-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagem_r.py
executable file
·67 lines (52 loc) · 2.5 KB
/
agem_r.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright 2020-present, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from models.agem import project
from models.gem import overwrite_grad, store_grad
from models.utils.continual_model import ContinualModel
from utils.args import add_management_args, add_experiment_args, add_rehearsal_args, ArgumentParser
from utils.buffer import Buffer
def get_parser() -> ArgumentParser:
parser = ArgumentParser(description='Continual learning via A-GEM, '
'leveraging a reservoir buffer.')
add_management_args(parser)
add_experiment_args(parser)
add_rehearsal_args(parser)
return parser
class AGemr(ContinualModel):
NAME = 'agem_r'
COMPATIBILITY = ['class-il', 'domain-il', 'task-il', 'general-continual']
def __init__(self, backbone, loss, args, transform):
super(AGemr, self).__init__(backbone, loss, args, transform)
self.buffer = Buffer(self.args.buffer_size, self.device)
self.grad_dims = []
for param in self.parameters():
self.grad_dims.append(param.data.numel())
self.grad_xy = torch.Tensor(np.sum(self.grad_dims)).to(self.device)
self.grad_er = torch.Tensor(np.sum(self.grad_dims)).to(self.device)
self.current_task = 0
def observe(self, inputs, labels, not_aug_inputs):
self.zero_grad()
p = self.net.forward(inputs)
loss = self.loss(p, labels)
loss.backward()
if not self.buffer.is_empty():
store_grad(self.parameters, self.grad_xy, self.grad_dims)
buf_inputs, buf_labels = self.buffer.get_data(self.args.minibatch_size)
self.net.zero_grad()
buf_outputs = self.net.forward(buf_inputs)
penalty = self.loss(buf_outputs, buf_labels)
penalty.backward()
store_grad(self.parameters, self.grad_er, self.grad_dims)
dot_prod = torch.dot(self.grad_xy, self.grad_er)
if dot_prod.item() < 0:
g_tilde = project(gxy=self.grad_xy, ger=self.grad_er)
overwrite_grad(self.parameters, g_tilde, self.grad_dims)
else:
overwrite_grad(self.parameters, self.grad_xy, self.grad_dims)
self.opt.step()
self.buffer.add_data(examples=not_aug_inputs, labels=labels)
return loss.item()