|
69 | 69 |
|
70 | 70 | <!-- 这里可写通用的实现逻辑 -->
|
71 | 71 |
|
| 72 | +**方法一:DFS** |
| 73 | + |
| 74 | +我们注意到,每个节点的基因值互不相同,因此,我们只需要找到基因值为 $1$ 的节点 $idx$,那么除了从节点 $idx$ 到根节点 $0$ 的每个节点,其它节点的答案都是 $1$。 |
| 75 | + |
| 76 | +因此,我们初始化答案数组 $ans$ 为 $[1,1,...,1]$,然后我们的重点就在于求出节点 $idx$ 到根节点 $0$ 的路径上的每个节点的答案。 |
| 77 | + |
| 78 | +我们可以从节点 $idx$ 开始,通过深度优先搜索的方式,标记以 $idx$ 作为根节点的子树中出现过的基因值,记录在数组 $has$ 中。搜索过程中,我们用一个数组 $vis$ 标记已经访问过的节点,防止重复访问。 |
| 79 | + |
| 80 | +接下来,我们从 $i=2$ 开始,不断向后寻找第一个没有出现过的基因值,即为节点 $idx$ 的答案。这里 $i$ 是严格递增的,因为基因值互不相同,所以我们一定能在 $[1,..n+1]$ 中找到一个没有出现过的基因值。 |
| 81 | + |
| 82 | +然后,我们更新节点 $idx$ 的答案,即 $ans[idx]=i$,并将 $idx$ 更新为其父节点,继续上述过程,直到 $idx=-1$,即到达了根节点 $0$。 |
| 83 | + |
| 84 | +最后,我们返回答案数组 $ans$ 即可。 |
| 85 | + |
| 86 | +时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是节点的数量。 |
| 87 | + |
72 | 88 | <!-- tabs:start -->
|
73 | 89 |
|
74 | 90 | ### **Python3**
|
75 | 91 |
|
76 | 92 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
77 | 93 |
|
78 | 94 | ```python
|
79 |
| - |
| 95 | +class Solution: |
| 96 | + def smallestMissingValueSubtree( |
| 97 | + self, parents: List[int], nums: List[int] |
| 98 | + ) -> List[int]: |
| 99 | + def dfs(i: int): |
| 100 | + if vis[i]: |
| 101 | + return |
| 102 | + vis[i] = True |
| 103 | + if nums[i] < len(has): |
| 104 | + has[nums[i]] = True |
| 105 | + for j in g[i]: |
| 106 | + dfs(j) |
| 107 | + |
| 108 | + n = len(nums) |
| 109 | + ans = [1] * n |
| 110 | + g = [[] for _ in range(n)] |
| 111 | + idx = -1 |
| 112 | + for i, p in enumerate(parents): |
| 113 | + if i: |
| 114 | + g[p].append(i) |
| 115 | + if nums[i] == 1: |
| 116 | + idx = i |
| 117 | + if idx == -1: |
| 118 | + return ans |
| 119 | + vis = [False] * n |
| 120 | + has = [False] * (n + 2) |
| 121 | + i = 2 |
| 122 | + while idx != -1: |
| 123 | + dfs(idx) |
| 124 | + while has[i]: |
| 125 | + i += 1 |
| 126 | + ans[idx] = i |
| 127 | + idx = parents[idx] |
| 128 | + return ans |
80 | 129 | ```
|
81 | 130 |
|
82 | 131 | ### **Java**
|
83 | 132 |
|
84 | 133 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
85 | 134 |
|
86 | 135 | ```java
|
| 136 | +class Solution { |
| 137 | + private List<Integer>[] g; |
| 138 | + private boolean[] vis; |
| 139 | + private boolean[] has; |
| 140 | + private int[] nums; |
| 141 | + |
| 142 | + public int[] smallestMissingValueSubtree(int[] parents, int[] nums) { |
| 143 | + int n = nums.length; |
| 144 | + this.nums = nums; |
| 145 | + g = new List[n]; |
| 146 | + vis = new boolean[n]; |
| 147 | + has = new boolean[n + 2]; |
| 148 | + Arrays.setAll(g, i -> new ArrayList<>()); |
| 149 | + int idx = -1; |
| 150 | + for (int i = 0; i < n; ++i) { |
| 151 | + if (i > 0) { |
| 152 | + g[parents[i]].add(i); |
| 153 | + } |
| 154 | + if (nums[i] == 1) { |
| 155 | + idx = i; |
| 156 | + } |
| 157 | + } |
| 158 | + int[] ans = new int[n]; |
| 159 | + Arrays.fill(ans, 1); |
| 160 | + if (idx == -1) { |
| 161 | + return ans; |
| 162 | + } |
| 163 | + for (int i = 2; idx != -1; idx = parents[idx]) { |
| 164 | + dfs(idx); |
| 165 | + while (has[i]) { |
| 166 | + ++i; |
| 167 | + } |
| 168 | + ans[idx] = i; |
| 169 | + } |
| 170 | + return ans; |
| 171 | + } |
| 172 | + |
| 173 | + private void dfs(int i) { |
| 174 | + if (vis[i]) { |
| 175 | + return; |
| 176 | + } |
| 177 | + vis[i] = true; |
| 178 | + if (nums[i] < has.length) { |
| 179 | + has[nums[i]] = true; |
| 180 | + } |
| 181 | + for (int j : g[i]) { |
| 182 | + dfs(j); |
| 183 | + } |
| 184 | + } |
| 185 | +} |
| 186 | +``` |
| 187 | + |
| 188 | +### **C++** |
| 189 | + |
| 190 | +```cpp |
| 191 | +class Solution { |
| 192 | +public: |
| 193 | + vector<int> smallestMissingValueSubtree(vector<int>& parents, vector<int>& nums) { |
| 194 | + int n = nums.size(); |
| 195 | + vector<int> g[n]; |
| 196 | + bool vis[n]; |
| 197 | + bool has[n + 2]; |
| 198 | + memset(vis, false, sizeof(vis)); |
| 199 | + memset(has, false, sizeof(has)); |
| 200 | + int idx = -1; |
| 201 | + for (int i = 0; i < n; ++i) { |
| 202 | + if (i) { |
| 203 | + g[parents[i]].push_back(i); |
| 204 | + } |
| 205 | + if (nums[i] == 1) { |
| 206 | + idx = i; |
| 207 | + } |
| 208 | + } |
| 209 | + vector<int> ans(n, 1); |
| 210 | + if (idx == -1) { |
| 211 | + return ans; |
| 212 | + } |
| 213 | + function<void(int)> dfs = [&](int i) { |
| 214 | + if (vis[i]) { |
| 215 | + return; |
| 216 | + } |
| 217 | + vis[i] = true; |
| 218 | + if (nums[i] < n + 2) { |
| 219 | + has[nums[i]] = true; |
| 220 | + } |
| 221 | + for (int j : g[i]) { |
| 222 | + dfs(j); |
| 223 | + } |
| 224 | + }; |
| 225 | + for (int i = 2; ~idx; idx = parents[idx]) { |
| 226 | + dfs(idx); |
| 227 | + while (has[i]) { |
| 228 | + ++i; |
| 229 | + } |
| 230 | + ans[idx] = i; |
| 231 | + } |
| 232 | + return ans; |
| 233 | + } |
| 234 | +}; |
| 235 | +``` |
| 236 | +
|
| 237 | +### **Go** |
| 238 | +
|
| 239 | +```go |
| 240 | +func smallestMissingValueSubtree(parents []int, nums []int) []int { |
| 241 | + n := len(nums) |
| 242 | + g := make([][]int, n) |
| 243 | + vis := make([]bool, n) |
| 244 | + has := make([]bool, n+2) |
| 245 | + idx := -1 |
| 246 | + ans := make([]int, n) |
| 247 | + for i, p := range parents { |
| 248 | + if i > 0 { |
| 249 | + g[p] = append(g[p], i) |
| 250 | + } |
| 251 | + if nums[i] == 1 { |
| 252 | + idx = i |
| 253 | + } |
| 254 | + ans[i] = 1 |
| 255 | + } |
| 256 | + if idx < 0 { |
| 257 | + return ans |
| 258 | + } |
| 259 | + var dfs func(int) |
| 260 | + dfs = func(i int) { |
| 261 | + if vis[i] { |
| 262 | + return |
| 263 | + } |
| 264 | + vis[i] = true |
| 265 | + if nums[i] < len(has) { |
| 266 | + has[nums[i]] = true |
| 267 | + } |
| 268 | + for _, j := range g[i] { |
| 269 | + dfs(j) |
| 270 | + } |
| 271 | + } |
| 272 | + for i := 2; idx != -1; idx = parents[idx] { |
| 273 | + dfs(idx) |
| 274 | + for has[i] { |
| 275 | + i++ |
| 276 | + } |
| 277 | + ans[idx] = i |
| 278 | + } |
| 279 | + return ans |
| 280 | +} |
| 281 | +``` |
| 282 | + |
| 283 | +### **Rust** |
| 284 | + |
| 285 | +```rust |
| 286 | +impl Solution { |
| 287 | + pub fn smallest_missing_value_subtree(parents: Vec<i32>, nums: Vec<i32>) -> Vec<i32> { |
| 288 | + fn dfs(i: usize, vis: &mut Vec<bool>, has: &mut Vec<bool>, g: &Vec<Vec<usize>>, nums: &Vec<i32>) { |
| 289 | + if vis[i] { |
| 290 | + return; |
| 291 | + } |
| 292 | + vis[i] = true; |
| 293 | + if nums[i] < has.len() as i32 { |
| 294 | + has[nums[i] as usize] = true; |
| 295 | + } |
| 296 | + for &j in &g[i] { |
| 297 | + dfs(j, vis, has, g, nums); |
| 298 | + } |
| 299 | + } |
| 300 | + |
| 301 | + let n = nums.len(); |
| 302 | + let mut ans = vec![1; n]; |
| 303 | + let mut g: Vec<Vec<usize>> = vec![vec![]; n]; |
| 304 | + let mut idx = -1; |
| 305 | + for (i, &p) in parents.iter().enumerate() { |
| 306 | + if i > 0 { |
| 307 | + g[p as usize].push(i); |
| 308 | + } |
| 309 | + if nums[i] == 1 { |
| 310 | + idx = i as i32; |
| 311 | + } |
| 312 | + } |
| 313 | + if idx == -1 { |
| 314 | + return ans; |
| 315 | + } |
| 316 | + let mut vis = vec![false; n]; |
| 317 | + let mut has = vec![false; (n + 2) as usize]; |
| 318 | + let mut i = 2; |
| 319 | + let mut idx_mut = idx; |
| 320 | + while idx_mut != -1 { |
| 321 | + dfs(idx_mut as usize, &mut vis, &mut has, &g, &nums); |
| 322 | + while has[i] { |
| 323 | + i += 1; |
| 324 | + } |
| 325 | + ans[idx_mut as usize] = i as i32; |
| 326 | + idx_mut = parents[idx_mut as usize]; |
| 327 | + } |
| 328 | + ans |
| 329 | + } |
| 330 | +} |
| 331 | +``` |
87 | 332 |
|
| 333 | +### **TypeScript** |
| 334 | + |
| 335 | +```ts |
| 336 | +function smallestMissingValueSubtree(parents: number[], nums: number[]): number[] { |
| 337 | + const n = nums.length; |
| 338 | + const g: number[][] = Array.from({ length: n }, () => []); |
| 339 | + const vis: boolean[] = Array(n).fill(false); |
| 340 | + const has: boolean[] = Array(n + 2).fill(false); |
| 341 | + const ans: number[] = Array(n).fill(1); |
| 342 | + let idx = -1; |
| 343 | + for (let i = 0; i < n; ++i) { |
| 344 | + if (i) { |
| 345 | + g[parents[i]].push(i); |
| 346 | + } |
| 347 | + if (nums[i] === 1) { |
| 348 | + idx = i; |
| 349 | + } |
| 350 | + } |
| 351 | + if (idx === -1) { |
| 352 | + return ans; |
| 353 | + } |
| 354 | + const dfs = (i: number): void => { |
| 355 | + if (vis[i]) { |
| 356 | + return; |
| 357 | + } |
| 358 | + vis[i] = true; |
| 359 | + if (nums[i] < has.length) { |
| 360 | + has[nums[i]] = true; |
| 361 | + } |
| 362 | + for (const j of g[i]) { |
| 363 | + dfs(j); |
| 364 | + } |
| 365 | + }; |
| 366 | + for (let i = 2; ~idx; idx = parents[idx]) { |
| 367 | + dfs(idx); |
| 368 | + while (has[i]) { |
| 369 | + ++i; |
| 370 | + } |
| 371 | + ans[idx] = i; |
| 372 | + } |
| 373 | + return ans; |
| 374 | +} |
88 | 375 | ```
|
89 | 376 |
|
90 | 377 | ### **...**
|
|
0 commit comments