49
49
* Portions Copyright (c) 1994, Regents of the University of California
50
50
*
51
51
* IDENTIFICATION
52
- * $PostgreSQL: pgsql/src/backend/optimizer/path/costsize.c,v 1.130 2004/06/05 01:55:04 tgl Exp $
52
+ * $PostgreSQL: pgsql/src/backend/optimizer/path/costsize.c,v 1.131 2004/06/10 21:02:00 tgl Exp $
53
53
*
54
54
*-------------------------------------------------------------------------
55
55
*/
@@ -189,11 +189,12 @@ cost_seqscan(Path *path, Query *root,
189
189
* for now by assuming we are given an effective_cache_size parameter.
190
190
*
191
191
* Given a guesstimated cache size, we estimate the actual I/O cost per page
192
- * with the entirely ad-hoc equations:
193
- * if relpages >= effective_cache_size:
194
- * random_page_cost * (1 - (effective_cache_size/relpages)/2)
195
- * if relpages < effective_cache_size:
196
- * 1 + (random_page_cost/2-1) * (relpages/effective_cache_size) ** 2
192
+ * with the entirely ad-hoc equations (writing relsize for
193
+ * relpages/effective_cache_size):
194
+ * if relsize >= 1:
195
+ * random_page_cost - (random_page_cost-1)/2 * (1/relsize)
196
+ * if relsize < 1:
197
+ * 1 + ((random_page_cost-1)/2) * relsize ** 2
197
198
* These give the right asymptotic behavior (=> 1.0 as relpages becomes
198
199
* small, => random_page_cost as it becomes large) and meet in the middle
199
200
* with the estimate that the cache is about 50% effective for a relation
@@ -213,9 +214,9 @@ cost_nonsequential_access(double relpages)
213
214
relsize = relpages / effective_cache_size ;
214
215
215
216
if (relsize >= 1.0 )
216
- return random_page_cost * ( 1.0 - 0.5 / relsize ) ;
217
+ return random_page_cost - ( random_page_cost - 1.0 ) * 0.5 / relsize ;
217
218
else
218
- return 1.0 + (random_page_cost * 0.5 - 1.0 ) * relsize * relsize ;
219
+ return 1.0 + (random_page_cost - 1.0 ) * 0.5 * relsize * relsize ;
219
220
}
220
221
221
222
/*
0 commit comments