Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

Commit 3c7042a

Browse files
committed
pgbench: Change terminology from "threshold" to "parameter".
Per a recommendation from Tomas Vondra, it's more helpful to refer to the value that determines how skewed a Gaussian or exponential distribution is as a parameter rather than a threshold. Since it's not quite too late to get this right in 9.5, where it was introduced, back-patch this. Most of the patch changes only comments and documentation, but a few pgbench messages are altered to match. Fabien Coelho, reviewed by Michael Paquier and by me.
1 parent 6e7b335 commit 3c7042a

File tree

2 files changed

+78
-60
lines changed

2 files changed

+78
-60
lines changed

doc/src/sgml/ref/pgbench.sgml

+38-29
Original file line numberDiff line numberDiff line change
@@ -788,7 +788,7 @@ pgbench <optional> <replaceable>options</> </optional> <replaceable>dbname</>
788788

789789
<varlistentry>
790790
<term>
791-
<literal>\setrandom <replaceable>varname</> <replaceable>min</> <replaceable>max</> [ uniform | { gaussian | exponential } <replaceable>threshold</> ]</literal>
791+
<literal>\setrandom <replaceable>varname</> <replaceable>min</> <replaceable>max</> [ uniform | { gaussian | exponential } <replaceable>parameter</> ]</literal>
792792
</term>
793793

794794
<listitem>
@@ -804,54 +804,63 @@ pgbench <optional> <replaceable>options</> </optional> <replaceable>dbname</>
804804
By default, or when <literal>uniform</> is specified, all values in the
805805
range are drawn with equal probability. Specifying <literal>gaussian</>
806806
or <literal>exponential</> options modifies this behavior; each
807-
requires a mandatory threshold which determines the precise shape of the
807+
requires a mandatory parameter which determines the precise shape of the
808808
distribution.
809809
</para>
810810

811811
<para>
812812
For a Gaussian distribution, the interval is mapped onto a standard
813813
normal distribution (the classical bell-shaped Gaussian curve) truncated
814-
at <literal>-threshold</> on the left and <literal>+threshold</>
814+
at <literal>-parameter</> on the left and <literal>+parameter</>
815815
on the right.
816+
Values in the middle of the interval are more likely to be drawn.
816817
To be precise, if <literal>PHI(x)</> is the cumulative distribution
817818
function of the standard normal distribution, with mean <literal>mu</>
818-
defined as <literal>(max + min) / 2.0</>, then value <replaceable>i</>
819-
between <replaceable>min</> and <replaceable>max</> inclusive is drawn
820-
with probability:
821-
<literal>
822-
(PHI(2.0 * threshold * (i - min - mu + 0.5) / (max - min + 1)) -
823-
PHI(2.0 * threshold * (i - min - mu - 0.5) / (max - min + 1))) /
824-
(2.0 * PHI(threshold) - 1.0)</>.
825-
Intuitively, the larger the <replaceable>threshold</>, the more
819+
defined as <literal>(max + min) / 2.0</>, with
820+
<literallayout>
821+
f(x) = PHI(2.0 * parameter * (x - mu) / (max - min + 1)) /
822+
(2.0 * PHI(parameter) - 1.0)
823+
</literallayout>
824+
then value <replaceable>i</> between <replaceable>min</> and
825+
<replaceable>max</> inclusive is drawn with probability:
826+
<literal>f(i + 0.5) - f(i - 0.5)</>.
827+
Intuitively, the larger <replaceable>parameter</>, the more
826828
frequently values close to the middle of the interval are drawn, and the
827829
less frequently values close to the <replaceable>min</> and
828-
<replaceable>max</> bounds.
829-
About 67% of values are drawn from the middle <literal>1.0 / threshold</>
830-
and 95% in the middle <literal>2.0 / threshold</>; for instance, if
831-
<replaceable>threshold</> is 4.0, 67% of values are drawn from the middle
832-
quarter and 95% from the middle half of the interval.
833-
The minimum <replaceable>threshold</> is 2.0 for performance of
834-
the Box-Muller transform.
830+
<replaceable>max</> bounds. About 67% of values are drawn from the
831+
middle <literal>1.0 / parameter</>, that is a relative
832+
<literal>0.5 / parameter</> around the mean, and 95% in the middle
833+
<literal>2.0 / parameter</>, that is a relative
834+
<literal>1.0 / parameter</> around the mean; for instance, if
835+
<replaceable>parameter</> is 4.0, 67% of values are drawn from the
836+
middle quarter (1.0 / 4.0) of the interval (i.e. from
837+
<literal>3.0 / 8.0</> to <literal>5.0 / 8.0</>) and 95% from
838+
the middle half (<literal>2.0 / 4.0</>) of the interval (second and
839+
third quartiles). The minimum <replaceable>parameter</> is 2.0 for
840+
performance of the Box-Muller transform.
835841
</para>
836842

837843
<para>
838-
For an exponential distribution, the <replaceable>threshold</>
839-
parameter controls the distribution by truncating a quickly-decreasing
840-
exponential distribution at <replaceable>threshold</>, and then
844+
For an exponential distribution, <replaceable>parameter</>
845+
controls the distribution by truncating a quickly-decreasing
846+
exponential distribution at <replaceable>parameter</>, and then
841847
projecting onto integers between the bounds.
842-
To be precise, value <replaceable>i</> between <replaceable>min</> and
848+
To be precise, with
849+
<literallayout>
850+
f(x) = exp(-parameter * (x - min) / (max - min + 1)) / (1.0 - exp(-parameter))
851+
</literallayout>
852+
Then value <replaceable>i</> between <replaceable>min</> and
843853
<replaceable>max</> inclusive is drawn with probability:
844-
<literal>(exp(-threshold*(i-min)/(max+1-min)) -
845-
exp(-threshold*(i+1-min)/(max+1-min))) / (1.0 - exp(-threshold))</>.
846-
Intuitively, the larger the <replaceable>threshold</>, the more
854+
<literal>f(x) - f(x + 1)</>.
855+
Intuitively, the larger <replaceable>parameter</>, the more
847856
frequently values close to <replaceable>min</> are accessed, and the
848857
less frequently values close to <replaceable>max</> are accessed.
849-
The closer to 0 the threshold, the flatter (more uniform) the access
850-
distribution.
858+
The closer to 0 <replaceable>parameter</>, the flatter (more uniform)
859+
the access distribution.
851860
A crude approximation of the distribution is that the most frequent 1%
852861
values in the range, close to <replaceable>min</>, are drawn
853-
<replaceable>threshold</>% of the time.
854-
The <replaceable>threshold</> value must be strictly positive.
862+
<replaceable>parameter</>% of the time.
863+
<replaceable>parameter</> value must be strictly positive.
855864
</para>
856865

857866
<para>

src/bin/pgbench/pgbench.c

+40-31
Original file line numberDiff line numberDiff line change
@@ -90,7 +90,7 @@ static int pthread_join(pthread_t th, void **thread_return);
9090
#define LOG_STEP_SECONDS 5 /* seconds between log messages */
9191
#define DEFAULT_NXACTS 10 /* default nxacts */
9292

93-
#define MIN_GAUSSIAN_THRESHOLD 2.0 /* minimum threshold for gauss */
93+
#define MIN_GAUSSIAN_PARAM 2.0 /* minimum parameter for gauss */
9494

9595
int nxacts = 0; /* number of transactions per client */
9696
int duration = 0; /* duration in seconds */
@@ -488,47 +488,47 @@ getrand(TState *thread, int64 min, int64 max)
488488

489489
/*
490490
* random number generator: exponential distribution from min to max inclusive.
491-
* the threshold is so that the density of probability for the last cut-off max
492-
* value is exp(-threshold).
491+
* the parameter is so that the density of probability for the last cut-off max
492+
* value is exp(-parameter).
493493
*/
494494
static int64
495-
getExponentialRand(TState *thread, int64 min, int64 max, double threshold)
495+
getExponentialRand(TState *thread, int64 min, int64 max, double parameter)
496496
{
497497
double cut,
498498
uniform,
499499
rand;
500500

501-
Assert(threshold > 0.0);
502-
cut = exp(-threshold);
501+
Assert(parameter > 0.0);
502+
cut = exp(-parameter);
503503
/* erand in [0, 1), uniform in (0, 1] */
504504
uniform = 1.0 - pg_erand48(thread->random_state);
505505

506506
/*
507-
* inner expresion in (cut, 1] (if threshold > 0), rand in [0, 1)
507+
* inner expresion in (cut, 1] (if parameter > 0), rand in [0, 1)
508508
*/
509509
Assert((1.0 - cut) != 0.0);
510-
rand = -log(cut + (1.0 - cut) * uniform) / threshold;
510+
rand = -log(cut + (1.0 - cut) * uniform) / parameter;
511511
/* return int64 random number within between min and max */
512512
return min + (int64) ((max - min + 1) * rand);
513513
}
514514

515515
/* random number generator: gaussian distribution from min to max inclusive */
516516
static int64
517-
getGaussianRand(TState *thread, int64 min, int64 max, double threshold)
517+
getGaussianRand(TState *thread, int64 min, int64 max, double parameter)
518518
{
519519
double stdev;
520520
double rand;
521521

522522
/*
523-
* Get user specified random number from this loop, with -threshold <
524-
* stdev <= threshold
523+
* Get user specified random number from this loop,
524+
* with -parameter < stdev <= parameter
525525
*
526526
* This loop is executed until the number is in the expected range.
527527
*
528-
* As the minimum threshold is 2.0, the probability of looping is low:
528+
* As the minimum parameter is 2.0, the probability of looping is low:
529529
* sqrt(-2 ln(r)) <= 2 => r >= e^{-2} ~ 0.135, then when taking the
530530
* average sinus multiplier as 2/pi, we have a 8.6% looping probability in
531-
* the worst case. For a 5.0 threshold value, the looping probability is
531+
* the worst case. For a parameter value of 5.0, the looping probability is
532532
* about e^{-5} * 2 / pi ~ 0.43%.
533533
*/
534534
do
@@ -553,10 +553,10 @@ getGaussianRand(TState *thread, int64 min, int64 max, double threshold)
553553
* over.
554554
*/
555555
}
556-
while (stdev < -threshold || stdev >= threshold);
556+
while (stdev < -parameter || stdev >= parameter);
557557

558-
/* stdev is in [-threshold, threshold), normalization to [0,1) */
559-
rand = (stdev + threshold) / (threshold * 2.0);
558+
/* stdev is in [-parameter, parameter), normalization to [0,1) */
559+
rand = (stdev + parameter) / (parameter * 2.0);
560560

561561
/* return int64 random number within between min and max */
562562
return min + (int64) ((max - min + 1) * rand);
@@ -1483,7 +1483,7 @@ doCustom(TState *thread, CState *st, instr_time *conn_time, FILE *logfile, AggVa
14831483
char *var;
14841484
int64 min,
14851485
max;
1486-
double threshold = 0;
1486+
double parameter = 0;
14871487
char res[64];
14881488

14891489
if (*argv[2] == ':')
@@ -1554,41 +1554,49 @@ doCustom(TState *thread, CState *st, instr_time *conn_time, FILE *logfile, AggVa
15541554
{
15551555
if ((var = getVariable(st, argv[5] + 1)) == NULL)
15561556
{
1557-
fprintf(stderr, "%s: invalid threshold number: \"%s\"\n",
1557+
fprintf(stderr, "%s: invalid parameter: \"%s\"\n",
15581558
argv[0], argv[5]);
15591559
st->ecnt++;
15601560
return true;
15611561
}
1562-
threshold = strtod(var, NULL);
1562+
parameter = strtod(var, NULL);
15631563
}
15641564
else
1565-
threshold = strtod(argv[5], NULL);
1565+
parameter = strtod(argv[5], NULL);
15661566

15671567
if (pg_strcasecmp(argv[4], "gaussian") == 0)
15681568
{
1569-
if (threshold < MIN_GAUSSIAN_THRESHOLD)
1569+
if (parameter < MIN_GAUSSIAN_PARAM)
15701570
{
1571-
fprintf(stderr, "gaussian threshold must be at least %f (not \"%s\")\n", MIN_GAUSSIAN_THRESHOLD, argv[5]);
1571+
fprintf(stderr, "gaussian parameter must be at least %f (not \"%s\")\n", MIN_GAUSSIAN_PARAM, argv[5]);
15721572
st->ecnt++;
15731573
return true;
15741574
}
15751575
#ifdef DEBUG
1576-
printf("min: " INT64_FORMAT " max: " INT64_FORMAT " random: " INT64_FORMAT "\n", min, max, getGaussianRand(thread, min, max, threshold));
1576+
printf("min: " INT64_FORMAT " max: " INT64_FORMAT " random: " INT64_FORMAT "\n",
1577+
min, max,
1578+
getGaussianRand(thread, min, max, parameter));
15771579
#endif
1578-
snprintf(res, sizeof(res), INT64_FORMAT, getGaussianRand(thread, min, max, threshold));
1580+
snprintf(res, sizeof(res), INT64_FORMAT,
1581+
getGaussianRand(thread, min, max, parameter));
15791582
}
15801583
else if (pg_strcasecmp(argv[4], "exponential") == 0)
15811584
{
1582-
if (threshold <= 0.0)
1585+
if (parameter <= 0.0)
15831586
{
1584-
fprintf(stderr, "exponential threshold must be greater than zero (not \"%s\")\n", argv[5]);
1587+
fprintf(stderr,
1588+
"exponential parameter must be greater than zero (not \"%s\")\n",
1589+
argv[5]);
15851590
st->ecnt++;
15861591
return true;
15871592
}
15881593
#ifdef DEBUG
1589-
printf("min: " INT64_FORMAT " max: " INT64_FORMAT " random: " INT64_FORMAT "\n", min, max, getExponentialRand(thread, min, max, threshold));
1594+
printf("min: " INT64_FORMAT " max: " INT64_FORMAT " random: " INT64_FORMAT "\n",
1595+
min, max,
1596+
getExponentialRand(thread, min, max, parameter));
15901597
#endif
1591-
snprintf(res, sizeof(res), INT64_FORMAT, getExponentialRand(thread, min, max, threshold));
1598+
snprintf(res, sizeof(res), INT64_FORMAT,
1599+
getExponentialRand(thread, min, max, parameter));
15921600
}
15931601
}
15941602
else /* this means an error somewhere in the parsing phase... */
@@ -2282,8 +2290,9 @@ process_commands(char *buf, const char *source, const int lineno)
22822290
if (pg_strcasecmp(my_commands->argv[0], "setrandom") == 0)
22832291
{
22842292
/*
2285-
* parsing: \setrandom variable min max [uniform] \setrandom
2286-
* variable min max (gaussian|exponential) threshold
2293+
* parsing:
2294+
* \setrandom variable min max [uniform]
2295+
* \setrandom variable min max (gaussian|exponential) parameter
22872296
*/
22882297

22892298
if (my_commands->argc < 4)
@@ -2308,7 +2317,7 @@ process_commands(char *buf, const char *source, const int lineno)
23082317
if (my_commands->argc < 6)
23092318
{
23102319
syntax_error(source, lineno, my_commands->line, my_commands->argv[0],
2311-
"missing threshold argument", my_commands->argv[4], -1);
2320+
"missing parameter", my_commands->argv[4], -1);
23122321
}
23132322
else if (my_commands->argc > 6)
23142323
{

0 commit comments

Comments
 (0)