-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathrnn_training_f32.cpp
705 lines (633 loc) · 31.5 KB
/
rnn_training_f32.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
/*******************************************************************************
* Copyright 2018-2024 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/// @example rnn_training_f32.cpp
/// @copybrief rnn_training_f32_cpp
/// > Annotated version: @ref rnn_training_f32_cpp
///
/// @page rnn_training_f32_cpp RNN f32 training example
/// This C++ API example demonstrates how to build GNMT model training.
///
/// @include rnn_training_f32.cpp
#include <cstring>
#include <math.h>
#include <numeric>
#include <utility>
#include "oneapi/dnnl/dnnl.hpp"
#include "example_utils.hpp"
using namespace dnnl;
// User input is:
// N0 sequences of length T0
const int N0 = 1 + rand() % 31;
// N1 sequences of length T1
const int N1 = 1 + rand() % 31;
// Assume T0 > T1
const int T0 = 31 + 1 + rand() % 31;
const int T1 = 1 + rand() % 31;
// Memory required to hold it: N0 * T0 + N1 * T1
// However it is possible to have these coming
// as padded chunks in larger memory:
// e.g. (N0 + N1) * T0
// We don't need to compact the data before processing,
// we can address the chunks via sub-memory and
// process the data via two RNN primitives:
// of time lengths T1 and T0 - T1.
// The leftmost primitive will process N0 + N1 subsequences of length T1
// The rightmost primitive will process remaining N0 subsequences
// of T0 - T1 length
const int leftmost_batch = N0 + N1;
const int rightmost_batch = N0;
const int leftmost_seq_length = T1;
const int rightmost_seq_length = T0 - T1;
// Number of channels
const int common_feature_size = 1024;
// RNN primitive characteristics
const int common_n_layers = 1;
const int lstm_n_gates = 4;
void simple_net(engine::kind engine_kind) {
using tag = memory::format_tag;
using dt = memory::data_type;
auto eng = engine(engine_kind, 0);
stream s(eng);
bool is_training = true;
auto fwd_inf_train = is_training ? prop_kind::forward_training
: prop_kind::forward_inference;
std::vector<primitive> fwd_net;
std::vector<primitive> bwd_net;
// Input tensor holds two batches with different sequence lengths.
// Shorter sequences are padded
memory::dims net_src_dims = {
T0, // time, maximum sequence length
N0 + N1, // n, total batch size
common_feature_size // c, common number of channels
};
// Two RNN primitives for different sequence lengths,
// one unidirectional layer, LSTM-based
memory::dims leftmost_src_layer_dims = {
leftmost_seq_length, // time
leftmost_batch, // n
common_feature_size // c
};
memory::dims rightmost_src_layer_dims = {
rightmost_seq_length, // time
rightmost_batch, // n
common_feature_size // c
};
memory::dims common_weights_layer_dims = {
common_n_layers, // layers
1, // directions
common_feature_size, // input feature size
lstm_n_gates, // gates number
common_feature_size // output feature size
};
memory::dims common_weights_iter_dims = {
common_n_layers, // layers
1, // directions
common_feature_size, // input feature size
lstm_n_gates, // gates number
common_feature_size // output feature size
};
memory::dims common_bias_dims = {
common_n_layers, // layers
1, // directions
lstm_n_gates, // gates number
common_feature_size // output feature size
};
memory::dims leftmost_dst_layer_dims = {
leftmost_seq_length, // time
leftmost_batch, // n
common_feature_size // c
};
memory::dims rightmost_dst_layer_dims = {
rightmost_seq_length, // time
rightmost_batch, // n
common_feature_size // c
};
// leftmost primitive passes its states to the next RNN iteration
// so it needs dst_iter parameter.
//
// rightmost primitive will consume these as src_iter and will access the
// memory via a sub-memory because it will have different batch dimension.
// We have arranged our primitives so that
// leftmost_batch >= rightmost_batch, and so the rightmost data will fit
// into the memory allocated for the leftmost.
memory::dims leftmost_dst_iter_dims = {
common_n_layers, // layers
1, // directions
leftmost_batch, // n
common_feature_size // c
};
memory::dims leftmost_dst_iter_c_dims = {
common_n_layers, // layers
1, // directions
leftmost_batch, // n
common_feature_size // c
};
memory::dims rightmost_src_iter_dims = {
common_n_layers, // layers
1, // directions
rightmost_batch, // n
common_feature_size // c
};
memory::dims rightmost_src_iter_c_dims = {
common_n_layers, // layers
1, // directions
rightmost_batch, // n
common_feature_size // c
};
// multiplication of tensor dimensions
auto tz_volume = [=](memory::dims tz_dims) {
return std::accumulate(tz_dims.begin(), tz_dims.end(), (memory::dim)1,
std::multiplies<memory::dim>());
};
// Create auxiliary f32 memory descriptor
// based on user- supplied dimensions and layout.
auto formatted_md
= [=](const memory::dims &dimensions, memory::format_tag layout) {
return memory::desc {{dimensions}, dt::f32, layout};
};
// Create auxiliary generic f32 memory descriptor
// based on supplied dimensions, with format_tag::any.
auto generic_md = [=](const memory::dims &dimensions) {
return formatted_md(dimensions, tag::any);
};
//
// I/O memory, coming from user
//
// Net input
std::vector<float> net_src(tz_volume(net_src_dims), 1.0f);
// NOTE: in this example we study input sequences with variable batch
// dimension, which get processed by two separate RNN primitives, thus
// the destination memory for the two will have different shapes: batch
// is the second dimension currently: see format_tag::tnc.
// We are not copying the output to some common user provided memory as we
// suggest that the user should rather keep the two output memories separate
// throughout the whole topology and only reorder to something else as
// needed.
// So there's no common net_dst, but there are two destinations instead:
// leftmost_dst_layer_memory
// rightmost_dst_layer_memory
// Memory for the user allocated memory
// Suppose user data is in tnc format.
auto net_src_memory
= dnnl::memory({{net_src_dims}, dt::f32, tag::tnc}, eng);
write_to_dnnl_memory(net_src.data(), net_src_memory);
// src_layer memory of the leftmost and rightmost RNN primitives
// are accessed through the respective sub-memories in larger memory.
// View primitives compute the strides to accommodate for padding.
auto user_leftmost_src_layer_md = net_src_memory.get_desc().submemory_desc(
leftmost_src_layer_dims, {0, 0, 0}); // t, n, c offsets
auto user_rightmost_src_layer_md
= net_src_memory.get_desc().submemory_desc(rightmost_src_layer_dims,
{leftmost_seq_length, 0, 0}); // t, n, c offsets
auto leftmost_src_layer_memory = net_src_memory;
auto rightmost_src_layer_memory = net_src_memory;
// Other user provided memory arrays, descriptors and primitives with the
// data layouts chosen by user. We'll have to reorder if RNN
// primitive prefers it in a different format.
std::vector<float> user_common_weights_layer(
tz_volume(common_weights_layer_dims), 1.0f);
auto user_common_weights_layer_memory = dnnl::memory(
{common_weights_layer_dims, dt::f32, tag::ldigo}, eng);
write_to_dnnl_memory(
user_common_weights_layer.data(), user_common_weights_layer_memory);
std::vector<float> user_common_weights_iter(
tz_volume(common_weights_iter_dims), 1.0f);
auto user_common_weights_iter_memory = dnnl::memory(
{{common_weights_iter_dims}, dt::f32, tag::ldigo}, eng);
write_to_dnnl_memory(
user_common_weights_layer.data(), user_common_weights_iter_memory);
std::vector<float> user_common_bias(tz_volume(common_bias_dims), 1.0f);
auto user_common_bias_memory
= dnnl::memory({{common_bias_dims}, dt::f32, tag::ldgo}, eng);
write_to_dnnl_memory(user_common_bias.data(), user_common_bias_memory);
std::vector<float> user_leftmost_dst_layer(
tz_volume(leftmost_dst_layer_dims), 1.0f);
auto user_leftmost_dst_layer_memory
= dnnl::memory({{leftmost_dst_layer_dims}, dt::f32, tag::tnc}, eng);
write_to_dnnl_memory(
user_leftmost_dst_layer.data(), user_leftmost_dst_layer_memory);
std::vector<float> user_rightmost_dst_layer(
tz_volume(rightmost_dst_layer_dims), 1.0f);
auto user_rightmost_dst_layer_memory = dnnl::memory(
{{rightmost_dst_layer_dims}, dt::f32, tag::tnc}, eng);
write_to_dnnl_memory(
user_rightmost_dst_layer.data(), user_rightmost_dst_layer_memory);
// Describe layer, forward pass, leftmost primitive.
// There are no primitives to the left from here,
// so src_iter_desc needs to be zero memory desc
auto leftmost_prim_desc = lstm_forward::primitive_desc(eng, // engine
fwd_inf_train, // aprop_kind
rnn_direction::unidirectional_left2right, // direction
user_leftmost_src_layer_md, // src_layer_desc
memory::desc(), // src_iter_desc
memory::desc(), // src_iter_c_desc
generic_md(common_weights_layer_dims), // weights_layer_desc
generic_md(common_weights_iter_dims), // weights_iter_desc
generic_md(common_bias_dims), // bias_desc
formatted_md(leftmost_dst_layer_dims, tag::tnc), // dst_layer_desc
generic_md(leftmost_dst_iter_dims), // dst_iter_desc
generic_md(leftmost_dst_iter_c_dims) // dst_iter_c_desc
);
//
// Need to connect leftmost and rightmost via "iter" parameters.
// We allocate memory here based on the shapes provided by RNN primitive.
//
auto leftmost_dst_iter_memory
= dnnl::memory(leftmost_prim_desc.dst_iter_desc(), eng);
auto leftmost_dst_iter_c_memory
= dnnl::memory(leftmost_prim_desc.dst_iter_c_desc(), eng);
// rightmost src_iter will be a sub-memory of dst_iter of leftmost
auto rightmost_src_iter_md
= leftmost_dst_iter_memory.get_desc().submemory_desc(
rightmost_src_iter_dims,
{0, 0, 0, 0}); // l, d, n, c offsets
auto rightmost_src_iter_memory = leftmost_dst_iter_memory;
auto rightmost_src_iter_c_md
= leftmost_dst_iter_c_memory.get_desc().submemory_desc(
rightmost_src_iter_c_dims,
{0, 0, 0, 0}); // l, d, n, c offsets
auto rightmost_src_iter_c_memory = leftmost_dst_iter_c_memory;
// Now rightmost primitive
// There are no primitives to the right from here,
// so dst_iter_desc is explicit zero memory desc
auto rightmost_prim_desc = lstm_forward::primitive_desc(eng, // engine
fwd_inf_train, // aprop_kind
rnn_direction::unidirectional_left2right, // direction
user_rightmost_src_layer_md, // src_layer_desc
rightmost_src_iter_md, // src_iter_desc
rightmost_src_iter_c_md, // src_iter_c_desc
generic_md(common_weights_layer_dims), // weights_layer_desc
generic_md(common_weights_iter_dims), // weights_iter_desc
generic_md(common_bias_dims), // bias_desc
formatted_md(rightmost_dst_layer_dims, tag::tnc), // dst_layer_desc
memory::desc(), // dst_iter_desc
memory::desc() // dst_iter_c_desc
);
//
// Weights and biases, layer memory
// Same layout should work across the layer, no reorders
// needed between leftmost and rigthmost, only reordering
// user memory to the RNN-friendly shapes.
//
auto common_weights_layer_memory = user_common_weights_layer_memory;
if (leftmost_prim_desc.weights_layer_desc()
!= common_weights_layer_memory.get_desc()) {
common_weights_layer_memory
= dnnl::memory(leftmost_prim_desc.weights_layer_desc(), eng);
reorder(user_common_weights_layer_memory, common_weights_layer_memory)
.execute(s, user_common_weights_layer_memory,
common_weights_layer_memory);
}
auto common_weights_iter_memory = user_common_weights_iter_memory;
if (leftmost_prim_desc.weights_iter_desc()
!= common_weights_iter_memory.get_desc()) {
common_weights_iter_memory
= dnnl::memory(leftmost_prim_desc.weights_iter_desc(), eng);
reorder(user_common_weights_iter_memory, common_weights_iter_memory)
.execute(s, user_common_weights_iter_memory,
common_weights_iter_memory);
}
auto common_bias_memory = user_common_bias_memory;
if (leftmost_prim_desc.bias_desc() != common_bias_memory.get_desc()) {
common_bias_memory = dnnl::memory(leftmost_prim_desc.bias_desc(), eng);
reorder(user_common_bias_memory, common_bias_memory)
.execute(s, user_common_bias_memory, common_bias_memory);
}
//
// Destination layer memory
//
auto leftmost_dst_layer_memory = user_leftmost_dst_layer_memory;
if (leftmost_prim_desc.dst_layer_desc()
!= leftmost_dst_layer_memory.get_desc()) {
leftmost_dst_layer_memory
= dnnl::memory(leftmost_prim_desc.dst_layer_desc(), eng);
reorder(user_leftmost_dst_layer_memory, leftmost_dst_layer_memory)
.execute(s, user_leftmost_dst_layer_memory,
leftmost_dst_layer_memory);
}
auto rightmost_dst_layer_memory = user_rightmost_dst_layer_memory;
if (rightmost_prim_desc.dst_layer_desc()
!= rightmost_dst_layer_memory.get_desc()) {
rightmost_dst_layer_memory
= dnnl::memory(rightmost_prim_desc.dst_layer_desc(), eng);
reorder(user_rightmost_dst_layer_memory, rightmost_dst_layer_memory)
.execute(s, user_rightmost_dst_layer_memory,
rightmost_dst_layer_memory);
}
// We also create workspace memory based on the information from
// the workspace_primitive_desc(). This is needed for internal
// communication between forward and backward primitives during
// training.
auto create_ws = [=](dnnl::lstm_forward::primitive_desc &pd) {
return dnnl::memory(pd.workspace_desc(), eng);
};
auto leftmost_workspace_memory = create_ws(leftmost_prim_desc);
auto rightmost_workspace_memory = create_ws(rightmost_prim_desc);
// Construct the RNN primitive objects
lstm_forward leftmost_layer(leftmost_prim_desc);
leftmost_layer.execute(s,
{{DNNL_ARG_SRC_LAYER, leftmost_src_layer_memory},
{DNNL_ARG_WEIGHTS_LAYER, common_weights_layer_memory},
{DNNL_ARG_WEIGHTS_ITER, common_weights_iter_memory},
{DNNL_ARG_BIAS, common_bias_memory},
{DNNL_ARG_DST_LAYER, leftmost_dst_layer_memory},
{DNNL_ARG_DST_ITER, leftmost_dst_iter_memory},
{DNNL_ARG_DST_ITER_C, leftmost_dst_iter_c_memory},
{DNNL_ARG_WORKSPACE, leftmost_workspace_memory}});
lstm_forward rightmost_layer(rightmost_prim_desc);
rightmost_layer.execute(s,
{{DNNL_ARG_SRC_LAYER, rightmost_src_layer_memory},
{DNNL_ARG_SRC_ITER, rightmost_src_iter_memory},
{DNNL_ARG_SRC_ITER_C, rightmost_src_iter_c_memory},
{DNNL_ARG_WEIGHTS_LAYER, common_weights_layer_memory},
{DNNL_ARG_WEIGHTS_ITER, common_weights_iter_memory},
{DNNL_ARG_BIAS, common_bias_memory},
{DNNL_ARG_DST_LAYER, rightmost_dst_layer_memory},
{DNNL_ARG_WORKSPACE, rightmost_workspace_memory}});
// No backward pass for inference
if (!is_training) return;
//
// Backward primitives will reuse memory from forward
// and allocate/describe specifics here. Only relevant for training.
//
// User-provided memory for backward by data output
std::vector<float> net_diff_src(tz_volume(net_src_dims), 1.0f);
auto net_diff_src_memory
= dnnl::memory(formatted_md(net_src_dims, tag::tnc), eng);
write_to_dnnl_memory(net_diff_src.data(), net_diff_src_memory);
// diff_src follows the same layout we have for net_src
auto user_leftmost_diff_src_layer_md
= net_diff_src_memory.get_desc().submemory_desc(
leftmost_src_layer_dims, {0, 0, 0}); // t, n, c offsets
auto user_rightmost_diff_src_layer_md
= net_diff_src_memory.get_desc().submemory_desc(
rightmost_src_layer_dims,
{leftmost_seq_length, 0, 0}); // t, n, c offsets
auto leftmost_diff_src_layer_memory = net_diff_src_memory;
auto rightmost_diff_src_layer_memory = net_diff_src_memory;
// User-provided memory for backpropagation by weights
std::vector<float> user_common_diff_weights_layer(
tz_volume(common_weights_layer_dims), 1.0f);
auto user_common_diff_weights_layer_memory = dnnl::memory(
formatted_md(common_weights_layer_dims, tag::ldigo), eng);
write_to_dnnl_memory(user_common_diff_weights_layer.data(),
user_common_diff_weights_layer_memory);
std::vector<float> user_common_diff_bias(tz_volume(common_bias_dims), 1.0f);
auto user_common_diff_bias_memory
= dnnl::memory(formatted_md(common_bias_dims, tag::ldgo), eng);
write_to_dnnl_memory(
user_common_diff_bias.data(), user_common_diff_bias_memory);
// User-provided input to the backward primitive.
// To be updated by the user after forward pass using some cost function.
memory::dims net_diff_dst_dims = {
T0, // time
N0 + N1, // n
common_feature_size // c
};
// Suppose user data is in tnc format.
std::vector<float> net_diff_dst(tz_volume(net_diff_dst_dims), 1.0f);
auto net_diff_dst_memory
= dnnl::memory(formatted_md(net_diff_dst_dims, tag::tnc), eng);
write_to_dnnl_memory(net_diff_dst.data(), net_diff_dst_memory);
// diff_dst_layer memory of the leftmost and rightmost RNN primitives
// are accessed through the respective sub-memory in larger memory.
// View primitives compute the strides to accommodate for padding.
auto user_leftmost_diff_dst_layer_md
= net_diff_dst_memory.get_desc().submemory_desc(
leftmost_dst_layer_dims, {0, 0, 0}); // t, n, c offsets
auto user_rightmost_diff_dst_layer_md
= net_diff_dst_memory.get_desc().submemory_desc(
rightmost_dst_layer_dims,
{leftmost_seq_length, 0, 0}); // t, n, c offsets
auto leftmost_diff_dst_layer_memory = net_diff_dst_memory;
auto rightmost_diff_dst_layer_memory = net_diff_dst_memory;
// Backward leftmost primitive descriptor
auto leftmost_bwd_prim_desc = lstm_backward::primitive_desc(eng, // engine
prop_kind::backward, // aprop_kind
rnn_direction::unidirectional_left2right, // direction
user_leftmost_src_layer_md, // src_layer_desc
memory::desc(), // src_iter_desc
memory::desc(), // src_iter_c_desc
generic_md(common_weights_layer_dims), // weights_layer_desc
generic_md(common_weights_iter_dims), // weights_iter_desc
generic_md(common_bias_dims), // bias_desc
formatted_md(leftmost_dst_layer_dims, tag::tnc), // dst_layer_desc
generic_md(leftmost_dst_iter_dims), // dst_iter_desc
generic_md(leftmost_dst_iter_c_dims), // dst_iter_c_desc
user_leftmost_diff_src_layer_md, // diff_src_layer_desc
memory::desc(), // diff_src_iter_desc
memory::desc(), // diff_src_iter_c_desc
generic_md(common_weights_layer_dims), // diff_weights_layer_desc
generic_md(common_weights_iter_dims), // diff_weights_iter_desc
generic_md(common_bias_dims), // diff_bias_desc
user_leftmost_diff_dst_layer_md, // diff_dst_layer_desc
generic_md(leftmost_dst_iter_dims), // diff_dst_iter_desc
generic_md(leftmost_dst_iter_c_dims), // diff_dst_iter_c_desc
leftmost_prim_desc // hint from forward pass
);
// As the batch dimensions are different between leftmost and rightmost
// we need to use a sub-memory. rightmost needs less memory, so it will
// be a sub-memory of leftmost.
auto leftmost_diff_dst_iter_memory
= dnnl::memory(leftmost_bwd_prim_desc.diff_dst_iter_desc(), eng);
auto leftmost_diff_dst_iter_c_memory
= dnnl::memory(leftmost_bwd_prim_desc.diff_dst_iter_c_desc(), eng);
auto rightmost_diff_src_iter_md
= leftmost_diff_dst_iter_memory.get_desc().submemory_desc(
rightmost_src_iter_dims,
{0, 0, 0, 0}); // l, d, n, c offsets
auto rightmost_diff_src_iter_memory = leftmost_diff_dst_iter_memory;
auto rightmost_diff_src_iter_c_md
= leftmost_diff_dst_iter_c_memory.get_desc().submemory_desc(
rightmost_src_iter_c_dims,
{0, 0, 0, 0}); // l, d, n, c offsets
auto rightmost_diff_src_iter_c_memory = leftmost_diff_dst_iter_c_memory;
// Backward rightmost primitive descriptor
auto rightmost_bwd_prim_desc = lstm_backward::primitive_desc(eng, // engine
prop_kind::backward, // aprop_kind
rnn_direction::unidirectional_left2right, // direction
user_rightmost_src_layer_md, // src_layer_desc
generic_md(rightmost_src_iter_dims), // src_iter_desc
generic_md(rightmost_src_iter_c_dims), // src_iter_c_desc
generic_md(common_weights_layer_dims), // weights_layer_desc
generic_md(common_weights_iter_dims), // weights_iter_desc
generic_md(common_bias_dims), // bias_desc
formatted_md(rightmost_dst_layer_dims, tag::tnc), // dst_layer_desc
memory::desc(), // dst_iter_desc
memory::desc(), // dst_iter_c_desc
user_rightmost_diff_src_layer_md, // diff_src_layer_desc
rightmost_diff_src_iter_md, // diff_src_iter_desc
rightmost_diff_src_iter_c_md, // diff_src_iter_c_desc
generic_md(common_weights_layer_dims), // diff_weights_layer_desc
generic_md(common_weights_iter_dims), // diff_weights_iter_desc
generic_md(common_bias_dims), // diff_bias_desc
user_rightmost_diff_dst_layer_md, // diff_dst_layer_desc
memory::desc(), // diff_dst_iter_desc
memory::desc(), // diff_dst_iter_c_desc
rightmost_prim_desc // hint from forward pass
);
//
// Memory for backward pass
//
// src layer uses the same memory as forward
auto leftmost_src_layer_bwd_memory = leftmost_src_layer_memory;
auto rightmost_src_layer_bwd_memory = rightmost_src_layer_memory;
// Memory for weights and biases for backward pass
// Try to use the same memory between forward and backward, but
// sometimes reorders are needed.
auto common_weights_layer_bwd_memory = common_weights_layer_memory;
if (leftmost_bwd_prim_desc.weights_layer_desc()
!= leftmost_prim_desc.weights_layer_desc()) {
common_weights_layer_bwd_memory
= memory(leftmost_bwd_prim_desc.weights_layer_desc(), eng);
reorder(common_weights_layer_memory, common_weights_layer_bwd_memory)
.execute(s, common_weights_layer_memory,
common_weights_layer_bwd_memory);
}
auto common_weights_iter_bwd_memory = common_weights_iter_memory;
if (leftmost_bwd_prim_desc.weights_iter_desc()
!= leftmost_prim_desc.weights_iter_desc()) {
common_weights_iter_bwd_memory
= memory(leftmost_bwd_prim_desc.weights_iter_desc(), eng);
reorder(common_weights_iter_memory, common_weights_iter_bwd_memory)
.execute(s, common_weights_iter_memory,
common_weights_iter_bwd_memory);
}
auto common_bias_bwd_memory = common_bias_memory;
if (leftmost_bwd_prim_desc.bias_desc() != common_bias_memory.get_desc()) {
common_bias_bwd_memory
= dnnl::memory(leftmost_bwd_prim_desc.bias_desc(), eng);
reorder(common_bias_memory, common_bias_bwd_memory)
.execute(s, common_bias_memory, common_bias_bwd_memory);
}
// diff_weights and biases
auto common_diff_weights_layer_memory
= user_common_diff_weights_layer_memory;
auto reorder_common_diff_weights_layer = false;
if (leftmost_bwd_prim_desc.diff_weights_layer_desc()
!= common_diff_weights_layer_memory.get_desc()) {
common_diff_weights_layer_memory = dnnl::memory(
leftmost_bwd_prim_desc.diff_weights_layer_desc(), eng);
reorder_common_diff_weights_layer = true;
}
auto common_diff_bias_memory = user_common_diff_bias_memory;
auto reorder_common_diff_bias = false;
if (leftmost_bwd_prim_desc.diff_bias_desc()
!= common_diff_bias_memory.get_desc()) {
common_diff_bias_memory
= dnnl::memory(leftmost_bwd_prim_desc.diff_bias_desc(), eng);
reorder_common_diff_bias = true;
}
// dst_layer memory for backward pass
auto leftmost_dst_layer_bwd_memory = leftmost_dst_layer_memory;
if (leftmost_bwd_prim_desc.dst_layer_desc()
!= leftmost_dst_layer_bwd_memory.get_desc()) {
leftmost_dst_layer_bwd_memory
= dnnl::memory(leftmost_bwd_prim_desc.dst_layer_desc(), eng);
reorder(leftmost_dst_layer_memory, leftmost_dst_layer_bwd_memory)
.execute(s, leftmost_dst_layer_memory,
leftmost_dst_layer_bwd_memory);
}
auto rightmost_dst_layer_bwd_memory = rightmost_dst_layer_memory;
if (rightmost_bwd_prim_desc.dst_layer_desc()
!= rightmost_dst_layer_bwd_memory.get_desc()) {
rightmost_dst_layer_bwd_memory
= dnnl::memory(rightmost_bwd_prim_desc.dst_layer_desc(), eng);
reorder(rightmost_dst_layer_memory, rightmost_dst_layer_bwd_memory)
.execute(s, rightmost_dst_layer_memory,
rightmost_dst_layer_bwd_memory);
}
// Similar to forward, the backward primitives are connected
// via "iter" parameters.
auto common_diff_weights_iter_memory = dnnl::memory(
leftmost_bwd_prim_desc.diff_weights_iter_desc(), eng);
auto leftmost_dst_iter_bwd_memory = leftmost_dst_iter_memory;
if (leftmost_bwd_prim_desc.dst_iter_desc()
!= leftmost_dst_iter_bwd_memory.get_desc()) {
leftmost_dst_iter_bwd_memory
= dnnl::memory(leftmost_bwd_prim_desc.dst_iter_desc(), eng);
reorder(leftmost_dst_iter_memory, leftmost_dst_iter_bwd_memory)
.execute(s, leftmost_dst_iter_memory,
leftmost_dst_iter_bwd_memory);
}
auto leftmost_dst_iter_c_bwd_memory = leftmost_dst_iter_c_memory;
if (leftmost_bwd_prim_desc.dst_iter_c_desc()
!= leftmost_dst_iter_c_bwd_memory.get_desc()) {
leftmost_dst_iter_c_bwd_memory
= dnnl::memory(leftmost_bwd_prim_desc.dst_iter_c_desc(), eng);
reorder(leftmost_dst_iter_c_memory, leftmost_dst_iter_c_bwd_memory)
.execute(s, leftmost_dst_iter_c_memory,
leftmost_dst_iter_c_bwd_memory);
}
// Construct the RNN primitive objects for backward
lstm_backward rightmost_layer_bwd(rightmost_bwd_prim_desc);
rightmost_layer_bwd.execute(s,
{{DNNL_ARG_SRC_LAYER, rightmost_src_layer_bwd_memory},
{DNNL_ARG_SRC_ITER, rightmost_src_iter_memory},
{DNNL_ARG_SRC_ITER_C, rightmost_src_iter_c_memory},
{DNNL_ARG_WEIGHTS_LAYER, common_weights_layer_bwd_memory},
{DNNL_ARG_WEIGHTS_ITER, common_weights_iter_bwd_memory},
{DNNL_ARG_BIAS, common_bias_bwd_memory},
{DNNL_ARG_DST_LAYER, rightmost_dst_layer_bwd_memory},
{DNNL_ARG_DIFF_SRC_LAYER, rightmost_diff_src_layer_memory},
{DNNL_ARG_DIFF_SRC_ITER, rightmost_diff_src_iter_memory},
{DNNL_ARG_DIFF_SRC_ITER_C,
rightmost_diff_src_iter_c_memory},
{DNNL_ARG_DIFF_WEIGHTS_LAYER,
common_diff_weights_layer_memory},
{DNNL_ARG_DIFF_WEIGHTS_ITER,
common_diff_weights_iter_memory},
{DNNL_ARG_DIFF_BIAS, common_diff_bias_memory},
{DNNL_ARG_DIFF_DST_LAYER, rightmost_diff_dst_layer_memory},
{DNNL_ARG_WORKSPACE, rightmost_workspace_memory}});
lstm_backward leftmost_layer_bwd(leftmost_bwd_prim_desc);
leftmost_layer_bwd.execute(s,
{{DNNL_ARG_SRC_LAYER, leftmost_src_layer_bwd_memory},
{DNNL_ARG_WEIGHTS_LAYER, common_weights_layer_bwd_memory},
{DNNL_ARG_WEIGHTS_ITER, common_weights_iter_bwd_memory},
{DNNL_ARG_BIAS, common_bias_bwd_memory},
{DNNL_ARG_DST_LAYER, leftmost_dst_layer_bwd_memory},
{DNNL_ARG_DST_ITER, leftmost_dst_iter_bwd_memory},
{DNNL_ARG_DST_ITER_C, leftmost_dst_iter_c_bwd_memory},
{DNNL_ARG_DIFF_SRC_LAYER, leftmost_diff_src_layer_memory},
{DNNL_ARG_DIFF_WEIGHTS_LAYER,
common_diff_weights_layer_memory},
{DNNL_ARG_DIFF_WEIGHTS_ITER,
common_diff_weights_iter_memory},
{DNNL_ARG_DIFF_BIAS, common_diff_bias_memory},
{DNNL_ARG_DIFF_DST_LAYER, leftmost_diff_dst_layer_memory},
{DNNL_ARG_DIFF_DST_ITER, leftmost_diff_dst_iter_memory},
{DNNL_ARG_DIFF_DST_ITER_C, leftmost_diff_dst_iter_c_memory},
{DNNL_ARG_WORKSPACE, leftmost_workspace_memory}});
if (reorder_common_diff_weights_layer) {
reorder(common_diff_weights_layer_memory,
user_common_diff_weights_layer_memory)
.execute(s, common_diff_weights_layer_memory,
user_common_diff_weights_layer_memory);
}
if (reorder_common_diff_bias) {
reorder(common_diff_bias_memory, user_common_diff_bias_memory)
.execute(s, common_diff_bias_memory,
user_common_diff_bias_memory);
}
//
// User updates weights and bias using diffs
//
s.wait();
}
int main(int argc, char **argv) {
return handle_example_errors(simple_net, parse_engine_kind(argc, argv));
}