-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathderpp.py
executable file
·59 lines (44 loc) · 2.18 KB
/
derpp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Copyright 2020-present, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from torch.nn import functional as F
from models.utils.continual_model import ContinualModel
from utils.args import add_management_args, add_experiment_args, add_rehearsal_args, ArgumentParser
from utils.buffer import Buffer
def get_parser() -> ArgumentParser:
parser = ArgumentParser(description='Continual learning via'
' Dark Experience Replay++.')
add_management_args(parser)
add_experiment_args(parser)
add_rehearsal_args(parser)
parser.add_argument('--alpha', type=float, required=True,
help='Penalty weight.')
parser.add_argument('--beta', type=float, required=True,
help='Penalty weight.')
return parser
class Derpp(ContinualModel):
NAME = 'derpp'
COMPATIBILITY = ['class-il', 'domain-il', 'task-il', 'general-continual']
def __init__(self, backbone, loss, args, transform):
super(Derpp, self).__init__(backbone, loss, args, transform)
self.buffer = Buffer(self.args.buffer_size, self.device)
def observe(self, inputs, labels, not_aug_inputs):
self.opt.zero_grad()
outputs = self.net(inputs)
loss = self.loss(outputs, labels)
if not self.buffer.is_empty():
buf_inputs, _, buf_logits = self.buffer.get_data(
self.args.minibatch_size, transform=self.transform)
buf_outputs = self.net(buf_inputs)
loss += self.args.alpha * F.mse_loss(buf_outputs, buf_logits)
buf_inputs, buf_labels, _ = self.buffer.get_data(
self.args.minibatch_size, transform=self.transform)
buf_outputs = self.net(buf_inputs)
loss += self.args.beta * self.loss(buf_outputs, buf_labels)
loss.backward()
self.opt.step()
self.buffer.add_data(examples=not_aug_inputs,
labels=labels,
logits=outputs.data)
return loss.item()