diff --git a/bit_manipulation/find_unique_number.py b/bit_manipulation/find_unique_number.py new file mode 100644 index 000000000000..77970b4865d1 --- /dev/null +++ b/bit_manipulation/find_unique_number.py @@ -0,0 +1,37 @@ +def find_unique_number(arr: list[int]) -> int: + """ + Given a list of integers where every element appears twice except for one, + this function returns the element that appears only once using bitwise XOR. + + >>> find_unique_number([1, 1, 2, 2, 3]) + 3 + >>> find_unique_number([4, 5, 4, 6, 6]) + 5 + >>> find_unique_number([7]) + 7 + >>> find_unique_number([10, 20, 10]) + 20 + >>> find_unique_number([]) + Traceback (most recent call last): + ... + ValueError: input list must not be empty + >>> find_unique_number([1, 'a', 1]) + Traceback (most recent call last): + ... + TypeError: all elements must be integers + """ + if not arr: + raise ValueError("input list must not be empty") + if not all(isinstance(x, int) for x in arr): + raise TypeError("all elements must be integers") + + result = 0 + for num in arr: + result ^= num + return result + + +if __name__ == "__main__": + import doctest + + doctest.testmod() diff --git a/linear_algebra/matrix_inversion.py b/linear_algebra/matrix_inversion.py new file mode 100644 index 000000000000..50dae1c2e825 --- /dev/null +++ b/linear_algebra/matrix_inversion.py @@ -0,0 +1,36 @@ +import numpy as np + + +def invert_matrix(matrix: list[list[float]]) -> list[list[float]]: + """ + Returns the inverse of a square matrix using NumPy. + + Parameters: + matrix (list[list[float]]): A square matrix. + + Returns: + list[list[float]]: Inverted matrix if invertible, else raises error. + + >>> invert_matrix([[4.0, 7.0], [2.0, 6.0]]) + [[0.6000000000000001, -0.7000000000000001], [-0.2, 0.4]] + >>> invert_matrix([[1.0, 2.0], [0.0, 0.0]]) + Traceback (most recent call last): + ... + ValueError: Matrix is not invertible + """ + np_matrix = np.array(matrix) + + try: + inv_matrix = np.linalg.inv(np_matrix) + except np.linalg.LinAlgError: + raise ValueError("Matrix is not invertible") + + return inv_matrix.tolist() + + +if __name__ == "__main__": + mat = [[4.0, 7.0], [2.0, 6.0]] + print("Original Matrix:") + print(mat) + print("Inverted Matrix:") + print(invert_matrix(mat)) diff --git a/project_euler/problem_122/__init__.py b/project_euler/problem_122/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_122/sol1.py b/project_euler/problem_122/sol1.py new file mode 100644 index 000000000000..cd8b1e67708c --- /dev/null +++ b/project_euler/problem_122/sol1.py @@ -0,0 +1,89 @@ +""" +Project Euler Problem 122: https://projecteuler.net/problem=122 + +Efficient Exponentiation + +The most naive way of computing n^15 requires fourteen multiplications: + + n x n x ... x n = n^15. + +But using a "binary" method you can compute it in six multiplications: + + n x n = n^2 + n^2 x n^2 = n^4 + n^4 x n^4 = n^8 + n^8 x n^4 = n^12 + n^12 x n^2 = n^14 + n^14 x n = n^15 + +However it is yet possible to compute it in only five multiplications: + + n x n = n^2 + n^2 x n = n^3 + n^3 x n^3 = n^6 + n^6 x n^6 = n^12 + n^12 x n^3 = n^15 + +We shall define m(k) to be the minimum number of multiplications to compute n^k; +for example m(15) = 5. + +Find sum_{k = 1}^200 m(k). + +It uses the fact that for rather small n, applicable for this problem, the solution +for each number can be formed by increasing the largest element. + +References: +- https://en.wikipedia.org/wiki/Addition_chain +""" + + +def solve(nums: list[int], goal: int, depth: int) -> bool: + """ + Checks if nums can have a sum equal to goal, given that length of nums does + not exceed depth. + + >>> solve([1], 2, 2) + True + >>> solve([1], 2, 0) + False + """ + if len(nums) > depth: + return False + for el in nums: + if el + nums[-1] == goal: + return True + nums.append(el + nums[-1]) + if solve(nums=nums, goal=goal, depth=depth): + return True + del nums[-1] + return False + + +def solution(n: int = 200) -> int: + """ + Calculates sum of smallest number of multiplactions for each number up to + and including n. + + >>> solution(1) + 0 + >>> solution(2) + 1 + >>> solution(14) + 45 + >>> solution(15) + 50 + """ + total = 0 + for i in range(2, n + 1): + max_length = 0 + while True: + nums = [1] + max_length += 1 + if solve(nums=nums, goal=i, depth=max_length): + break + total += max_length + return total + + +if __name__ == "__main__": + print(f"{solution() = }")