|
84 | 84 | Through simulation of the evolutionary operations <firstterm>recombination</firstterm>,
|
85 | 85 | <firstterm>mutation</firstterm>, and
|
86 | 86 | <firstterm>selection</firstterm> new generations of search points are found
|
87 |
| - that show a higher average fitness than their ancestors. |
| 87 | + that show a higher average fitness than their ancestors. <xref linkend="geqo-figure"/> |
| 88 | + illustrates these steps. |
88 | 89 | </para>
|
89 | 90 |
|
| 91 | + <figure id="geqo-figure"> |
| 92 | + <title>Structure of a Genetic Algorithm</title> |
| 93 | + <mediaobject> |
| 94 | + <imageobject> |
| 95 | + <imagedata fileref="images/genetic-algorithm.svg" format="SVG" width="100%"/> |
| 96 | + </imageobject> |
| 97 | + </mediaobject> |
| 98 | + </figure> |
| 99 | + |
90 | 100 | <para>
|
91 | 101 | According to the <systemitem class="resource">comp.ai.genetic</systemitem> <acronym>FAQ</acronym> it cannot be stressed too
|
92 | 102 | strongly that a <acronym>GA</acronym> is not a pure random search for a solution to a
|
93 | 103 | problem. A <acronym>GA</acronym> uses stochastic processes, but the result is distinctly
|
94 | 104 | non-random (better than random).
|
95 | 105 | </para>
|
96 | 106 |
|
97 |
| - <figure id="geqo-diagram"> |
98 |
| - <title>Structured Diagram of a Genetic Algorithm</title> |
99 |
| - |
100 |
| - <informaltable frame="none"> |
101 |
| - <tgroup cols="2"> |
102 |
| - <tbody> |
103 |
| - <row> |
104 |
| - <entry>P(t)</entry> |
105 |
| - <entry>generation of ancestors at a time t</entry> |
106 |
| - </row> |
107 |
| - |
108 |
| - <row> |
109 |
| - <entry>P''(t)</entry> |
110 |
| - <entry>generation of descendants at a time t</entry> |
111 |
| - </row> |
112 |
| - </tbody> |
113 |
| - </tgroup> |
114 |
| - </informaltable> |
115 |
| - |
116 |
| -<literallayout class="monospaced"> |
117 |
| -+=========================================+ |
118 |
| -|>>>>>>>>>>> Algorithm GA <<<<<<<<<<<<<<| |
119 |
| -+=========================================+ |
120 |
| -| INITIALIZE t := 0 | |
121 |
| -+=========================================+ |
122 |
| -| INITIALIZE P(t) | |
123 |
| -+=========================================+ |
124 |
| -| evaluate FITNESS of P(t) | |
125 |
| -+=========================================+ |
126 |
| -| while not STOPPING CRITERION do | |
127 |
| -| +-------------------------------------+ |
128 |
| -| | P'(t) := RECOMBINATION{P(t)} | |
129 |
| -| +-------------------------------------+ |
130 |
| -| | P''(t) := MUTATION{P'(t)} | |
131 |
| -| +-------------------------------------+ |
132 |
| -| | P(t+1) := SELECTION{P''(t) + P(t)} | |
133 |
| -| +-------------------------------------+ |
134 |
| -| | evaluate FITNESS of P''(t) | |
135 |
| -| +-------------------------------------+ |
136 |
| -| | t := t + 1 | |
137 |
| -+===+=====================================+ |
138 |
| -</literallayout> |
139 |
| - </figure> |
140 | 107 | </sect1>
|
141 | 108 |
|
142 | 109 | <sect1 id="geqo-pg-intro">
|
|
0 commit comments