-
-
Notifications
You must be signed in to change notification settings - Fork 25.8k
/
Copy path_agglomerative.py
1333 lines (1102 loc) · 48.2 KB
/
_agglomerative.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Hierarchical Agglomerative Clustering
These routines perform some hierarchical agglomerative clustering of some
input data.
"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import warnings
from heapq import heapify, heappop, heappush, heappushpop
from numbers import Integral, Real
import numpy as np
from scipy import sparse
from scipy.sparse.csgraph import connected_components
from ..base import (
BaseEstimator,
ClassNamePrefixFeaturesOutMixin,
ClusterMixin,
_fit_context,
)
from ..metrics import DistanceMetric
from ..metrics._dist_metrics import METRIC_MAPPING64
from ..metrics.pairwise import _VALID_METRICS, paired_distances
from ..utils import check_array
from ..utils._fast_dict import IntFloatDict
from ..utils._param_validation import (
HasMethods,
Interval,
StrOptions,
validate_params,
)
from ..utils.graph import _fix_connected_components
from ..utils.validation import check_memory, validate_data
# mypy error: Module 'sklearn.cluster' has no attribute '_hierarchical_fast'
from . import _hierarchical_fast as _hierarchical
from ._feature_agglomeration import AgglomerationTransform
###############################################################################
# For non fully-connected graphs
def _fix_connectivity(X, connectivity, affinity):
"""
Fixes the connectivity matrix.
The different steps are:
- copies it
- makes it symmetric
- converts it to LIL if necessary
- completes it if necessary.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Feature matrix representing `n_samples` samples to be clustered.
connectivity : sparse matrix, default=None
Connectivity matrix. Defines for each sample the neighboring samples
following a given structure of the data. The matrix is assumed to
be symmetric and only the upper triangular half is used.
Default is `None`, i.e, the Ward algorithm is unstructured.
affinity : {"euclidean", "precomputed"}, default="euclidean"
Which affinity to use. At the moment `precomputed` and
``euclidean`` are supported. `euclidean` uses the
negative squared Euclidean distance between points.
Returns
-------
connectivity : sparse matrix
The fixed connectivity matrix.
n_connected_components : int
The number of connected components in the graph.
"""
n_samples = X.shape[0]
if connectivity.shape[0] != n_samples or connectivity.shape[1] != n_samples:
raise ValueError(
"Wrong shape for connectivity matrix: %s when X is %s"
% (connectivity.shape, X.shape)
)
# Make the connectivity matrix symmetric:
connectivity = connectivity + connectivity.T
# Convert connectivity matrix to LIL
if not sparse.issparse(connectivity):
connectivity = sparse.lil_matrix(connectivity)
# `connectivity` is a sparse matrix at this point
if connectivity.format != "lil":
connectivity = connectivity.tolil()
# Compute the number of nodes
n_connected_components, labels = connected_components(connectivity)
if n_connected_components > 1:
warnings.warn(
"the number of connected components of the "
"connectivity matrix is %d > 1. Completing it to avoid "
"stopping the tree early." % n_connected_components,
stacklevel=2,
)
# XXX: Can we do without completing the matrix?
connectivity = _fix_connected_components(
X=X,
graph=connectivity,
n_connected_components=n_connected_components,
component_labels=labels,
metric=affinity,
mode="connectivity",
)
return connectivity, n_connected_components
def _single_linkage_tree(
connectivity,
n_samples,
n_nodes,
n_clusters,
n_connected_components,
return_distance,
):
"""
Perform single linkage clustering on sparse data via the minimum
spanning tree from scipy.sparse.csgraph, then using union-find to label.
The parent array is then generated by walking through the tree.
"""
from scipy.sparse.csgraph import minimum_spanning_tree
# explicitly cast connectivity to ensure safety
connectivity = connectivity.astype(np.float64, copy=False)
# Ensure zero distances aren't ignored by setting them to "epsilon"
epsilon_value = np.finfo(dtype=connectivity.data.dtype).eps
connectivity.data[connectivity.data == 0] = epsilon_value
# Use scipy.sparse.csgraph to generate a minimum spanning tree
mst = minimum_spanning_tree(connectivity.tocsr())
# Convert the graph to scipy.cluster.hierarchy array format
mst = mst.tocoo()
# Undo the epsilon values
mst.data[mst.data == epsilon_value] = 0
mst_array = np.vstack([mst.row, mst.col, mst.data]).T
# Sort edges of the min_spanning_tree by weight
mst_array = mst_array[np.argsort(mst_array.T[2], kind="mergesort"), :]
# Convert edge list into standard hierarchical clustering format
single_linkage_tree = _hierarchical._single_linkage_label(mst_array)
children_ = single_linkage_tree[:, :2].astype(int)
# Compute parents
parent = np.arange(n_nodes, dtype=np.intp)
for i, (left, right) in enumerate(children_, n_samples):
if n_clusters is not None and i >= n_nodes:
break
if left < n_nodes:
parent[left] = i
if right < n_nodes:
parent[right] = i
if return_distance:
distances = single_linkage_tree[:, 2]
return children_, n_connected_components, n_samples, parent, distances
return children_, n_connected_components, n_samples, parent
###############################################################################
# Hierarchical tree building functions
@validate_params(
{
"X": ["array-like"],
"connectivity": ["array-like", "sparse matrix", None],
"n_clusters": [Interval(Integral, 1, None, closed="left"), None],
"return_distance": ["boolean"],
},
prefer_skip_nested_validation=True,
)
def ward_tree(X, *, connectivity=None, n_clusters=None, return_distance=False):
"""Ward clustering based on a Feature matrix.
Recursively merges the pair of clusters that minimally increases
within-cluster variance.
The inertia matrix uses a Heapq-based representation.
This is the structured version, that takes into account some topological
structure between samples.
Read more in the :ref:`User Guide <hierarchical_clustering>`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Feature matrix representing `n_samples` samples to be clustered.
connectivity : {array-like, sparse matrix}, default=None
Connectivity matrix. Defines for each sample the neighboring samples
following a given structure of the data. The matrix is assumed to
be symmetric and only the upper triangular half is used.
Default is None, i.e, the Ward algorithm is unstructured.
n_clusters : int, default=None
`n_clusters` should be less than `n_samples`. Stop early the
construction of the tree at `n_clusters.` This is useful to decrease
computation time if the number of clusters is not small compared to the
number of samples. In this case, the complete tree is not computed, thus
the 'children' output is of limited use, and the 'parents' output should
rather be used. This option is valid only when specifying a connectivity
matrix.
return_distance : bool, default=False
If `True`, return the distance between the clusters.
Returns
-------
children : ndarray of shape (n_nodes-1, 2)
The children of each non-leaf node. Values less than `n_samples`
correspond to leaves of the tree which are the original samples.
A node `i` greater than or equal to `n_samples` is a non-leaf
node and has children `children_[i - n_samples]`. Alternatively
at the i-th iteration, children[i][0] and children[i][1]
are merged to form node `n_samples + i`.
n_connected_components : int
The number of connected components in the graph.
n_leaves : int
The number of leaves in the tree.
parents : ndarray of shape (n_nodes,) or None
The parent of each node. Only returned when a connectivity matrix
is specified, elsewhere 'None' is returned.
distances : ndarray of shape (n_nodes-1,)
Only returned if `return_distance` is set to `True` (for compatibility).
The distances between the centers of the nodes. `distances[i]`
corresponds to a weighted Euclidean distance between
the nodes `children[i, 1]` and `children[i, 2]`. If the nodes refer to
leaves of the tree, then `distances[i]` is their unweighted Euclidean
distance. Distances are updated in the following way
(from scipy.hierarchy.linkage):
The new entry :math:`d(u,v)` is computed as follows,
.. math::
d(u,v) = \\sqrt{\\frac{|v|+|s|}
{T}d(v,s)^2
+ \\frac{|v|+|t|}
{T}d(v,t)^2
- \\frac{|v|}
{T}d(s,t)^2}
where :math:`u` is the newly joined cluster consisting of
clusters :math:`s` and :math:`t`, :math:`v` is an unused
cluster in the forest, :math:`T=|v|+|s|+|t|`, and
:math:`|*|` is the cardinality of its argument. This is also
known as the incremental algorithm.
Examples
--------
>>> import numpy as np
>>> from sklearn.cluster import ward_tree
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [4, 2], [4, 4], [4, 0]])
>>> children, n_connected_components, n_leaves, parents = ward_tree(X)
>>> children
array([[0, 1],
[3, 5],
[2, 6],
[4, 7],
[8, 9]])
>>> n_connected_components
1
>>> n_leaves
6
"""
X = np.asarray(X)
if X.ndim == 1:
X = np.reshape(X, (-1, 1))
n_samples, n_features = X.shape
if connectivity is None:
from scipy.cluster import hierarchy # imports PIL
if n_clusters is not None:
warnings.warn(
(
"Partial build of the tree is implemented "
"only for structured clustering (i.e. with "
"explicit connectivity). The algorithm "
"will build the full tree and only "
"retain the lower branches required "
"for the specified number of clusters"
),
stacklevel=2,
)
X = np.require(X, requirements="W")
out = hierarchy.ward(X)
children_ = out[:, :2].astype(np.intp)
if return_distance:
distances = out[:, 2]
return children_, 1, n_samples, None, distances
else:
return children_, 1, n_samples, None
connectivity, n_connected_components = _fix_connectivity(
X, connectivity, affinity="euclidean"
)
if n_clusters is None:
n_nodes = 2 * n_samples - 1
else:
if n_clusters > n_samples:
raise ValueError(
"Cannot provide more clusters than samples. "
"%i n_clusters was asked, and there are %i "
"samples." % (n_clusters, n_samples)
)
n_nodes = 2 * n_samples - n_clusters
# create inertia matrix
coord_row = []
coord_col = []
A = []
for ind, row in enumerate(connectivity.rows):
A.append(row)
# We keep only the upper triangular for the moments
# Generator expressions are faster than arrays on the following
row = [i for i in row if i < ind]
coord_row.extend(
len(row)
* [
ind,
]
)
coord_col.extend(row)
coord_row = np.array(coord_row, dtype=np.intp, order="C")
coord_col = np.array(coord_col, dtype=np.intp, order="C")
# build moments as a list
moments_1 = np.zeros(n_nodes, order="C")
moments_1[:n_samples] = 1
moments_2 = np.zeros((n_nodes, n_features), order="C")
moments_2[:n_samples] = X
inertia = np.empty(len(coord_row), dtype=np.float64, order="C")
_hierarchical.compute_ward_dist(moments_1, moments_2, coord_row, coord_col, inertia)
inertia = list(zip(inertia, coord_row, coord_col))
heapify(inertia)
# prepare the main fields
parent = np.arange(n_nodes, dtype=np.intp)
used_node = np.ones(n_nodes, dtype=bool)
children = []
if return_distance:
distances = np.empty(n_nodes - n_samples)
not_visited = np.empty(n_nodes, dtype=bool, order="C")
# recursive merge loop
for k in range(n_samples, n_nodes):
# identify the merge
while True:
inert, i, j = heappop(inertia)
if used_node[i] and used_node[j]:
break
parent[i], parent[j] = k, k
children.append((i, j))
used_node[i] = used_node[j] = False
if return_distance: # store inertia value
distances[k - n_samples] = inert
# update the moments
moments_1[k] = moments_1[i] + moments_1[j]
moments_2[k] = moments_2[i] + moments_2[j]
# update the structure matrix A and the inertia matrix
coord_col = []
not_visited.fill(1)
not_visited[k] = 0
_hierarchical._get_parents(A[i], coord_col, parent, not_visited)
_hierarchical._get_parents(A[j], coord_col, parent, not_visited)
# List comprehension is faster than a for loop
[A[col].append(k) for col in coord_col]
A.append(coord_col)
coord_col = np.array(coord_col, dtype=np.intp, order="C")
coord_row = np.empty(coord_col.shape, dtype=np.intp, order="C")
coord_row.fill(k)
n_additions = len(coord_row)
ini = np.empty(n_additions, dtype=np.float64, order="C")
_hierarchical.compute_ward_dist(moments_1, moments_2, coord_row, coord_col, ini)
# List comprehension is faster than a for loop
[heappush(inertia, (ini[idx], k, coord_col[idx])) for idx in range(n_additions)]
# Separate leaves in children (empty lists up to now)
n_leaves = n_samples
# sort children to get consistent output with unstructured version
children = [c[::-1] for c in children]
children = np.array(children) # return numpy array for efficient caching
if return_distance:
# 2 is scaling factor to compare w/ unstructured version
distances = np.sqrt(2.0 * distances)
return children, n_connected_components, n_leaves, parent, distances
else:
return children, n_connected_components, n_leaves, parent
# single average and complete linkage
def linkage_tree(
X,
connectivity=None,
n_clusters=None,
linkage="complete",
affinity="euclidean",
return_distance=False,
):
"""Linkage agglomerative clustering based on a Feature matrix.
The inertia matrix uses a Heapq-based representation.
This is the structured version, that takes into account some topological
structure between samples.
Read more in the :ref:`User Guide <hierarchical_clustering>`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Feature matrix representing `n_samples` samples to be clustered.
connectivity : sparse matrix, default=None
Connectivity matrix. Defines for each sample the neighboring samples
following a given structure of the data. The matrix is assumed to
be symmetric and only the upper triangular half is used.
Default is `None`, i.e, the Ward algorithm is unstructured.
n_clusters : int, default=None
Stop early the construction of the tree at `n_clusters`. This is
useful to decrease computation time if the number of clusters is
not small compared to the number of samples. In this case, the
complete tree is not computed, thus the 'children' output is of
limited use, and the 'parents' output should rather be used.
This option is valid only when specifying a connectivity matrix.
linkage : {"average", "complete", "single"}, default="complete"
Which linkage criteria to use. The linkage criterion determines which
distance to use between sets of observation.
- "average" uses the average of the distances of each observation of
the two sets.
- "complete" or maximum linkage uses the maximum distances between
all observations of the two sets.
- "single" uses the minimum of the distances between all
observations of the two sets.
affinity : str or callable, default='euclidean'
Which metric to use. Can be 'euclidean', 'manhattan', or any
distance known to paired distance (see metric.pairwise).
return_distance : bool, default=False
Whether or not to return the distances between the clusters.
Returns
-------
children : ndarray of shape (n_nodes-1, 2)
The children of each non-leaf node. Values less than `n_samples`
correspond to leaves of the tree which are the original samples.
A node `i` greater than or equal to `n_samples` is a non-leaf
node and has children `children_[i - n_samples]`. Alternatively
at the i-th iteration, children[i][0] and children[i][1]
are merged to form node `n_samples + i`.
n_connected_components : int
The number of connected components in the graph.
n_leaves : int
The number of leaves in the tree.
parents : ndarray of shape (n_nodes, ) or None
The parent of each node. Only returned when a connectivity matrix
is specified, elsewhere 'None' is returned.
distances : ndarray of shape (n_nodes-1,)
Returned when `return_distance` is set to `True`.
distances[i] refers to the distance between children[i][0] and
children[i][1] when they are merged.
See Also
--------
ward_tree : Hierarchical clustering with ward linkage.
"""
X = np.asarray(X)
if X.ndim == 1:
X = np.reshape(X, (-1, 1))
n_samples, n_features = X.shape
linkage_choices = {
"complete": _hierarchical.max_merge,
"average": _hierarchical.average_merge,
"single": None,
} # Single linkage is handled differently
try:
join_func = linkage_choices[linkage]
except KeyError as e:
raise ValueError(
"Unknown linkage option, linkage should be one of %s, but %s was given"
% (linkage_choices.keys(), linkage)
) from e
if affinity == "cosine" and np.any(~np.any(X, axis=1)):
raise ValueError("Cosine affinity cannot be used when X contains zero vectors")
if connectivity is None:
from scipy.cluster import hierarchy # imports PIL
if n_clusters is not None:
warnings.warn(
(
"Partial build of the tree is implemented "
"only for structured clustering (i.e. with "
"explicit connectivity). The algorithm "
"will build the full tree and only "
"retain the lower branches required "
"for the specified number of clusters"
),
stacklevel=2,
)
if affinity == "precomputed":
# for the linkage function of hierarchy to work on precomputed
# data, provide as first argument an ndarray of the shape returned
# by sklearn.metrics.pairwise_distances.
if X.shape[0] != X.shape[1]:
raise ValueError(
f"Distance matrix should be square, got matrix of shape {X.shape}"
)
i, j = np.triu_indices(X.shape[0], k=1)
X = X[i, j]
elif affinity == "l2":
# Translate to something understood by scipy
affinity = "euclidean"
elif affinity in ("l1", "manhattan"):
affinity = "cityblock"
elif callable(affinity):
X = affinity(X)
i, j = np.triu_indices(X.shape[0], k=1)
X = X[i, j]
if (
linkage == "single"
and affinity != "precomputed"
and not callable(affinity)
and affinity in METRIC_MAPPING64
):
# We need the fast cythonized metric from neighbors
dist_metric = DistanceMetric.get_metric(affinity)
# The Cython routines used require contiguous arrays
X = np.ascontiguousarray(X, dtype=np.double)
mst = _hierarchical.mst_linkage_core(X, dist_metric)
# Sort edges of the min_spanning_tree by weight
mst = mst[np.argsort(mst.T[2], kind="mergesort"), :]
# Convert edge list into standard hierarchical clustering format
out = _hierarchical.single_linkage_label(mst)
else:
out = hierarchy.linkage(X, method=linkage, metric=affinity)
children_ = out[:, :2].astype(int, copy=False)
if return_distance:
distances = out[:, 2]
return children_, 1, n_samples, None, distances
return children_, 1, n_samples, None
connectivity, n_connected_components = _fix_connectivity(
X, connectivity, affinity=affinity
)
connectivity = connectivity.tocoo()
# Put the diagonal to zero
diag_mask = connectivity.row != connectivity.col
connectivity.row = connectivity.row[diag_mask]
connectivity.col = connectivity.col[diag_mask]
connectivity.data = connectivity.data[diag_mask]
del diag_mask
if affinity == "precomputed":
distances = X[connectivity.row, connectivity.col].astype(np.float64, copy=False)
else:
# FIXME We compute all the distances, while we could have only computed
# the "interesting" distances
distances = paired_distances(
X[connectivity.row], X[connectivity.col], metric=affinity
)
connectivity.data = distances
if n_clusters is None:
n_nodes = 2 * n_samples - 1
else:
assert n_clusters <= n_samples
n_nodes = 2 * n_samples - n_clusters
if linkage == "single":
return _single_linkage_tree(
connectivity,
n_samples,
n_nodes,
n_clusters,
n_connected_components,
return_distance,
)
if return_distance:
distances = np.empty(n_nodes - n_samples)
# create inertia heap and connection matrix
A = np.empty(n_nodes, dtype=object)
inertia = list()
# LIL seems to the best format to access the rows quickly,
# without the numpy overhead of slicing CSR indices and data.
connectivity = connectivity.tolil()
# We are storing the graph in a list of IntFloatDict
for ind, (data, row) in enumerate(zip(connectivity.data, connectivity.rows)):
A[ind] = IntFloatDict(
np.asarray(row, dtype=np.intp), np.asarray(data, dtype=np.float64)
)
# We keep only the upper triangular for the heap
# Generator expressions are faster than arrays on the following
inertia.extend(
_hierarchical.WeightedEdge(d, ind, r) for r, d in zip(row, data) if r < ind
)
del connectivity
heapify(inertia)
# prepare the main fields
parent = np.arange(n_nodes, dtype=np.intp)
used_node = np.ones(n_nodes, dtype=np.intp)
children = []
# recursive merge loop
for k in range(n_samples, n_nodes):
# identify the merge
while True:
edge = heappop(inertia)
if used_node[edge.a] and used_node[edge.b]:
break
i = edge.a
j = edge.b
if return_distance:
# store distances
distances[k - n_samples] = edge.weight
parent[i] = parent[j] = k
children.append((i, j))
# Keep track of the number of elements per cluster
n_i = used_node[i]
n_j = used_node[j]
used_node[k] = n_i + n_j
used_node[i] = used_node[j] = False
# update the structure matrix A and the inertia matrix
# a clever 'min', or 'max' operation between A[i] and A[j]
coord_col = join_func(A[i], A[j], used_node, n_i, n_j)
for col, d in coord_col:
A[col].append(k, d)
# Here we use the information from coord_col (containing the
# distances) to update the heap
heappush(inertia, _hierarchical.WeightedEdge(d, k, col))
A[k] = coord_col
# Clear A[i] and A[j] to save memory
A[i] = A[j] = 0
# Separate leaves in children (empty lists up to now)
n_leaves = n_samples
# # return numpy array for efficient caching
children = np.array(children)[:, ::-1]
if return_distance:
return children, n_connected_components, n_leaves, parent, distances
return children, n_connected_components, n_leaves, parent
# Matching names to tree-building strategies
def _complete_linkage(*args, **kwargs):
kwargs["linkage"] = "complete"
return linkage_tree(*args, **kwargs)
def _average_linkage(*args, **kwargs):
kwargs["linkage"] = "average"
return linkage_tree(*args, **kwargs)
def _single_linkage(*args, **kwargs):
kwargs["linkage"] = "single"
return linkage_tree(*args, **kwargs)
_TREE_BUILDERS = dict(
ward=ward_tree,
complete=_complete_linkage,
average=_average_linkage,
single=_single_linkage,
)
###############################################################################
# Functions for cutting hierarchical clustering tree
def _hc_cut(n_clusters, children, n_leaves):
"""Function cutting the ward tree for a given number of clusters.
Parameters
----------
n_clusters : int or ndarray
The number of clusters to form.
children : ndarray of shape (n_nodes-1, 2)
The children of each non-leaf node. Values less than `n_samples`
correspond to leaves of the tree which are the original samples.
A node `i` greater than or equal to `n_samples` is a non-leaf
node and has children `children_[i - n_samples]`. Alternatively
at the i-th iteration, children[i][0] and children[i][1]
are merged to form node `n_samples + i`.
n_leaves : int
Number of leaves of the tree.
Returns
-------
labels : array [n_samples]
Cluster labels for each point.
"""
if n_clusters > n_leaves:
raise ValueError(
"Cannot extract more clusters than samples: "
f"{n_clusters} clusters were given for a tree with {n_leaves} leaves."
)
# In this function, we store nodes as a heap to avoid recomputing
# the max of the nodes: the first element is always the smallest
# We use negated indices as heaps work on smallest elements, and we
# are interested in largest elements
# children[-1] is the root of the tree
nodes = [-(max(children[-1]) + 1)]
for _ in range(n_clusters - 1):
# As we have a heap, nodes[0] is the smallest element
these_children = children[-nodes[0] - n_leaves]
# Insert the 2 children and remove the largest node
heappush(nodes, -these_children[0])
heappushpop(nodes, -these_children[1])
label = np.zeros(n_leaves, dtype=np.intp)
for i, node in enumerate(nodes):
label[_hierarchical._hc_get_descendent(-node, children, n_leaves)] = i
return label
###############################################################################
class AgglomerativeClustering(ClusterMixin, BaseEstimator):
"""
Agglomerative Clustering.
Recursively merges pair of clusters of sample data; uses linkage distance.
Read more in the :ref:`User Guide <hierarchical_clustering>`.
Parameters
----------
n_clusters : int or None, default=2
The number of clusters to find. It must be ``None`` if
``distance_threshold`` is not ``None``.
metric : str or callable, default="euclidean"
Metric used to compute the linkage. Can be "euclidean", "l1", "l2",
"manhattan", "cosine", or "precomputed". If linkage is "ward", only
"euclidean" is accepted. If "precomputed", a distance matrix is needed
as input for the fit method. If connectivity is None, linkage is
"single" and affinity is not "precomputed" any valid pairwise distance
metric can be assigned.
For an example of agglomerative clustering with different metrics, see
:ref:`sphx_glr_auto_examples_cluster_plot_agglomerative_clustering_metrics.py`.
.. versionadded:: 1.2
memory : str or object with the joblib.Memory interface, default=None
Used to cache the output of the computation of the tree.
By default, no caching is done. If a string is given, it is the
path to the caching directory.
connectivity : array-like, sparse matrix, or callable, default=None
Connectivity matrix. Defines for each sample the neighboring
samples following a given structure of the data.
This can be a connectivity matrix itself or a callable that transforms
the data into a connectivity matrix, such as derived from
`kneighbors_graph`. Default is ``None``, i.e, the
hierarchical clustering algorithm is unstructured.
For an example of connectivity matrix using
:class:`~sklearn.neighbors.kneighbors_graph`, see
:ref:`sphx_glr_auto_examples_cluster_plot_agglomerative_clustering.py`.
compute_full_tree : 'auto' or bool, default='auto'
Stop early the construction of the tree at ``n_clusters``. This is
useful to decrease computation time if the number of clusters is not
small compared to the number of samples. This option is useful only
when specifying a connectivity matrix. Note also that when varying the
number of clusters and using caching, it may be advantageous to compute
the full tree. It must be ``True`` if ``distance_threshold`` is not
``None``. By default `compute_full_tree` is "auto", which is equivalent
to `True` when `distance_threshold` is not `None` or that `n_clusters`
is inferior to the maximum between 100 or `0.02 * n_samples`.
Otherwise, "auto" is equivalent to `False`.
linkage : {'ward', 'complete', 'average', 'single'}, default='ward'
Which linkage criterion to use. The linkage criterion determines which
distance to use between sets of observation. The algorithm will merge
the pairs of cluster that minimize this criterion.
- 'ward' minimizes the variance of the clusters being merged.
- 'average' uses the average of the distances of each observation of
the two sets.
- 'complete' or 'maximum' linkage uses the maximum distances between
all observations of the two sets.
- 'single' uses the minimum of the distances between all observations
of the two sets.
.. versionadded:: 0.20
Added the 'single' option
For examples comparing different `linkage` criteria, see
:ref:`sphx_glr_auto_examples_cluster_plot_linkage_comparison.py`.
distance_threshold : float, default=None
The linkage distance threshold at or above which clusters will not be
merged. If not ``None``, ``n_clusters`` must be ``None`` and
``compute_full_tree`` must be ``True``.
.. versionadded:: 0.21
compute_distances : bool, default=False
Computes distances between clusters even if `distance_threshold` is not
used. This can be used to make dendrogram visualization, but introduces
a computational and memory overhead.
.. versionadded:: 0.24
For an example of dendrogram visualization, see
:ref:`sphx_glr_auto_examples_cluster_plot_agglomerative_dendrogram.py`.
Attributes
----------
n_clusters_ : int
The number of clusters found by the algorithm. If
``distance_threshold=None``, it will be equal to the given
``n_clusters``.
labels_ : ndarray of shape (n_samples)
Cluster labels for each point.
n_leaves_ : int
Number of leaves in the hierarchical tree.
n_connected_components_ : int
The estimated number of connected components in the graph.
.. versionadded:: 0.21
``n_connected_components_`` was added to replace ``n_components_``.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
children_ : array-like of shape (n_samples-1, 2)
The children of each non-leaf node. Values less than `n_samples`
correspond to leaves of the tree which are the original samples.
A node `i` greater than or equal to `n_samples` is a non-leaf
node and has children `children_[i - n_samples]`. Alternatively
at the i-th iteration, children[i][0] and children[i][1]
are merged to form node `n_samples + i`.
distances_ : array-like of shape (n_nodes-1,)
Distances between nodes in the corresponding place in `children_`.
Only computed if `distance_threshold` is used or `compute_distances`
is set to `True`.
See Also
--------
FeatureAgglomeration : Agglomerative clustering but for features instead of
samples.
ward_tree : Hierarchical clustering with ward linkage.
Examples
--------
>>> from sklearn.cluster import AgglomerativeClustering
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [4, 2], [4, 4], [4, 0]])
>>> clustering = AgglomerativeClustering().fit(X)
>>> clustering
AgglomerativeClustering()
>>> clustering.labels_
array([1, 1, 1, 0, 0, 0])
For a comparison of Agglomerative clustering with other clustering algorithms, see
:ref:`sphx_glr_auto_examples_cluster_plot_cluster_comparison.py`
"""
_parameter_constraints: dict = {
"n_clusters": [Interval(Integral, 1, None, closed="left"), None],
"metric": [
StrOptions(set(_VALID_METRICS) | {"precomputed"}),
callable,
],
"memory": [str, HasMethods("cache"), None],
"connectivity": ["array-like", "sparse matrix", callable, None],
"compute_full_tree": [StrOptions({"auto"}), "boolean"],
"linkage": [StrOptions(set(_TREE_BUILDERS.keys()))],
"distance_threshold": [Interval(Real, 0, None, closed="left"), None],
"compute_distances": ["boolean"],
}
def __init__(
self,
n_clusters=2,
*,
metric="euclidean",
memory=None,
connectivity=None,
compute_full_tree="auto",
linkage="ward",
distance_threshold=None,
compute_distances=False,
):
self.n_clusters = n_clusters
self.distance_threshold = distance_threshold
self.memory = memory
self.connectivity = connectivity
self.compute_full_tree = compute_full_tree
self.linkage = linkage
self.metric = metric
self.compute_distances = compute_distances
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y=None):
"""Fit the hierarchical clustering from features, or distance matrix.
Parameters
----------
X : array-like, shape (n_samples, n_features) or \
(n_samples, n_samples)
Training instances to cluster, or distances between instances if
``metric='precomputed'``.
y : Ignored
Not used, present here for API consistency by convention.
Returns
-------
self : object
Returns the fitted instance.
"""
X = validate_data(self, X, ensure_min_samples=2)
return self._fit(X)
def _fit(self, X):
"""Fit without validation
Parameters
----------
X : ndarray of shape (n_samples, n_features) or (n_samples, n_samples)
Training instances to cluster, or distances between instances if
``metric='precomputed'``.