This repository has been archived by the owner on Feb 25, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 956
/
Copy pathinputs.py
384 lines (296 loc) · 15.2 KB
/
inputs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import numpy as np
import tensorflow.compat.v1 as tf
from functools import partial
from data.encoders import encode
import random
import re
import logging
from itertools import cycle
from utils import natural_sort
### IN USE ###
def _get_number_of_documents(filename):
# extracts number of files from a filename formatted "<name>_<num_documents>.tfrecords."
# if no pattern is matched, returns None
match = re.search("_(\d{1,}).tfrecords$", filename)
return int(match.group(1)) if match is not None else match
def _get_number_of_documents_by_iteration(filename):
# extracts number of files from a tfrecord document in the event it doesn't have metadata in the filename
# this could be very slow.
logging.warning(
"inputs/sequential_input() found no metadata found in filename - iterating through first tfrecord to find global length")
count = 0
for item in tf.io.tf_record_iterator(filename):
count += 1
return count
def _get_skip_index(all_files, n_batches):
prev_cumsum = 0
cumsum = 0
global_n_documents = None
for count, f in cycle(enumerate(all_files)):
prev_cumsum = cumsum
if _get_number_of_documents(f) is not None:
cumsum += _get_number_of_documents(f)
elif global_n_documents is None:
global_n_documents = _get_number_of_documents_by_iteration(f)
cumsum += global_n_documents
else:
cumsum += global_n_documents
if cumsum == n_batches:
remainder = 0
skip_idx = count + 1
elif cumsum > n_batches:
remainder = n_batches - prev_cumsum
skip_idx = count
break
return skip_idx, remainder
def _parse_function(example_proto):
features = {
"text": tf.VarLenFeature(tf.int64)
}
parsed_features = tf.parse_single_example(example_proto, features)
return tf.sparse.to_dense(parsed_features["text"], parsed_features["text"].dense_shape[0])
def autoregressive_sample_text(params, x):
vals1 = x[:params["n_ctx"]]
vals2 = x[1:params["n_ctx"] + 1]
vals1 = tf.reshape(vals1, [params["n_ctx"]])
vals2 = tf.reshape(vals2, [params["n_ctx"]])
vals1 = tf.cast(vals1, dtype=tf.int32)
vals2 = tf.cast(vals2, dtype=tf.int32)
return vals1, vals2
def sequential_input(params, global_step=None, eval=False):
"""
Input fn that reads tfrecords encoded with a fixed chunk size (== n_ctx + 1), and that either:
- has the number of documents for each tfrecord file encoded in the title in the format
<name>_<n_documents>.tfrecords.
OR
- has a fixed number of documents per tfrecord file.
If the glob pattern above isn't matched, we assume that each document has the same number of samples as the first tfrecord read.
If this isn't the case, it may result in errors, or some samples being missed.
This means we can calculate the number of samples we've seen so far using the global step,
and can use dataset.skip() to iterate through the list of filenames, as opposed to the whole dataset, which is incredibly inefficient.
If training is starting and stopping often, as with TPU pre-emption, reading the whole dataset sequentially appears to improve model
performance, as it results in less repeated data.
"""
if not eval:
assert global_step is not None
logging.warning(
"Changing batch size with sequential_input() will result in some data being skipped or repeated. Please ensure your batch size stays constant throughout training.")
batch_size = params['eval_batch_size' if eval else 'train_batch_size']
filenames = []
for dataset_config in params['dataset_configs'].values(): # iterate through each dataset and read params
path_key = 'path' if not eval else 'eval_path'
path = dataset_config[path_key]
filenames.extend(
tf.io.gfile.glob(path)) # then glob all files that fit the pattern specified in dataset_configs
filenames = natural_sort(filenames)
shuffle_filenames = params.get("shuffle_input_filenames", True)
if shuffle_filenames:
seed = params.get('seed', 1) # shuffle deterministically
random.seed(seed)
random.shuffle(filenames)
dataset = tf.data.Dataset.from_tensor_slices(filenames).repeat() # repeat filenames to infinity
if not eval:
# skip forward first in the filenames list, then skip the remaining amount in the parsed tfrecords files
skip_idx, remainder = _get_skip_index(filenames, n_batches=global_step * params[
"train_batch_size"]) # TODO: fix for > 1 epoch
dataset = dataset.skip(skip_idx) # skip to skip idx
# read tfrecord examples and skip remainder
dataset = dataset.apply(tf.data.TFRecordDataset)
dataset = dataset.skip(remainder)
else:
# shuffle filenames if in eval mode
dataset = dataset.shuffle(len(filenames))
dataset = dataset.apply(tf.data.TFRecordDataset)
# parse the tokenized data from the tfrecord files and shuffle
dataset = dataset.map(_parse_function, num_parallel_calls=1)
dataset = dataset.map(partial(autoregressive_sample_text, params), num_parallel_calls=1)
# batch data and repeat to infinity
dataset = dataset.batch(batch_size, drop_remainder=True).prefetch(params["iterations"] * 2)
return dataset.repeat()
def pred_input(params, logger, enc=None,
path_to_prompt=""):
unicorns = "In a shocking finding, scientists discovered a herd of unicorns living in a remote, " \
"previously unexplored valley, in the Andes Mountains. Even more surprising to the " \
"researchers was the fact that the unicorns spoke perfect English."
text = unicorns if path_to_prompt == "" else open(path_to_prompt, "r").read()
tokens = encode(enc, text)
if len(tokens) > params["n_ctx"]:
logger.info("The length of your input prompt is longer than the model's context length - truncating input.")
tokens = tokens[len(tokens) - params["n_ctx"]:]
if len(tokens) < params["n_ctx"]:
tokens = tf.pad(tokens, [[0, params["n_ctx"] - len(tokens)]], constant_values=params["padding_id"])
t = tf.broadcast_to(tokens, [params["batch_size"], params["n_ctx"]])
dataset = tf.data.Dataset.from_tensors(t)
def _dummy_labels(x):
return x, x
dataset = dataset.map(_dummy_labels)
return dataset
def handle_pred_output(predictions, logger, enc, params, out_name="test"):
with tf.gfile.Open(f"{out_name}.txt", "w") as f:
for i, p in enumerate(predictions):
p = p["outputs"]
# remove eos + padding ids from output
idx = np.argmax(p == params['eos_id'])
if idx > 0:
p = p[:idx]
idx = np.argmax(p == params['padding_id'])
if idx > 0:
p = p[:idx]
text = enc.decode(p)
f.write("=" * 40 + " SAMPLE " + str(i) + " " + "=" * 40 + "\n")
f.write(text)
f.write("\n" + "=" * 80 + "\n")
logger.info("=" * 40 + " SAMPLE " + str(i) + " " + "=" * 40 + "\n")
logger.info(text)
logger.info("\n" + "=" * 80 + "\n")
### DEPRECATED ###
def generic_text(params, eval=False, sample_text_fn=None, **kwargs):
logging.warning("DEPRECATION WARNING: generic_text will be phased out in future versions.")
i = 0 if not eval else 1
weights = []
datasets = []
for dataset in params["datasets"]:
dataset_id, stitch, datatype, weight = dataset
assert dataset_id in params[
'dataset_configs'], f'Unknown dataset id {dataset_id} given. Please make sure your dataset ids contain that configuration'
dataset_config = params['dataset_configs'][dataset_id]
path_key = 'path' if not eval else 'eval_path'
path = dataset_config[path_key]
datasets.append(text_dataset(
tf.io.gfile.glob(path),
params,
stitch=stitch,
datatype=datatype,
batch=False,
sample_text_fn=sample_text_fn
))
weights.append(weight)
batch_size = params['eval_batch_size' if eval else 'train_batch_size']
seed = params.get('seed', None)
dataset = tf.data.experimental.sample_from_datasets(datasets, weights=weights, seed=seed)
dataset = dataset.batch(batch_size, drop_remainder=True).prefetch(params["iterations"] * 2)
return dataset
def text_dataset(files, params, stitch, datatype, batch=True, sample_text_fn=None):
seed = params.get('seed', None)
deterministic = seed is not None
num_parallel_calls = 1 if deterministic else tf.data.experimental.AUTOTUNE
dataset = tf.data.Dataset.from_tensor_slices(files)
if deterministic:
dataset = dataset.interleave(tf.data.TFRecordDataset, cycle_length=4)
else:
dataset = dataset.apply(
tf.data.experimental.parallel_interleave(tf.data.TFRecordDataset, cycle_length=4, sloppy=False))
if "documents" in datatype:
def _parse_function(example_proto):
features = {
# "hash": tf.VarLenFeature(tf.string),
"text": tf.VarLenFeature(tf.int64)
}
parsed_features = tf.parse_single_example(example_proto, features)
return parsed_features["text"], parsed_features["text"].dense_shape[0]
else:
def _parse_function(example_proto):
features = {
"text": tf.VarLenFeature(tf.int64)
}
parsed_features = tf.parse_single_example(example_proto, features)
return parsed_features["text"] # Assuming the text is not sparse
dataset = dataset.map(_parse_function, num_parallel_calls=1)
# Subsample method
if "documents" in datatype:
# Since samples can be less than the correct length, and TPUs don't like variable lengths, this function stitches together enough samples
# to have a text at least 1024 tokens long. For this to work the stitch parameter must be correctly tuned so that
# stitch * min(characters_in_text) >= amount
def _stitch_text(x, y):
x = tf.sparse.to_dense(x)
def _get_x(i):
return tf.gather(x[i], tf.range(y[i]))
out = _get_x(0)
eos_id = params['eos_id']
for i in range(1, stitch):
out = tf.concat([out, [eos_id], _get_x(i)], axis=0) # text1<|endoftext|>text2
return out
# Hack-y way to stitch together multiple texts
dataset = dataset.shuffle(1000 * stitch, seed=seed).batch(stitch, drop_remainder=True).map(_stitch_text,
num_parallel_calls=num_parallel_calls)
# Sample 1024(+1) tokens from the stitched together text
is_random_documents = datatype == "documents_random"
if sample_text_fn is not None:
_sample_text = partial(sample_text_fn, random_documents=is_random_documents)
else:
_sample_text = autoregressive_sample_text_random_documents if is_random_documents else autoregressive_sample_text
_sample_text = partial(_sample_text, params)
dataset = dataset.map(_sample_text, num_parallel_calls=num_parallel_calls)
if batch:
dataset = dataset.batch(params["train_batch_size"], drop_remainder=True).prefetch(params["iterations"] * 2)
dataset = dataset.repeat()
return dataset
def autoregressive_sample_text_random_documents(params, x):
seed = params.get('seed', None)
s = tf.size(x)
r = tf.random.uniform([], maxval=s - (params["n_ctx"] + 1), dtype=tf.dtypes.int32, seed=seed)
r1 = tf.range(r, r + params["n_ctx"])
r2 = tf.range(r + 1, (r + 1) + params["n_ctx"])
r1 = tf.reshape(r1, [params["n_ctx"]]) # Somehow, this makes the compiler happy
r2 = tf.reshape(r2, [params[
"n_ctx"]]) # TPUs want constant sized input, and these reshapes makes it recognize the shape of the input
vals1 = tf.gather(x, r1)
vals2 = tf.gather(x, r2)
vals1 = tf.reshape(vals1, [params["n_ctx"]])
vals2 = tf.reshape(vals2, [params["n_ctx"]])
vals1 = tf.cast(vals1, dtype=tf.int32)
vals2 = tf.cast(vals2, dtype=tf.int32)
return vals1, vals2
def mlm_sample_text(params, x, random_documents=False):
seed = params.get('seed', None)
ctx_len = params["n_ctx"]
assert 'mlm_mask_id' in params, 'the key `mlm_mask_id` must be set on your config to do masked language model training, specifying the id of the reserved mask token'
mask_id = params['mlm_mask_id']
cls_token_id = params.get('mlm_cls_token_id', None)
num_tokens = params.get('n_vocab', None)
mask_ignore_ids = set(params.get('mlm_mask_ignore_ids', []))
mask_ignore_ids.add(cls_token_id)
mask_prob = params.get('mlm_mask_prob', 0.15)
same_token_prob = params.get('mlm_same_token_prob', 0.10)
random_token_prob = params.get('mlm_random_token_prob', 0.)
seq_len = ctx_len if cls_token_id is None else (ctx_len - 1)
if random_documents:
s = tf.size(x)
r = tf.random.uniform([], maxval=(s - seq_len), dtype=tf.dtypes.int32, seed=seed)
r1 = tf.range(r, r + seq_len)
r1 = tf.reshape(r1, [seq_len])
features = tf.gather(x, r1)
else:
features = x[:seq_len]
# add cls token id if specified by `mlm_cls_token_id`
if cls_token_id is not None:
features = tf.pad(features, [[1, 0]], constant_values=cls_token_id)
features = tf.cast(features, dtype=tf.int32)
shape = features.shape
# determine which tokens are mask-able
can_mask = tf.not_equal(features, 0)
for ignore_id in mask_ignore_ids:
can_mask &= tf.not_equal(features, ignore_id)
# generate boolean mask for masking ids
mask_mask = tf.less(tf.random.uniform(shape, minval=0., maxval=1., dtype=tf.float32, seed=seed), mask_prob)
mask_mask &= can_mask
# generate mask for actually replacing the tokens, for allowing a small number of tokens to stay the same
replace_mask = tf.less(tf.random.uniform(shape, minval=0., maxval=1., dtype=tf.float32, seed=seed),
1 - same_token_prob)
# randomly replace some tokens with random tokens before masking
if random_token_prob > 0:
random_token_mask = tf.less(tf.random.uniform(shape, minval=0., maxval=1., dtype=tf.float32, seed=seed),
random_token_prob)
random_tokens = tf.random.uniform(shape, minval=1, maxval=num_tokens, dtype=tf.dtypes.int32, seed=seed)
# make sure random tokens do not include illegal token ids specified by `mlm_mask_ignore_ids`
random_can_mask = tf.not_equal(random_tokens, 0)
for ignore_id in mask_ignore_ids:
random_can_mask &= tf.not_equal(random_tokens, ignore_id)
features = tf.where(random_token_mask & random_can_mask, random_tokens, features)
# mask the tokens
mask_tokens = tf.ones(shape, dtype=tf.int32) * mask_id
masked_features = tf.where(mask_mask & replace_mask, mask_tokens, features)
# labels will be set to 0 for all non-masked tokens
labels = tf.where(mask_mask, tf.zeros(shape, dtype=tf.int32), features)
masked_features, labels = map(lambda t: tf.reshape(t, [ctx_len]), (masked_features, labels))
return masked_features, labels