Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

Latest commit

 

History

History
43 lines (21 loc) · 1.71 KB

MKL_README.md

File metadata and controls

43 lines (21 loc) · 1.71 KB

MKL2017 PLUGIN

MKL2017 is an INTEL released library to accelerate Deep Neural Network (DNN) applications on Intel architecture.

MKL2017_ML is a subset of MKL2017 and only contains DNN acceleration feature, MKL2017 release cycle is longer then MKL2017_ML and MKL2017_ML support latest feature

This README shows the user how to setup and install MKL2017 library with mxnet.

Build/Install MXNet with MKL:

  1. Enable USE_MKL2017=1 in make/config.mk
1.1 By default, MKL_2017_EXPRIEMENTAL=0. If setting MKL_2017_EXPRIEMENTAL=1, MKL buffer will be created and transferred between layers to achiever much higher performance.

1.2 By default, USE_BLAS=atlas, MKLML_ROOT=/usr/local, MKL2017_ML will be used

  1.2.1 when excute make, Makefile will execute "prepare_mkl.sh" to download the MKL2017_ML library under <MKLML_ROOT>

  1.2.2 manually steps for download MKL2017_ML problem

    1.2.2.1 wget https://github.com/dmlc/web-data/raw/master/mxnet/mklml-release/mklml_lnx_<MKL VERSION>.tgz

    1.2.2.2 tar zxvf mklml_lnx_<MKL VERSION>.tgz

    1.2.2.3 cp -rf mklml_lnx_<MKL VERSION>/* <MKLML_ROOT>/

  1.2.3 Set LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MKLML_ROOT/lib

1.3 If setting USE_BLAS=mkl

  1.3.1 please navigate here to do a full MKL installation: https://registrationcenter.intel.com/en/forms/?productid=2558&licensetype=2  

  1.3.2 do not use MKL2017 and MKL2017_ML at the same time
    
    1.3.2.1 Do not execute MKL2017 compilervars.sh or mklvars.sh script before MxNet compilation. Otherwise, MKL2017 may conflict with MKL2017_ML and MxNet may not be compiled.   
  1. Run 'make -jX'

  2. Navigate into the python directory

  3. Run 'sudo python setup.py install'