setop_retrieve_sorted(SetOpState *setopstate); +static void setop_load_group(SetOpStatePerInput *input, PlanState *inputPlan, + SetOpState *setopstate); +static int setop_compare_slots(TupleTableSlot *s1, TupleTableSlot *s2, + SetOpState *setopstate); static void setop_fill_hash_table(SetOpState *setopstate); static TupleTableSlot *setop_retrieve_hash_table(SetOpState *setopstate); -/* - * Initialize state for a new group of input values. - */ -static inline void -initialize_counts(SetOpStatePerGroup pergroup) -{ - pergroup->numLeft = pergroup->numRight = 0; -} - -/* - * Advance the appropriate counter for one input tuple. - */ -static inline void -advance_counts(SetOpStatePerGroup pergroup, int flag) -{ - if (flag) - pergroup->numRight++; - else - pergroup->numLeft++; -} - -/* - * Fetch the "flag" column from an input tuple. - * This is an integer column with value 0 for left side, 1 for right side. - */ -static int -fetch_tuple_flag(SetOpState *setopstate, TupleTableSlot *inputslot) -{ - SetOp *node = (SetOp *) setopstate->ps.plan; - int flag; - bool isNull; - - flag = DatumGetInt32(slot_getattr(inputslot, - node->flagColIdx, - &isNull)); - Assert(!isNull); - Assert(flag == 0 || flag == 1); - return flag; -} - /* * Initialize the hash table to empty. */ @@ -126,14 +90,19 @@ build_hash_table(SetOpState *setopstate) Assert(node->strategy == SETOP_HASHED); Assert(node->numGroups > 0); + /* + * If both child plans deliver the same fixed tuple slot type, we can tell + * BuildTupleHashTableExt to expect that slot type as input. Otherwise, + * we'll pass NULL denoting that any slot type is possible. + */ setopstate->hashtable = BuildTupleHashTableExt(&setopstate->ps, desc, - NULL, + ExecGetCommonChildSlotOps(&setopstate->ps), node->numCols, - node->dupColIdx, + node->cmpColIdx, setopstate->eqfuncoids, setopstate->hashfunctions, - node->dupCollations, + node->cmpCollations, node->numGroups, 0, setopstate->ps.state->es_query_cxt, @@ -218,108 +187,126 @@ ExecSetOp(PlanState *pstate) return setop_retrieve_hash_table(node); } else - return setop_retrieve_direct(node); + return setop_retrieve_sorted(node); } /* * ExecSetOp for non-hashed case */ static TupleTableSlot * -setop_retrieve_direct(SetOpState *setopstate) +setop_retrieve_sorted(SetOpState *setopstate) { PlanState *outerPlan; - SetOpStatePerGroup pergroup; - TupleTableSlot *outerslot; + PlanState *innerPlan; TupleTableSlot *resultTupleSlot; - ExprContext *econtext = setopstate->ps.ps_ExprContext; /* * get state info from node */ outerPlan = outerPlanState(setopstate); - pergroup = (SetOpStatePerGroup) setopstate->pergroup; + innerPlan = innerPlanState(setopstate); resultTupleSlot = setopstate->ps.ps_ResultTupleSlot; /* - * We loop retrieving groups until we find one we should return + * If first time through, establish the invariant that setop_load_group + * expects: each side's nextTupleSlot is the next output from the child + * plan, or empty if there is no more output from it. */ - while (!setopstate->setop_done) + if (setopstate->need_init) { + setopstate->need_init = false; + + setopstate->leftInput.nextTupleSlot = ExecProcNode(outerPlan); + /* - * If we don't already have the first tuple of the new group, fetch it - * from the outer plan. + * If the outer relation is empty, then we will emit nothing, and we + * don't need to read the inner relation at all. */ - if (setopstate->grp_firstTuple == NULL) + if (TupIsNull(setopstate->leftInput.nextTupleSlot)) { - outerslot = ExecProcNode(outerPlan); - if (!TupIsNull(outerslot)) - { - /* Make a copy of the first input tuple */ - setopstate->grp_firstTuple = ExecCopySlotHeapTuple(outerslot); - } - else - { - /* outer plan produced no tuples at all */ - setopstate->setop_done = true; - return NULL; - } + setopstate->setop_done = true; + return NULL; } + setopstate->rightInput.nextTupleSlot = ExecProcNode(innerPlan); + + /* Set flags that we've not completed either side's group */ + setopstate->leftInput.needGroup = true; + setopstate->rightInput.needGroup = true; + } + + /* + * We loop retrieving groups until we find one we should return + */ + while (!setopstate->setop_done) + { + int cmpresult; + SetOpStatePerGroupData pergroup; + /* - * Store the copied first input tuple in the tuple table slot reserved - * for it. The tuple will be deleted when it is cleared from the - * slot. + * Fetch the rest of the current outer group, if we didn't already. */ - ExecStoreHeapTuple(setopstate->grp_firstTuple, - resultTupleSlot, - true); - setopstate->grp_firstTuple = NULL; /* don't keep two pointers */ + if (setopstate->leftInput.needGroup) + setop_load_group(&setopstate->leftInput, outerPlan, setopstate); - /* Initialize working state for a new input tuple group */ - initialize_counts(pergroup); + /* + * If no more outer groups, we're done, and don't need to look at any + * more of the inner relation. + */ + if (setopstate->leftInput.numTuples == 0) + { + setopstate->setop_done = true; + break; + } - /* Count the first input tuple */ - advance_counts(pergroup, - fetch_tuple_flag(setopstate, resultTupleSlot)); + /* + * Fetch the rest of the current inner group, if we didn't already. + */ + if (setopstate->rightInput.needGroup) + setop_load_group(&setopstate->rightInput, innerPlan, setopstate); /* - * Scan the outer plan until we exhaust it or cross a group boundary. + * Determine whether we have matching groups on both sides (this is + * basically like the core logic of a merge join). */ - for (;;) - { - outerslot = ExecProcNode(outerPlan); - if (TupIsNull(outerslot)) - { - /* no more outer-plan tuples available */ - setopstate->setop_done = true; - break; - } - - /* - * Check whether we've crossed a group boundary. - */ - econtext->ecxt_outertuple = resultTupleSlot; - econtext->ecxt_innertuple = outerslot; - - if (!ExecQualAndReset(setopstate->eqfunction, econtext)) - { - /* - * Save the first input tuple of the next group. - */ - setopstate->grp_firstTuple = ExecCopySlotHeapTuple(outerslot); - break; - } + if (setopstate->rightInput.numTuples == 0) + cmpresult = -1; /* as though left input is lesser */ + else + cmpresult = setop_compare_slots(setopstate->leftInput.firstTupleSlot, + setopstate->rightInput.firstTupleSlot, + setopstate); - /* Still in same group, so count this tuple */ - advance_counts(pergroup, - fetch_tuple_flag(setopstate, outerslot)); + if (cmpresult < 0) + { + /* Left group is first, and has no right matches */ + pergroup.numLeft = setopstate->leftInput.numTuples; + pergroup.numRight = 0; + /* We'll need another left group next time */ + setopstate->leftInput.needGroup = true; + } + else if (cmpresult == 0) + { + /* We have matching groups */ + pergroup.numLeft = setopstate->leftInput.numTuples; + pergroup.numRight = setopstate->rightInput.numTuples; + /* We'll need to read from both sides next time */ + setopstate->leftInput.needGroup = true; + setopstate->rightInput.needGroup = true; + } + else + { + /* Right group has no left matches, so we can ignore it */ + setopstate->rightInput.needGroup = true; + continue; } /* - * Done scanning input tuple group. See if we should emit any copies - * of result tuple, and if so return the first copy. + * Done scanning these input tuple groups. See if we should emit any + * copies of result tuple, and if so return the first copy. (Note + * that the result tuple is the same as the left input's firstTuple + * slot.) */ - set_output_count(setopstate, pergroup); + set_output_count(setopstate, &pergroup); if (setopstate->numOutput > 0) { @@ -334,84 +321,168 @@ setop_retrieve_direct(SetOpState *setopstate) } /* - * ExecSetOp for hashed case: phase 1, read input and build hash table + * Load next group of tuples from one child plan or the other. + * + * On entry, we've already read the first tuple of the next group + * (if there is one) into input->nextTupleSlot. This invariant + * is maintained on exit. + */ +static void +setop_load_group(SetOpStatePerInput *input, PlanState *inputPlan, + SetOpState *setopstate) +{ + input->needGroup = false; + + /* If we've exhausted this child plan, report an empty group */ + if (TupIsNull(input->nextTupleSlot)) + { + ExecClearTuple(input->firstTupleSlot); + input->numTuples = 0; + return; + } + + /* Make a local copy of the first tuple for comparisons */ + ExecStoreMinimalTuple(ExecCopySlotMinimalTuple(input->nextTupleSlot), + input->firstTupleSlot, + true); + /* and count it */ + input->numTuples = 1; + + /* Scan till we find the end-of-group */ + for (;;) + { + int cmpresult; + + /* Get next input tuple, if there is one */ + input->nextTupleSlot = ExecProcNode(inputPlan); + if (TupIsNull(input->nextTupleSlot)) + break; + + /* There is; does it belong to same group as firstTuple? */ + cmpresult = setop_compare_slots(input->firstTupleSlot, + input->nextTupleSlot, + setopstate); + Assert(cmpresult <= 0); /* else input is mis-sorted */ + if (cmpresult != 0) + break; + + /* Still in same group, so count this tuple */ + input->numTuples++; + } +} + +/* + * Compare the tuples in the two given slots. + */ +static int +setop_compare_slots(TupleTableSlot *s1, TupleTableSlot *s2, + SetOpState *setopstate) +{ + /* We'll often need to fetch all the columns, so just do it */ + slot_getallattrs(s1); + slot_getallattrs(s2); + for (int nkey = 0; nkey < setopstate->numCols; nkey++) + { + SortSupport sortKey = setopstate->sortKeys + nkey; + AttrNumber attno = sortKey->ssup_attno; + Datum datum1 = s1->tts_values[attno - 1], + datum2 = s2->tts_values[attno - 1]; + bool isNull1 = s1->tts_isnull[attno - 1], + isNull2 = s2->tts_isnull[attno - 1]; + int compare; + + compare = ApplySortComparator(datum1, isNull1, + datum2, isNull2, + sortKey); + if (compare != 0) + return compare; + } + return 0; +} + +/* + * ExecSetOp for hashed case: phase 1, read inputs and build hash table */ static void setop_fill_hash_table(SetOpState *setopstate) { - SetOp *node = (SetOp *) setopstate->ps.plan; PlanState *outerPlan; - int firstFlag; - bool in_first_rel PG_USED_FOR_ASSERTS_ONLY; + PlanState *innerPlan; ExprContext *econtext = setopstate->ps.ps_ExprContext; + bool have_tuples = false; /* * get state info from node */ outerPlan = outerPlanState(setopstate); - firstFlag = node->firstFlag; - /* verify planner didn't mess up */ - Assert(firstFlag == 0 || - (firstFlag == 1 && - (node->cmd == SETOPCMD_INTERSECT || - node->cmd == SETOPCMD_INTERSECT_ALL))); + innerPlan = innerPlanState(setopstate); /* * Process each outer-plan tuple, and then fetch the next one, until we * exhaust the outer plan. */ - in_first_rel = true; for (;;) { TupleTableSlot *outerslot; - int flag; TupleHashEntryData *entry; bool isnew; outerslot = ExecProcNode(outerPlan); if (TupIsNull(outerslot)) break; + have_tuples = true; - /* Identify whether it's left or right input */ - flag = fetch_tuple_flag(setopstate, outerslot); + /* Find or build hashtable entry for this tuple's group */ + entry = LookupTupleHashEntry(setopstate->hashtable, + outerslot, + &isnew, NULL); - if (flag == firstFlag) + /* If new tuple group, initialize counts to zero */ + if (isnew) { - /* (still) in first input relation */ - Assert(in_first_rel); - - /* Find or build hashtable entry for this tuple's group */ - entry = LookupTupleHashEntry(setopstate->hashtable, outerslot, - &isnew, NULL); - - /* If new tuple group, initialize counts */ - if (isnew) - { - entry->additional = (SetOpStatePerGroup) - MemoryContextAlloc(setopstate->hashtable->tablecxt, + entry->additional = (SetOpStatePerGroup) + MemoryContextAllocZero(setopstate->hashtable->tablecxt, sizeof(SetOpStatePerGroupData)); - initialize_counts((SetOpStatePerGroup) entry->additional); - } - - /* Advance the counts */ - advance_counts((SetOpStatePerGroup) entry->additional, flag); } - else + + /* Advance the counts */ + ((SetOpStatePerGroup) entry->additional)->numLeft++; + + /* Must reset expression context after each hashtable lookup */ + ResetExprContext(econtext); + } + + /* + * If the outer relation is empty, then we will emit nothing, and we don't + * need to read the inner relation at all. + */ + if (have_tuples) + { + /* + * Process each inner-plan tuple, and then fetch the next one, until + * we exhaust the inner plan. + */ + for (;;) { - /* reached second relation */ - in_first_rel = false; + TupleTableSlot *innerslot; + TupleHashEntryData *entry; + + innerslot = ExecProcNode(innerPlan); + if (TupIsNull(innerslot)) + break; /* For tuples not seen previously, do not make hashtable entry */ - entry = LookupTupleHashEntry(setopstate->hashtable, outerslot, + entry = LookupTupleHashEntry(setopstate->hashtable, + innerslot, NULL, NULL); /* Advance the counts if entry is already present */ if (entry) - advance_counts((SetOpStatePerGroup) entry->additional, flag); - } + ((SetOpStatePerGroup) entry->additional)->numRight++; - /* Must reset expression context after each hashtable lookup */ - ResetExprContext(econtext); + /* Must reset expression context after each hashtable lookup */ + ResetExprContext(econtext); + } } setopstate->table_filled = true; @@ -482,7 +553,6 @@ SetOpState * ExecInitSetOp(SetOp *node, EState *estate, int eflags) { SetOpState *setopstate; - TupleDesc outerDesc; /* check for unsupported flags */ Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK))); @@ -495,14 +565,10 @@ ExecInitSetOp(SetOp *node, EState *estate, int eflags) setopstate->ps.state = estate; setopstate->ps.ExecProcNode = ExecSetOp; - setopstate->eqfuncoids = NULL; - setopstate->hashfunctions = NULL; setopstate->setop_done = false; setopstate->numOutput = 0; - setopstate->pergroup = NULL; - setopstate->grp_firstTuple = NULL; - setopstate->hashtable = NULL; - setopstate->tableContext = NULL; + setopstate->numCols = node->numCols; + setopstate->need_init = true; /* * create expression context @@ -523,52 +589,72 @@ ExecInitSetOp(SetOp *node, EState *estate, int eflags) /* * initialize child nodes * - * If we are hashing then the child plan does not need to handle REWIND + * If we are hashing then the child plans do not need to handle REWIND * efficiently; see ExecReScanSetOp. */ if (node->strategy == SETOP_HASHED) eflags &= ~EXEC_FLAG_REWIND; outerPlanState(setopstate) = ExecInitNode(outerPlan(node), estate, eflags); - outerDesc = ExecGetResultType(outerPlanState(setopstate)); + innerPlanState(setopstate) = ExecInitNode(innerPlan(node), estate, eflags); /* - * Initialize result slot and type. Setop nodes do no projections, so - * initialize projection info for this node appropriately. + * Initialize locally-allocated slots. In hashed mode, we just need a + * result slot. In sorted mode, we need one first-tuple-of-group slot for + * each input; we use the result slot for the left input's slot and create + * another for the right input. (Note: the nextTupleSlot slots are not + * ours, but just point to the last slot returned by the input plan node.) */ - ExecInitResultTupleSlotTL(&setopstate->ps, - node->strategy == SETOP_HASHED ? - &TTSOpsMinimalTuple : &TTSOpsHeapTuple); + ExecInitResultTupleSlotTL(&setopstate->ps, &TTSOpsMinimalTuple); + if (node->strategy != SETOP_HASHED) + { + setopstate->leftInput.firstTupleSlot = + setopstate->ps.ps_ResultTupleSlot; + setopstate->rightInput.firstTupleSlot = + ExecInitExtraTupleSlot(estate, + setopstate->ps.ps_ResultTupleDesc, + &TTSOpsMinimalTuple); + } + + /* Setop nodes do no projections. */ setopstate->ps.ps_ProjInfo = NULL; /* - * Precompute fmgr lookup data for inner loop. We need both equality and - * hashing functions to do it by hashing, but only equality if not - * hashing. + * Precompute fmgr lookup data for inner loop. We need equality and + * hashing functions to do it by hashing, while for sorting we need + * SortSupport data. */ if (node->strategy == SETOP_HASHED) execTuplesHashPrepare(node->numCols, - node->dupOperators, + node->cmpOperators, &setopstate->eqfuncoids, &setopstate->hashfunctions); else - setopstate->eqfunction = - execTuplesMatchPrepare(outerDesc, - node->numCols, - node->dupColIdx, - node->dupOperators, - node->dupCollations, - &setopstate->ps); + { + int nkeys = node->numCols; + + setopstate->sortKeys = (SortSupport) + palloc0(nkeys * sizeof(SortSupportData)); + for (int i = 0; i < nkeys; i++) + { + SortSupport sortKey = setopstate->sortKeys + i; + + sortKey->ssup_cxt = CurrentMemoryContext; + sortKey->ssup_collation = node->cmpCollations[i]; + sortKey->ssup_nulls_first = node->cmpNullsFirst[i]; + sortKey->ssup_attno = node->cmpColIdx[i]; + /* abbreviated key conversion is not useful here */ + sortKey->abbreviate = false; + PrepareSortSupportFromOrderingOp(node->cmpOperators[i], sortKey); + } + } + + /* Create a hash table if needed */ if (node->strategy == SETOP_HASHED) { build_hash_table(setopstate); setopstate->table_filled = false; } - else - { - setopstate->pergroup = - (SetOpStatePerGroup) palloc0(sizeof(SetOpStatePerGroupData)); - } return setopstate; } @@ -576,7 +662,7 @@ ExecInitSetOp(SetOp *node, EState *estate, int eflags) /* ---------------------------------------------------------------- * ExecEndSetOp * - * This shuts down the subplan and frees resources allocated + * This shuts down the subplans and frees resources allocated * to this node. * ---------------------------------------------------------------- */ @@ -588,6 +674,7 @@ ExecEndSetOp(SetOpState *node) MemoryContextDelete(node->tableContext); ExecEndNode(outerPlanState(node)); + ExecEndNode(innerPlanState(node)); } @@ -595,6 +682,7 @@ void ExecReScanSetOp(SetOpState *node) { PlanState *outerPlan = outerPlanState(node); + PlanState *innerPlan = innerPlanState(node); ExecClearTuple(node->ps.ps_ResultTupleSlot); node->setop_done = false; @@ -612,34 +700,29 @@ ExecReScanSetOp(SetOpState *node) return; /* - * If we do have the hash table and the subplan does not have any + * If we do have the hash table and the subplans do not have any * parameter changes, then we can just rescan the existing hash table; * no need to build it again. */ - if (outerPlan->chgParam == NULL) + if (outerPlan->chgParam == NULL && innerPlan->chgParam == NULL) { ResetTupleHashIterator(node->hashtable, &node->hashiter); return; } - } - - /* Release first tuple of group, if we have made a copy */ - if (node->grp_firstTuple != NULL) - { - heap_freetuple(node->grp_firstTuple); - node->grp_firstTuple = NULL; - } - /* Release any hashtable storage */ - if (node->tableContext) - MemoryContextReset(node->tableContext); + /* Release any hashtable storage */ + if (node->tableContext) + MemoryContextReset(node->tableContext); - /* And rebuild empty hashtable if needed */ - if (((SetOp *) node->ps.plan)->strategy == SETOP_HASHED) - { + /* And rebuild an empty hashtable */ ResetTupleHashTable(node->hashtable); node->table_filled = false; } + else + { + /* Need to re-read first input from each side */ + node->need_init = true; + } /* * if chgParam of subnode is not null then plan will be re-scanned by @@ -647,4 +730,6 @@ ExecReScanSetOp(SetOpState *node) */ if (outerPlan->chgParam == NULL) ExecReScan(outerPlan); + if (innerPlan->chgParam == NULL) + ExecReScan(innerPlan); } diff --git a/src/backend/optimizer/README b/src/backend/optimizer/README index 2ab4f3dbf37..f341d9f303c 100644 --- a/src/backend/optimizer/README +++ b/src/backend/optimizer/README @@ -649,7 +649,7 @@ RelOptInfo - a relation or joined relations GroupingSetsPath - an Agg plan node used to implement GROUPING SETS MinMaxAggPath - a Result plan node with subplans performing MIN/MAX WindowAggPath - a WindowAgg plan node applied to some sub-path - SetOpPath - a SetOp plan node applied to some sub-path + SetOpPath - a SetOp plan node applied to two sub-paths RecursiveUnionPath - a RecursiveUnion plan node applied to two sub-paths LockRowsPath - a LockRows plan node applied to some sub-path ModifyTablePath - a ModifyTable plan node applied to some sub-path(s) diff --git a/src/backend/optimizer/plan/createplan.c b/src/backend/optimizer/plan/createplan.c index 178c572b021..b3e2294e84f 100644 --- a/src/backend/optimizer/plan/createplan.c +++ b/src/backend/optimizer/plan/createplan.c @@ -301,9 +301,9 @@ static Unique *make_unique_from_pathkeys(Plan *lefttree, List *pathkeys, int numCols); static Gather *make_gather(List *qptlist, List *qpqual, int nworkers, int rescan_param, bool single_copy, Plan *subplan); -static SetOp *make_setop(SetOpCmd cmd, SetOpStrategy strategy, Plan *lefttree, - List *distinctList, AttrNumber flagColIdx, int firstFlag, - long numGroups); +static SetOp *make_setop(SetOpCmd cmd, SetOpStrategy strategy, + List *tlist, Plan *lefttree, Plan *righttree, + List *groupList, long numGroups); static LockRows *make_lockrows(Plan *lefttree, List *rowMarks, int epqParam); static Result *make_result(List *tlist, Node *resconstantqual, Plan *subplan); static ProjectSet *make_project_set(List *tlist, Plan *subplan); @@ -2719,25 +2719,29 @@ static SetOp * create_setop_plan(PlannerInfo *root, SetOpPath *best_path, int flags) { SetOp *plan; - Plan *subplan; + List *tlist = build_path_tlist(root, &best_path->path); + Plan *leftplan; + Plan *rightplan; long numGroups; /* * SetOp doesn't project, so tlist requirements pass through; moreover we * need grouping columns to be labeled. */ - subplan = create_plan_recurse(root, best_path->subpath, - flags | CP_LABEL_TLIST); + leftplan = create_plan_recurse(root, best_path->leftpath, + flags | CP_LABEL_TLIST); + rightplan = create_plan_recurse(root, best_path->rightpath, + flags | CP_LABEL_TLIST); /* Convert numGroups to long int --- but 'ware overflow! */ numGroups = clamp_cardinality_to_long(best_path->numGroups); plan = make_setop(best_path->cmd, best_path->strategy, - subplan, - best_path->distinctList, - best_path->flagColIdx, - best_path->firstFlag, + tlist, + leftplan, + rightplan, + best_path->groupList, numGroups); copy_generic_path_info(&plan->plan, (Path *) best_path); @@ -6950,57 +6954,62 @@ make_gather(List *qptlist, } /* - * distinctList is a list of SortGroupClauses, identifying the targetlist - * items that should be considered by the SetOp filter. The input path must - * already be sorted accordingly. + * groupList is a list of SortGroupClauses, identifying the targetlist + * items that should be considered by the SetOp filter. The input plans must + * already be sorted accordingly, if we're doing SETOP_SORTED mode. */ static SetOp * -make_setop(SetOpCmd cmd, SetOpStrategy strategy, Plan *lefttree, - List *distinctList, AttrNumber flagColIdx, int firstFlag, - long numGroups) +make_setop(SetOpCmd cmd, SetOpStrategy strategy, + List *tlist, Plan *lefttree, Plan *righttree, + List *groupList, long numGroups) { SetOp *node = makeNode(SetOp); Plan *plan = &node->plan; - int numCols = list_length(distinctList); + int numCols = list_length(groupList); int keyno = 0; - AttrNumber *dupColIdx; - Oid *dupOperators; - Oid *dupCollations; + AttrNumber *cmpColIdx; + Oid *cmpOperators; + Oid *cmpCollations; + bool *cmpNullsFirst; ListCell *slitem; - plan->targetlist = lefttree->targetlist; + plan->targetlist = tlist; plan->qual = NIL; plan->lefttree = lefttree; - plan->righttree = NULL; + plan->righttree = righttree; /* - * convert SortGroupClause list into arrays of attr indexes and equality + * convert SortGroupClause list into arrays of attr indexes and comparison * operators, as wanted by executor */ - dupColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols); - dupOperators = (Oid *) palloc(sizeof(Oid) * numCols); - dupCollations = (Oid *) palloc(sizeof(Oid) * numCols); + cmpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols); + cmpOperators = (Oid *) palloc(sizeof(Oid) * numCols); + cmpCollations = (Oid *) palloc(sizeof(Oid) * numCols); + cmpNullsFirst = (bool *) palloc(sizeof(bool) * numCols); - foreach(slitem, distinctList) + foreach(slitem, groupList) { SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem); TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist); - dupColIdx[keyno] = tle->resno; - dupOperators[keyno] = sortcl->eqop; - dupCollations[keyno] = exprCollation((Node *) tle->expr); - Assert(OidIsValid(dupOperators[keyno])); + cmpColIdx[keyno] = tle->resno; + if (strategy == SETOP_HASHED) + cmpOperators[keyno] = sortcl->eqop; + else + cmpOperators[keyno] = sortcl->sortop; + Assert(OidIsValid(cmpOperators[keyno])); + cmpCollations[keyno] = exprCollation((Node *) tle->expr); + cmpNullsFirst[keyno] = sortcl->nulls_first; keyno++; } node->cmd = cmd; node->strategy = strategy; node->numCols = numCols; - node->dupColIdx = dupColIdx; - node->dupOperators = dupOperators; - node->dupCollations = dupCollations; - node->flagColIdx = flagColIdx; - node->firstFlag = firstFlag; + node->cmpColIdx = cmpColIdx; + node->cmpOperators = cmpOperators; + node->cmpCollations = cmpCollations; + node->cmpNullsFirst = cmpNullsFirst; node->numGroups = numGroups; return node; diff --git a/src/backend/optimizer/prep/prepunion.c b/src/backend/optimizer/prep/prepunion.c index 9c3822f19ad..1c43370005e 100644 --- a/src/backend/optimizer/prep/prepunion.c +++ b/src/backend/optimizer/prep/prepunion.c @@ -65,7 +65,7 @@ static List *plan_union_children(PlannerInfo *root, List **istrivial_tlist); static void postprocess_setop_rel(PlannerInfo *root, RelOptInfo *rel); static bool choose_hashed_setop(PlannerInfo *root, List *groupClauses, - Path *input_path, + Path *lpath, Path *rpath, double dNumGroups, double dNumOutputRows, const char *construct); static List *generate_setop_tlist(List *colTypes, List *colCollations, @@ -315,8 +315,8 @@ recurse_set_operations(Node *setOp, PlannerInfo *root, * to the corresponding tlist entries of the subplan. However, since * the subplan was generated by generate_union_paths() or * generate_nonunion_paths(), and hence its tlist was generated by - * generate_append_tlist(), this will work. We just tell - * generate_setop_tlist() to use varno 0. + * generate_append_tlist() or generate_setop_tlist(), this will work. + * We just tell generate_setop_tlist() to use varno 0. */ if (flag >= 0 || !tlist_same_datatypes(*pTargetList, colTypes, junkOK) || @@ -1028,29 +1028,27 @@ generate_nonunion_paths(SetOperationStmt *op, PlannerInfo *root, *path; List *lpath_tlist, *rpath_tlist, - *tlist_list, *tlist, - *groupList, - *pathlist; + *groupList; bool lpath_trivial_tlist, - rpath_trivial_tlist; + rpath_trivial_tlist, + result_trivial_tlist; double dLeftGroups, dRightGroups, dNumGroups, dNumOutputRows; bool use_hash; SetOpCmd cmd; - int firstFlag; /* * Tell children to fetch all tuples. */ root->tuple_fraction = 0.0; - /* Recurse on children, ensuring their outputs are marked */ + /* Recurse on children */ lrel = recurse_set_operations(op->larg, root, op->colTypes, op->colCollations, - false, 0, + false, -1, refnames_tlist, &lpath_tlist, &lpath_trivial_tlist); @@ -1060,10 +1058,9 @@ generate_nonunion_paths(SetOperationStmt *op, PlannerInfo *root, else dLeftGroups = lrel->rows; - lpath = lrel->cheapest_total_path; rrel = recurse_set_operations(op->rarg, root, op->colTypes, op->colCollations, - false, 1, + false, -1, refnames_tlist, &rpath_tlist, &rpath_trivial_tlist); @@ -1073,41 +1070,51 @@ generate_nonunion_paths(SetOperationStmt *op, PlannerInfo *root, else dRightGroups = rrel->rows; - rpath = rrel->cheapest_total_path; - /* Undo effects of forcing tuple_fraction to 0 */ root->tuple_fraction = save_fraction; /* * For EXCEPT, we must put the left input first. For INTERSECT, either * order should give the same results, and we prefer to put the smaller - * input first in order to minimize the size of the hash table in the - * hashing case. "Smaller" means the one with the fewer groups. + * input first in order to (a) minimize the size of the hash table in the + * hashing case, and (b) improve our chances of exploiting the executor's + * fast path for empty left-hand input. "Smaller" means the one with the + * fewer groups. */ - if (op->op == SETOP_EXCEPT || dLeftGroups <= dRightGroups) - { - pathlist = list_make2(lpath, rpath); - tlist_list = list_make2(lpath_tlist, rpath_tlist); - firstFlag = 0; - } - else + if (op->op != SETOP_EXCEPT && dLeftGroups > dRightGroups) { - pathlist = list_make2(rpath, lpath); - tlist_list = list_make2(rpath_tlist, lpath_tlist); - firstFlag = 1; + /* need to swap the two inputs */ + RelOptInfo *tmprel; + List *tmplist; + double tmpd; + + tmprel = lrel; + lrel = rrel; + rrel = tmprel; + tmplist = lpath_tlist; + lpath_tlist = rpath_tlist; + rpath_tlist = tmplist; + tmpd = dLeftGroups; + dLeftGroups = dRightGroups; + dRightGroups = tmpd; } + lpath = lrel->cheapest_total_path; + rpath = rrel->cheapest_total_path; + /* - * Generate tlist for Append plan node. + * Generate tlist for SetOp plan node. * - * The tlist for an Append plan isn't important as far as the Append is + * The tlist for a SetOp plan isn't important so far as the SetOp is * concerned, but we must make it look real anyway for the benefit of the - * next plan level up. In fact, it has to be real enough that the flag - * column is shown as a variable not a constant, else setrefs.c will get - * confused. + * next plan level up. */ - tlist = generate_append_tlist(op->colTypes, op->colCollations, true, - tlist_list, refnames_tlist); + tlist = generate_setop_tlist(op->colTypes, op->colCollations, -1, + 0, false, lpath_tlist, refnames_tlist, + &result_trivial_tlist); + + /* We should not have needed any type coercions in the tlist */ + Assert(result_trivial_tlist); *pTargetList = tlist; @@ -1116,12 +1123,6 @@ generate_nonunion_paths(SetOperationStmt *op, PlannerInfo *root, bms_union(lrel->relids, rrel->relids)); result_rel->reltarget = create_pathtarget(root, tlist); - /* - * Append the child results together. - */ - path = (Path *) create_append_path(root, result_rel, pathlist, NIL, - NIL, NULL, 0, false, -1); - /* Identify the grouping semantics */ groupList = generate_setop_grouplist(op, tlist); @@ -1140,25 +1141,40 @@ generate_nonunion_paths(SetOperationStmt *op, PlannerInfo *root, } else { - dNumGroups = Min(dLeftGroups, dRightGroups); + dNumGroups = dLeftGroups; dNumOutputRows = op->all ? Min(lpath->rows, rpath->rows) : dNumGroups; } /* - * Decide whether to hash or sort, and add a sort node if needed. + * Decide whether to hash or sort, and add sort nodes if needed. */ - use_hash = choose_hashed_setop(root, groupList, path, + use_hash = choose_hashed_setop(root, groupList, lpath, rpath, dNumGroups, dNumOutputRows, (op->op == SETOP_INTERSECT) ? "INTERSECT" : "EXCEPT"); if (groupList && !use_hash) - path = (Path *) create_sort_path(root, - result_rel, - path, - make_pathkeys_for_sortclauses(root, - groupList, - tlist), - -1.0); + { + List *pathkeys; + + pathkeys = make_pathkeys_for_sortclauses(root, + groupList, + lpath_tlist); + if (!pathkeys_contained_in(pathkeys, lpath->pathkeys)) + lpath = (Path *) create_sort_path(root, + lpath->parent, + lpath, + pathkeys, + -1.0); + pathkeys = make_pathkeys_for_sortclauses(root, + groupList, + rpath_tlist); + if (!pathkeys_contained_in(pathkeys, rpath->pathkeys)) + rpath = (Path *) create_sort_path(root, + rpath->parent, + rpath, + pathkeys, + -1.0); + } /* * Finally, add a SetOp path node to generate the correct output. @@ -1178,12 +1194,11 @@ generate_nonunion_paths(SetOperationStmt *op, PlannerInfo *root, } path = (Path *) create_setop_path(root, result_rel, - path, + lpath, + rpath, cmd, use_hash ? SETOP_HASHED : SETOP_SORTED, groupList, - list_length(op->colTypes) + 1, - use_hash ? firstFlag : -1, dNumGroups, dNumOutputRows); @@ -1285,10 +1300,13 @@ postprocess_setop_rel(PlannerInfo *root, RelOptInfo *rel) /* * choose_hashed_setop - should we use hashing for a set operation? + * + * XXX probably this should go away: just make both paths and let + * add_path sort it out. */ static bool choose_hashed_setop(PlannerInfo *root, List *groupClauses, - Path *input_path, + Path *lpath, Path *rpath, double dNumGroups, double dNumOutputRows, const char *construct) { @@ -1327,7 +1345,7 @@ choose_hashed_setop(PlannerInfo *root, List *groupClauses, * Don't do it if it doesn't look like the hashtable will fit into * hash_mem. */ - hashentrysize = MAXALIGN(input_path->pathtarget->width) + MAXALIGN(SizeofMinimalTupleHeader); + hashentrysize = MAXALIGN(lpath->pathtarget->width) + MAXALIGN(SizeofMinimalTupleHeader); if (hashentrysize * dNumGroups > hash_mem_limit) return false; @@ -1336,9 +1354,9 @@ choose_hashed_setop(PlannerInfo *root, List *groupClauses, * See if the estimated cost is no more than doing it the other way. * * We need to consider input_plan + hashagg versus input_plan + sort + - * group. Note that the actual result plan might involve a SetOp or - * Unique node, not Agg or Group, but the cost estimates for Agg and Group - * should be close enough for our purposes here. + * group. XXX NOT TRUE: Note that the actual result plan might involve a + * SetOp or Unique node, not Agg or Group, but the cost estimates for Agg + * and Group should be close enough for our purposes here. * * These path variables are dummies that just hold cost fields; we don't * make actual Paths for these steps. @@ -1346,27 +1364,31 @@ choose_hashed_setop(PlannerInfo *root, List *groupClauses, cost_agg(&hashed_p, root, AGG_HASHED, NULL, numGroupCols, dNumGroups, NIL, - input_path->disabled_nodes, - input_path->startup_cost, input_path->total_cost, - input_path->rows, input_path->pathtarget->width); + lpath->disabled_nodes + rpath->disabled_nodes, + lpath->startup_cost + rpath->startup_cost, + lpath->total_cost + rpath->total_cost, + lpath->rows + rpath->rows, + lpath->pathtarget->width); /* - * Now for the sorted case. Note that the input is *always* unsorted, - * since it was made by appending unrelated sub-relations together. + * Now for the sorted case. XXX NOT TRUE: Note that the input is *always* + * unsorted, since it was made by appending unrelated sub-relations + * together. */ - sorted_p.disabled_nodes = input_path->disabled_nodes; - sorted_p.startup_cost = input_path->startup_cost; - sorted_p.total_cost = input_path->total_cost; + sorted_p.disabled_nodes = lpath->disabled_nodes + rpath->disabled_nodes; + sorted_p.startup_cost = lpath->startup_cost + rpath->startup_cost; + sorted_p.total_cost = lpath->total_cost + rpath->total_cost; /* XXX cost_sort doesn't actually look at pathkeys, so just pass NIL */ cost_sort(&sorted_p, root, NIL, sorted_p.disabled_nodes, sorted_p.total_cost, - input_path->rows, input_path->pathtarget->width, + lpath->rows + rpath->rows, + lpath->pathtarget->width, 0.0, work_mem, -1.0); cost_group(&sorted_p, root, numGroupCols, dNumGroups, NIL, sorted_p.disabled_nodes, sorted_p.startup_cost, sorted_p.total_cost, - input_path->rows); + lpath->rows + rpath->rows); /* * Now make the decision using the top-level tuple fraction. First we diff --git a/src/backend/optimizer/util/pathnode.c b/src/backend/optimizer/util/pathnode.c index fc97bf6ee26..e52e4b1d677 100644 --- a/src/backend/optimizer/util/pathnode.c +++ b/src/backend/optimizer/util/pathnode.c @@ -3634,25 +3634,26 @@ create_windowagg_path(PlannerInfo *root, * Creates a pathnode that represents computation of INTERSECT or EXCEPT * * 'rel' is the parent relation associated with the result - * 'subpath' is the path representing the source of data + * 'leftpath' is the path representing the left-hand source of data + * 'rightpath' is the path representing the right-hand source of data * 'cmd' is the specific semantics (INTERSECT or EXCEPT, with/without ALL) * 'strategy' is the implementation strategy (sorted or hashed) - * 'distinctList' is a list of SortGroupClause's representing the grouping - * 'flagColIdx' is the column number where the flag column will be, if any - * 'firstFlag' is the flag value for the first input relation when hashing; - * or -1 when sorting - * 'numGroups' is the estimated number of distinct groups + * 'groupList' is a list of SortGroupClause's representing the grouping + * 'numGroups' is the estimated number of distinct groups in left-hand input * 'outputRows' is the estimated number of output rows + * + * leftpath and rightpath must produce the same columns. Moreover, if + * strategy is SETOP_SORTED, leftpath and rightpath must both be sorted + * by all the grouping columns. */ SetOpPath * create_setop_path(PlannerInfo *root, RelOptInfo *rel, - Path *subpath, + Path *leftpath, + Path *rightpath, SetOpCmd cmd, SetOpStrategy strategy, - List *distinctList, - AttrNumber flagColIdx, - int firstFlag, + List *groupList, double numGroups, double outputRows) { @@ -3660,34 +3661,37 @@ create_setop_path(PlannerInfo *root, pathnode->path.pathtype = T_SetOp; pathnode->path.parent = rel; - /* SetOp doesn't project, so use source path's pathtarget */ - pathnode->path.pathtarget = subpath->pathtarget; + pathnode->path.pathtarget = rel->reltarget; /* For now, assume we are above any joins, so no parameterization */ pathnode->path.param_info = NULL; pathnode->path.parallel_aware = false; pathnode->path.parallel_safe = rel->consider_parallel && - subpath->parallel_safe; - pathnode->path.parallel_workers = subpath->parallel_workers; + leftpath->parallel_safe && rightpath->parallel_safe; + pathnode->path.parallel_workers = + leftpath->parallel_workers + rightpath->parallel_workers; /* SetOp preserves the input sort order if in sort mode */ pathnode->path.pathkeys = - (strategy == SETOP_SORTED) ? subpath->pathkeys : NIL; + (strategy == SETOP_SORTED) ? leftpath->pathkeys : NIL; - pathnode->subpath = subpath; + pathnode->leftpath = leftpath; + pathnode->rightpath = rightpath; pathnode->cmd = cmd; pathnode->strategy = strategy; - pathnode->distinctList = distinctList; - pathnode->flagColIdx = flagColIdx; - pathnode->firstFlag = firstFlag; + pathnode->groupList = groupList; pathnode->numGroups = numGroups; /* * Charge one cpu_operator_cost per comparison per input tuple. We assume * all columns get compared at most of the tuples. + * + * XXX all wrong for hashing */ - pathnode->path.disabled_nodes = subpath->disabled_nodes; - pathnode->path.startup_cost = subpath->startup_cost; - pathnode->path.total_cost = subpath->total_cost + - cpu_operator_cost * subpath->rows * list_length(distinctList); + pathnode->path.disabled_nodes = + leftpath->disabled_nodes + rightpath->disabled_nodes; + pathnode->path.startup_cost = + leftpath->startup_cost + rightpath->startup_cost; + pathnode->path.total_cost = leftpath->total_cost + rightpath->total_cost + + cpu_operator_cost * (leftpath->rows + rightpath->rows) * list_length(groupList); pathnode->path.rows = outputRows; return pathnode; -- cgit v1.2.3