Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

Commit f48ca99

Browse files
authored
feat: add solutions to lc problem: No.2218 (doocs#3975)
No.2218.Maximum Value of K Coins From Piles
1 parent b85f63b commit f48ca99

File tree

12 files changed

+503
-185
lines changed

12 files changed

+503
-185
lines changed

solution/2200-2299/2218.Maximum Value of K Coins From Piles/README.md

Lines changed: 179 additions & 64 deletions
Original file line numberDiff line numberDiff line change
@@ -66,15 +66,21 @@ tags:
6666

6767
<!-- solution:start -->
6868

69-
### 方法一:动态规划
69+
### 方法一:动态规划(分组背包)
7070

71-
对每个栈求前缀和 $s$,$s_i$ 视为一个体积为 $i$ 且价值为 $s_i$ 的物品
71+
我们定义 $f[i][j]$ 表示从前 $i$ 组中取出 $j$ 个硬币的最大面值和,那么答案为 $f[n][k]$,其中 $n$ 为栈的数量
7272

73-
问题转化为求从 $n$ 个物品组中取物品体积为 $k$,且每组最多取一个物品时的最大价值和
73+
对于第 $i$ 组,我们可以选择取前 $0$, $1$, $2$, $\cdots$, $k$ 个硬币。我们可以通过前缀和数组 $s$ 来快速计算出取前 $h$ 个硬币的面值和
7474

75-
定义 $dp[i][j]$ 表示从前 $i$ 个组中取体积之和为 $j$ 的物品时的最大价值和。
75+
状态转移方程为:
7676

77-
枚举第 $i$ 组所有物品,设当前物品体积为 $w$,价值为 $v$,则有 $f[i][j]=max(f[i][j],f[i-1][j-w]+v)$。
77+
$$
78+
f[i][j] = \max(f[i][j], f[i - 1][j - h] + s[h])
79+
$$
80+
81+
其中 $0 \leq h \leq j$,而 $s[h]$ 表示第 $i$ 组中取前 $h$ 个硬币的面值和。
82+
83+
时间复杂度 $O(k \times L)$,空间复杂度 $O(n \times k)$。其中 $L$ 为所有硬币的数量,而 $n$ 为栈的数量。
7884

7985
<!-- tabs:start -->
8086

@@ -83,15 +89,16 @@ tags:
8389
```python
8490
class Solution:
8591
def maxValueOfCoins(self, piles: List[List[int]], k: int) -> int:
86-
presum = [list(accumulate(p, initial=0)) for p in piles]
8792
n = len(piles)
88-
dp = [[0] * (k + 1) for _ in range(n + 1)]
89-
for i, s in enumerate(presum, 1):
93+
f = [[0] * (k + 1) for _ in range(n + 1)]
94+
for i, nums in enumerate(piles, 1):
95+
s = list(accumulate(nums, initial=0))
9096
for j in range(k + 1):
91-
for idx, v in enumerate(s):
92-
if j >= idx:
93-
dp[i][j] = max(dp[i][j], dp[i - 1][j - idx] + v)
94-
return dp[-1][-1]
97+
for h, w in enumerate(s):
98+
if j < h:
99+
break
100+
f[i][j] = max(f[i][j], f[i - 1][j - h] + w)
101+
return f[n][k]
95102
```
96103

97104
#### Java
@@ -100,26 +107,21 @@ class Solution:
100107
class Solution {
101108
public int maxValueOfCoins(List<List<Integer>> piles, int k) {
102109
int n = piles.size();
103-
List<int[]> presum = new ArrayList<>();
104-
for (List<Integer> p : piles) {
105-
int m = p.size();
106-
int[] s = new int[m + 1];
107-
for (int i = 0; i < m; ++i) {
108-
s[i + 1] = s[i] + p.get(i);
110+
int[][] f = new int[n + 1][k + 1];
111+
for (int i = 1; i <= n; i++) {
112+
List<Integer> nums = piles.get(i - 1);
113+
int[] s = new int[nums.size() + 1];
114+
s[0] = 0;
115+
for (int j = 1; j <= nums.size(); j++) {
116+
s[j] = s[j - 1] + nums.get(j - 1);
109117
}
110-
presum.add(s);
111-
}
112-
int[] dp = new int[k + 1];
113-
for (int[] s : presum) {
114-
for (int j = k; j >= 0; --j) {
115-
for (int idx = 0; idx < s.length; ++idx) {
116-
if (j >= idx) {
117-
dp[j] = Math.max(dp[j], dp[j - idx] + s[idx]);
118-
}
118+
for (int j = 0; j <= k; j++) {
119+
for (int h = 0; h < s.length && h <= j; h++) {
120+
f[i][j] = Math.max(f[i][j], f[i - 1][j - h] + s[h]);
119121
}
120122
}
121123
}
122-
return dp[k];
124+
return f[n][k];
123125
}
124126
}
125127
```
@@ -130,22 +132,21 @@ class Solution {
130132
class Solution {
131133
public:
132134
int maxValueOfCoins(vector<vector<int>>& piles, int k) {
133-
vector<vector<int>> presum;
134-
for (auto& p : piles) {
135-
int m = p.size();
136-
vector<int> s(m + 1);
137-
for (int i = 0; i < m; ++i) s[i + 1] = s[i] + p[i];
138-
presum.push_back(s);
139-
}
140-
vector<int> dp(k + 1);
141-
for (auto& s : presum) {
142-
for (int j = k; ~j; --j) {
143-
for (int idx = 0; idx < s.size(); ++idx) {
144-
if (j >= idx) dp[j] = max(dp[j], dp[j - idx] + s[idx]);
135+
int n = piles.size();
136+
vector<vector<int>> f(n + 1, vector<int>(k + 1));
137+
for (int i = 1; i <= n; i++) {
138+
vector<int> nums = piles[i - 1];
139+
vector<int> s(nums.size() + 1);
140+
for (int j = 1; j <= nums.size(); j++) {
141+
s[j] = s[j - 1] + nums[j - 1];
142+
}
143+
for (int j = 0; j <= k; j++) {
144+
for (int h = 0; h < s.size() && h <= j; h++) {
145+
f[i][j] = max(f[i][j], f[i - 1][j - h] + s[h]);
145146
}
146147
}
147148
}
148-
return dp[k];
149+
return f[n][k];
149150
}
150151
};
151152
```
@@ -154,26 +155,50 @@ public:
154155
155156
```go
156157
func maxValueOfCoins(piles [][]int, k int) int {
157-
var presum [][]int
158-
for _, p := range piles {
159-
m := len(p)
160-
s := make([]int, m+1)
161-
for i, v := range p {
162-
s[i+1] = s[i] + v
163-
}
164-
presum = append(presum, s)
158+
n := len(piles)
159+
f := make([][]int, n+1)
160+
for i := range f {
161+
f[i] = make([]int, k+1)
165162
}
166-
dp := make([]int, k+1)
167-
for _, s := range presum {
168-
for j := k; j >= 0; j-- {
169-
for idx, v := range s {
170-
if j >= idx {
171-
dp[j] = max(dp[j], dp[j-idx]+v)
163+
for i := 1; i <= n; i++ {
164+
nums := piles[i-1]
165+
s := make([]int, len(nums)+1)
166+
for j := 1; j <= len(nums); j++ {
167+
s[j] = s[j-1] + nums[j-1]
168+
}
169+
170+
for j := 0; j <= k; j++ {
171+
for h, w := range s {
172+
if j < h {
173+
break
172174
}
175+
f[i][j] = max(f[i][j], f[i-1][j-h]+w)
173176
}
174177
}
175178
}
176-
return dp[k]
179+
return f[n][k]
180+
}
181+
```
182+
183+
#### TypeScript
184+
185+
```ts
186+
function maxValueOfCoins(piles: number[][], k: number): number {
187+
const n = piles.length;
188+
const f: number[][] = Array.from({ length: n + 1 }, () => Array(k + 1).fill(0));
189+
for (let i = 1; i <= n; i++) {
190+
const nums = piles[i - 1];
191+
const s = Array(nums.length + 1).fill(0);
192+
for (let j = 1; j <= nums.length; j++) {
193+
s[j] = s[j - 1] + nums[j - 1];
194+
}
195+
for (let j = 0; j <= k; j++) {
196+
for (let h = 0; h < s.length && h <= j; h++) {
197+
f[i][j] = Math.max(f[i][j], f[i - 1][j - h] + s[h]);
198+
}
199+
}
200+
}
201+
return f[n][k];
177202
}
178203
```
179204

@@ -183,7 +208,11 @@ func maxValueOfCoins(piles [][]int, k int) int {
183208

184209
<!-- solution:start -->
185210

186-
### 方法二
211+
### 方法二:动态规划(空间优化)
212+
213+
我们可以发现,对于第 $i$ 组,我们只需要用到 $f[i - 1][j]$ 和 $f[i][j - h]$,因此我们可以将二维数组优化为一维数组。
214+
215+
时间复杂度 $O(k \times L)$,空间复杂度 $O(k)$。
187216

188217
<!-- tabs:start -->
189218

@@ -192,14 +221,100 @@ func maxValueOfCoins(piles [][]int, k int) int {
192221
```python
193222
class Solution:
194223
def maxValueOfCoins(self, piles: List[List[int]], k: int) -> int:
195-
presum = [list(accumulate(p, initial=0)) for p in piles]
196-
dp = [0] * (k + 1)
197-
for s in presum:
224+
f = [0] * (k + 1)
225+
for nums in piles:
226+
s = list(accumulate(nums, initial=0))
198227
for j in range(k, -1, -1):
199-
for idx, v in enumerate(s):
200-
if j >= idx:
201-
dp[j] = max(dp[j], dp[j - idx] + v)
202-
return dp[-1]
228+
for h, w in enumerate(s):
229+
if j < h:
230+
break
231+
f[j] = max(f[j], f[j - h] + w)
232+
return f[k]
233+
```
234+
235+
#### Java
236+
237+
```java
238+
class Solution {
239+
public int maxValueOfCoins(List<List<Integer>> piles, int k) {
240+
int[] f = new int[k + 1];
241+
for (var nums : piles) {
242+
int[] s = new int[nums.size() + 1];
243+
for (int j = 1; j <= nums.size(); ++j) {
244+
s[j] = s[j - 1] + nums.get(j - 1);
245+
}
246+
for (int j = k; j >= 0; --j) {
247+
for (int h = 0; h < s.length && h <= j; ++h) {
248+
f[j] = Math.max(f[j], f[j - h] + s[h]);
249+
}
250+
}
251+
}
252+
return f[k];
253+
}
254+
}
255+
```
256+
257+
#### C++
258+
259+
```cpp
260+
class Solution {
261+
public:
262+
int maxValueOfCoins(vector<vector<int>>& piles, int k) {
263+
vector<int> f(k + 1);
264+
for (auto& nums : piles) {
265+
vector<int> s(nums.size() + 1);
266+
for (int j = 1; j <= nums.size(); ++j) {
267+
s[j] = s[j - 1] + nums[j - 1];
268+
}
269+
for (int j = k; j >= 0; --j) {
270+
for (int h = 0; h < s.size() && h <= j; ++h) {
271+
f[j] = max(f[j], f[j - h] + s[h]);
272+
}
273+
}
274+
}
275+
return f[k];
276+
}
277+
};
278+
```
279+
280+
#### Go
281+
282+
```go
283+
func maxValueOfCoins(piles [][]int, k int) int {
284+
f := make([]int, k+1)
285+
for _, nums := range piles {
286+
s := make([]int, len(nums)+1)
287+
for j := 1; j <= len(nums); j++ {
288+
s[j] = s[j-1] + nums[j-1]
289+
}
290+
for j := k; j >= 0; j-- {
291+
for h := 0; h < len(s) && h <= j; h++ {
292+
f[j] = max(f[j], f[j-h]+s[h])
293+
}
294+
}
295+
}
296+
return f[k]
297+
}
298+
```
299+
300+
#### TypeScript
301+
302+
```ts
303+
function maxValueOfCoins(piles: number[][], k: number): number {
304+
const f: number[] = Array(k + 1).fill(0);
305+
for (const nums of piles) {
306+
const s: number[] = Array(nums.length + 1).fill(0);
307+
for (let j = 1; j <= nums.length; j++) {
308+
s[j] = s[j - 1] + nums[j - 1];
309+
}
310+
for (let j = k; j >= 0; j--) {
311+
for (let h = 0; h < s.length && h <= j; h++) {
312+
f[j] = Math.max(f[j], f[j - h] + s[h]);
313+
}
314+
}
315+
}
316+
return f[k];
317+
}
203318
```
204319

205320
<!-- tabs:end -->

0 commit comments

Comments
 (0)