forked from crypto-agda/crypto-agda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSyntax.agda
227 lines (177 loc) · 5.66 KB
/
Syntax.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
open import Type
open import Data.Bits using (Bit; Bits)
open import Data.Empty using (⊥)
open import Data.Fin using (Fin)
open import Data.Maybe using (Maybe)
open import Data.Nat using (ℕ)
open import Data.Product using (Σ; _×_)
open import Data.Sum using (_⊎_)
open import Data.Unit using (⊤)
open import Data.Vec using (Vec)
module Search.Syntax where
-- this is to be imported from the appropriate module
postulate
S : ★₀ → ★₀
S⊤ : S ⊤
SBit : S Bit
SFin : ∀ n → S (Fin n)
SBits : ∀ n → S (Bits n)
SVec : ∀ {A} → S A → ∀ n → S (Vec A n)
_S×_ : ∀ {A B} → S A → S B → S (A × B)
_S⊎_ : ∀ {A B} → S A → S B → S (A ⊎ B)
SMaybe : ∀ {A} → S A → S (Maybe A)
SΣ : ∀ {A} {B : A → _} → S A → (∀ x → S (B x)) → S (Σ A B)
S⊤→ : ∀ {A} → S A → S (⊤ → A)
SBit→ : ∀ {A} → S A → S (Bit → A)
S⊥→ : ∀ A → S (⊥ → A)
S×→ : ∀ {A B C} → S (A → B → C) → S (A × B → C)
S⟨_⊎_⟩→ : ∀ {A B C} → S (A → C) → S (B → C) → S (A ⊎ B → C)
module Fin-universe where
`★ : ★₀
`★ = ℕ
-- decoding
El : `★ → ★₀
El = Fin
`S : ∀ `A → S (El `A)
`S = SFin
module Bits-universe where
`★ : ★₀
`★ = ℕ
-- decoding
El : `★ → ★₀
El = Bits
`S : ∀ `A → S (El `A)
`S = SBits
module ⊎×-universe where
data `★ : ★₀ where
`⊤ : `★
_`×_ _`⊎_ : `★ → `★ → `★
-- decoding
El : `★ → ★₀
El `⊤ = ⊤
El (s `× t) = El s × El t
El (s `⊎ t) = El s ⊎ El t
`S : ∀ `A → S (El `A)
`S `⊤ = S⊤
`S (s `× t) = `S s S× `S t
`S (s `⊎ t) = `S s S⊎ `S t
module ⊤-Maybe-universe where
data `★ : ★₀ where
-- one element
`⊤ : `★
-- one element more
`Maybe : `★ → `★
-- decoding
El : `★ → ★₀
El `⊤ = ⊤
El (`Maybe t) = Maybe (El t)
`S : ∀ `A → S (El `A)
`S `⊤ = S⊤
`S (`Maybe t) = SMaybe (`S t)
module ΣBit-universe where
data `★ : ★₀
El : `★ → ★₀
data `★ where
`Bit : `★
`Σ : (s : `★) → (El s → `★) → `★
-- decoding
El `Bit = Bit
El (`Σ s t) = Σ (El s) λ x → El (t x)
`S : ∀ `A → S (El `A)
`S `Bit = SBit
`S (`Σ s t) = SΣ (`S s) λ x → `S (t x)
module ⊎×→-universe where
-- Types appearing on the left of an arrow
data `★⁻ : ★₀ where
-- zero and elements
`⊥ `⊤ : `★⁻
-- products and co-products
_`×_ _`⊎_ : `★⁻ → `★⁻ → `★⁻
-- decoding of negative types
El⁻ : `★⁻ → ★₀
El⁻ `⊥ = ⊥
El⁻ `⊤ = ⊤
El⁻ (s `× t) = El⁻ s × El⁻ t
El⁻ (s `⊎ t) = El⁻ s ⊎ El⁻ t
`S⟨_⟩→_ : ∀ `A {B} (sB : S B) → S (El⁻ `A → B)
`S⟨ `⊥ ⟩→ t = S⊥→ _
`S⟨ `⊤ ⟩→ t = S⊤→ t
`S⟨ s `× t ⟩→ u = S×→ (`S⟨ s ⟩→ `S⟨ t ⟩→ u)
`S⟨ s `⊎ t ⟩→ u = S⟨ `S⟨ s ⟩→ u ⊎ `S⟨ t ⟩→ u ⟩→
data `★ : ★₀ where
-- one element
`⊤ : `★
-- products and co-products
_`×_ _`⊎_ : `★ → `★ → `★
-- functions
_`→_ : `★⁻ → `★ → `★
-- decoding of positive types
El : `★ → ★₀
El `⊤ = ⊤
El (s `× t) = El s × El t
El (s `⊎ t) = El s ⊎ El t
El (s `→ t) = El⁻ s → El t
`S : ∀ `A → S (El `A)
`S `⊤ = S⊤
`S (s `× t) = `S s S× `S t
`S (s `⊎ t) = `S s S⊎ `S t
`S (s `→ t) = `S⟨ s ⟩→ `S t
module Σ⊎×→-universe where
-- Types appearing on the left of an arrow
data `★⁻ : ★₀ where
-- zero, one, and two elements
`⊥ `⊤ `Bit : `★⁻
-- products and co-products
_`×_ _`⊎_ : `★⁻ → `★⁻ → `★⁻
-- Σ?
-- decoding of negative types
El⁻ : `★⁻ → ★₀
El⁻ `⊥ = ⊥
El⁻ `⊤ = ⊤
El⁻ `Bit = Bit
El⁻ (s `× t) = El⁻ s × El⁻ t
El⁻ (s `⊎ t) = El⁻ s ⊎ El⁻ t
`S⟨_⟩→_ : ∀ `A {B} (sB : S B) → S (El⁻ `A → B)
`S⟨ `⊥ ⟩→ t = S⊥→ _
`S⟨ `⊤ ⟩→ t = S⊤→ t
`S⟨ `Bit ⟩→ t = SBit→ t
`S⟨ s `× t ⟩→ u = S×→ (`S⟨ s ⟩→ `S⟨ t ⟩→ u)
`S⟨ s `⊎ t ⟩→ u = S⟨ `S⟨ s ⟩→ u ⊎ `S⟨ t ⟩→ u ⟩→
data `★ : ★₀
El : `★ → ★₀
data `★ where
-- one and two elements
`⊤ `Bit : `★
-- 'n' elements
`Fin : ℕ → `★
-- one element more
`Maybe : `★ → `★
-- products and co-products
_`×_ _`⊎_ : `★ → `★ → `★
-- dependent pairs
`Σ : (s : `★) → (El s → `★) → `★
-- vectors
`Vec : `★ → ℕ → `★
-- functions
_`→_ : `★⁻ → `★ → `★
-- decoding of positive types
El `⊤ = ⊤
El `Bit = Bit
El (`Fin n) = Fin n
El (`Maybe t) = Maybe (El t)
El (s `× t) = El s × El t
El (s `⊎ t) = El s ⊎ El t
El (`Σ s t) = Σ (El s) λ x → El (t x)
El (s `→ t) = El⁻ s → El t
El (`Vec t n) = Vec (El t) n
`Bits = `Vec `Bit
`S : ∀ `A → S (El `A)
`S `⊤ = S⊤
`S `Bit = SBit
`S (`Fin n) = SFin n
`S (`Maybe `A) = SMaybe (`S `A)
`S (`A `× `B) = `S `A S× `S `B
`S (`A `⊎ `B) = `S `A S⊎ `S `B
`S (`Σ `A `B) = SΣ (`S `A) λ x → `S (`B x)
`S (`Vec `A n) = SVec (`S `A) n
`S (`A `→ `B) = `S⟨ `A ⟩→ `S `B