-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval.py
executable file
·355 lines (297 loc) · 13.1 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Binary for evaluating Tensorflow models on the YouTube-8M dataset."""
import glob
import json
import os
import time
import eval_util
import losses
import frame_level_models
import video_level_models
import readers
import tensorflow as tf
from tensorflow.python.lib.io import file_io
from tensorflow import app
from tensorflow import flags
from tensorflow import gfile
from tensorflow import logging
import utils
FLAGS = flags.FLAGS
if __name__ == "__main__":
# Dataset flags.
flags.DEFINE_string("train_dir", "/tmp/yt8m_model/",
"The directory to load the model files from. "
"The tensorboard metrics files are also saved to this "
"directory.")
flags.DEFINE_string(
"eval_data_pattern", "",
"File glob defining the evaluation dataset in tensorflow.SequenceExample "
"format. The SequenceExamples are expected to have an 'rgb' byte array "
"sequence feature as well as a 'labels' int64 context feature.")
# Other flags.
flags.DEFINE_integer("batch_size", 1024,
"How many examples to process per batch.")
flags.DEFINE_integer("num_readers", 8,
"How many threads to use for reading input files.")
flags.DEFINE_boolean("run_once", False, "Whether to run eval only once.")
flags.DEFINE_integer("top_k", 20, "How many predictions to output per video.")
# flags.DEFINE_integer("netvlad_cluster_size", 256,"liyc own addition")
# flags.DEFINE_integer("netvlad_hidden_size", 500,"liyc own addition")
# flags.DEFINE_integer("moe_l2", 1e-6,"liyc own addition")
# flags.DEFINE_integer("iterations", 300,"liyc own addition")
# flags.DEFINE_bool("netvlad_relu", True,"liyc own addition")
# flags.DEFINE_bool("gating", True,"liyc own addition")
# flags.DEFINE_bool("moe_prob_gating", True,"liyc own addition")
# flags.DEFINE_bool("lightvlad", True,"liyc own addition")
def find_class_by_name(name, modules):
"""Searches the provided modules for the named class and returns it."""
modules = [getattr(module, name, None) for module in modules]
return next(a for a in modules if a)
def get_input_evaluation_tensors(reader,
data_pattern,
batch_size=1024,
num_readers=1):
"""Creates the section of the graph which reads the evaluation data.
Args:
reader: A class which parses the training data.
data_pattern: A 'glob' style path to the data files.
batch_size: How many examples to process at a time.
num_readers: How many I/O threads to use.
Returns:
A tuple containing the features tensor, labels tensor, and optionally a
tensor containing the number of frames per video. The exact dimensions
depend on the reader being used.
Raises:
IOError: If no files matching the given pattern were found.
"""
logging.info("Using batch size of " + str(batch_size) + " for evaluation.")
with tf.name_scope("eval_input"):
files = gfile.Glob(data_pattern)
if not files:
raise IOError("Unable to find the evaluation files.")
logging.info("number of evaluation files: " + str(len(files)))
filename_queue = tf.train.string_input_producer(
files, shuffle=False, num_epochs=1)
eval_data = [
reader.prepare_reader(filename_queue) for _ in range(num_readers)
]
return tf.train.batch_join(
eval_data,
batch_size=batch_size,
capacity=3 * batch_size,
allow_smaller_final_batch=True,
enqueue_many=True)
def build_graph(reader,
model,
eval_data_pattern,
label_loss_fn,
batch_size=1024,
num_readers=1):
"""Creates the Tensorflow graph for evaluation.
Args:
reader: The data file reader. It should inherit from BaseReader.
model: The core model (e.g. logistic or neural net). It should inherit
from BaseModel.
eval_data_pattern: glob path to the evaluation data files.
label_loss_fn: What kind of loss to apply to the model. It should inherit
from BaseLoss.
batch_size: How many examples to process at a time.
num_readers: How many threads to use for I/O operations.
"""
global_step = tf.Variable(0, trainable=False, name="global_step")
video_id_batch, model_input_raw, labels_batch, num_frames = get_input_evaluation_tensors( # pylint: disable=g-line-too-long
reader,
eval_data_pattern,
batch_size=batch_size,
num_readers=num_readers)
tf.summary.histogram("model_input_raw", model_input_raw)
feature_dim = len(model_input_raw.get_shape()) - 1
# Normalize input features.
model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)
with tf.variable_scope("tower"):
result = model.create_model(model_input,
num_frames=num_frames,
vocab_size=reader.num_classes,
labels=labels_batch,
is_training=False)
predictions = result["predictions"]
tf.summary.histogram("model_activations", predictions)
if "loss" in result.keys():
label_loss = result["loss"]
else:
label_loss = label_loss_fn.calculate_loss(predictions, labels_batch)
tf.add_to_collection("global_step", global_step)
tf.add_to_collection("loss", label_loss)
tf.add_to_collection("predictions", predictions)
tf.add_to_collection("input_batch", model_input)
tf.add_to_collection("input_batch_raw", model_input_raw)
tf.add_to_collection("video_id_batch", video_id_batch)
tf.add_to_collection("num_frames", num_frames)
tf.add_to_collection("labels", tf.cast(labels_batch, tf.float32))
tf.add_to_collection("summary_op", tf.summary.merge_all())
def get_latest_checkpoint():
index_files = file_io.get_matching_files(os.path.join(FLAGS.train_dir, 'model.ckpt-*.index'))
# No files
if not index_files:
return None
# Index file path with the maximum step size.
latest_index_file = sorted(
[(int(os.path.basename(f).split("-")[-1].split(".")[0]), f)
for f in index_files])[-1][1]
# Chop off .index suffix and return
return latest_index_file[:-6]
def evaluation_loop(video_id_batch, prediction_batch, label_batch, loss,
summary_op, saver, summary_writer, evl_metrics,
last_global_step_val):
"""Run the evaluation loop once.
Args:
video_id_batch: a tensor of video ids mini-batch.
prediction_batch: a tensor of predictions mini-batch.
label_batch: a tensor of label_batch mini-batch.
loss: a tensor of loss for the examples in the mini-batch.
summary_op: a tensor which runs the tensorboard summary operations.
saver: a tensorflow saver to restore the model.
summary_writer: a tensorflow summary_writer
evl_metrics: an EvaluationMetrics object.
last_global_step_val: the global step used in the previous evaluation.
Returns:
The global_step used in the latest model.
"""
global_step_val = -1
with tf.Session() as sess:
latest_checkpoint = get_latest_checkpoint()
if latest_checkpoint:
logging.info("Loading checkpoint for eval: " + latest_checkpoint)
# Restores from checkpoint
saver.restore(sess, latest_checkpoint)
# Assuming model_checkpoint_path looks something like:
# /my-favorite-path/yt8m_train/model.ckpt-0, extract global_step from it.
global_step_val = os.path.basename(latest_checkpoint).split("-")[-1]
# Save model
saver.save(sess, os.path.join(FLAGS.train_dir, "inference_model"))
else:
logging.info("No checkpoint file found.")
return global_step_val
if global_step_val == last_global_step_val:
logging.info("skip this checkpoint global_step_val=%s "
"(same as the previous one).", global_step_val)
return global_step_val
sess.run([tf.local_variables_initializer()])
# Start the queue runners.
fetches = [video_id_batch, prediction_batch, label_batch, loss, summary_op]
coord = tf.train.Coordinator()
try:
threads = []
for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS):
threads.extend(qr.create_threads(
sess, coord=coord, daemon=True,
start=True))
logging.info("enter eval_once loop global_step_val = %s. ",
global_step_val)
evl_metrics.clear()
examples_processed = 0
while not coord.should_stop():
batch_start_time = time.time()
_, predictions_val, labels_val, loss_val, summary_val = sess.run(
fetches)
seconds_per_batch = time.time() - batch_start_time
example_per_second = labels_val.shape[0] / seconds_per_batch
examples_processed += labels_val.shape[0]
iteration_info_dict = evl_metrics.accumulate(predictions_val,
labels_val, loss_val)
iteration_info_dict["examples_per_second"] = example_per_second
iterinfo = utils.AddGlobalStepSummary(
summary_writer,
global_step_val,
iteration_info_dict,
summary_scope="Eval")
logging.info("examples_processed: %d | %s", examples_processed,
iterinfo)
except tf.errors.OutOfRangeError as e:
logging.info(
"Done with batched inference. Now calculating global performance "
"metrics.")
# calculate the metrics for the entire epoch
epoch_info_dict = evl_metrics.get()
epoch_info_dict["epoch_id"] = global_step_val
summary_writer.add_summary(summary_val, global_step_val)
epochinfo = utils.AddEpochSummary(
summary_writer,
global_step_val,
epoch_info_dict,
summary_scope="Eval")
logging.info(epochinfo)
evl_metrics.clear()
except Exception as e: # pylint: disable=broad-except
logging.info("Unexpected exception: " + str(e))
coord.request_stop(e)
coord.request_stop()
coord.join(threads, stop_grace_period_secs=10)
return global_step_val
def evaluate():
tf.set_random_seed(0) # for reproducibility
# Write json of flags
model_flags_path = os.path.join(FLAGS.train_dir, "model_flags.json")
if not file_io.file_exists(model_flags_path):
raise IOError(("Cannot find file %s. Did you run train.py on the same "
"--train_dir?") % model_flags_path)
flags_dict = json.loads(file_io.FileIO(model_flags_path, mode="r").read())
with tf.Graph().as_default():
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
flags_dict["feature_names"], flags_dict["feature_sizes"])
if flags_dict["frame_features"]:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
model = find_class_by_name(flags_dict["model"],
[frame_level_models, video_level_models])()
label_loss_fn = find_class_by_name(flags_dict["label_loss"], [losses])()
if FLAGS.eval_data_pattern is "":
raise IOError("'eval_data_pattern' was not specified. " +
"Nothing to evaluate.")
build_graph(
reader=reader,
model=model,
eval_data_pattern=FLAGS.eval_data_pattern,
label_loss_fn=label_loss_fn,
num_readers=FLAGS.num_readers,
batch_size=FLAGS.batch_size)
logging.info("built evaluation graph")
video_id_batch = tf.get_collection("video_id_batch")[0]
prediction_batch = tf.get_collection("predictions")[0]
label_batch = tf.get_collection("labels")[0]
loss = tf.get_collection("loss")[0]
summary_op = tf.get_collection("summary_op")[0]
saver = tf.train.Saver(tf.global_variables())
summary_writer = tf.summary.FileWriter(
FLAGS.train_dir, graph=tf.get_default_graph())
evl_metrics = eval_util.EvaluationMetrics(reader.num_classes, FLAGS.top_k)
last_global_step_val = -1
while True:
last_global_step_val = evaluation_loop(video_id_batch, prediction_batch,
label_batch, loss, summary_op,
saver, summary_writer, evl_metrics,
last_global_step_val)
if FLAGS.run_once:
break
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
print("tensorflow version: %s" % tf.__version__)
evaluate()
if __name__ == "__main__":
app.run()