-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlucir.py
executable file
·315 lines (242 loc) · 12.6 KB
/
lucir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# Copyright 2022-present, Lorenzo Bonicelli, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
from copy import deepcopy
import numpy as np
import torch
import torch.nn.functional as F
from datasets import get_dataset
from torch import nn
from torch.utils.data.dataloader import DataLoader
from models.icarl import fill_buffer
from models.utils.continual_model import ContinualModel
from utils.args import add_management_args, add_experiment_args, add_rehearsal_args, ArgumentParser
from utils.batch_norm import bn_track_stats
from utils.buffer import Buffer, icarl_replay
def lucir_batch_hard_triplet_loss(labels, embeddings, k, margin, num_old_classes):
"""
LUCIR triplet loss.
"""
gt_index = torch.zeros(embeddings.size()).to(embeddings.device)
gt_index = gt_index.scatter(1, labels.reshape(-1, 1).long(), 1).ge(0.5)
gt_scores = embeddings.masked_select(gt_index)
# get top-K scores on novel classes
max_novel_scores = embeddings[:, num_old_classes:].topk(k, dim=1)[0]
# the index of hard samples, i.e., samples of old classes
hard_index = labels.lt(num_old_classes)
hard_num = torch.nonzero(hard_index).size(0)
if hard_num > 0:
gt_scores = gt_scores[hard_index].view(-1, 1).repeat(1, k)
max_novel_scores = max_novel_scores[hard_index]
assert (gt_scores.size() == max_novel_scores.size())
assert (gt_scores.size(0) == hard_num)
loss = nn.MarginRankingLoss(margin=margin)(gt_scores.view(-1, 1),
max_novel_scores.view(-1, 1), torch.ones(hard_num * k).to(embeddings.device))
else:
loss = torch.zeros(1).to(embeddings.device)
return loss
def get_parser() -> ArgumentParser:
parser = ArgumentParser(description='Continual Learning via Lucir.')
add_management_args(parser)
add_experiment_args(parser)
add_rehearsal_args(parser)
parser.add_argument('--lamda_base', type=float, required=False, default=5.,
help='Regularization weight for embedding cosine similarity.')
parser.add_argument('--lamda_mr', type=float, required=False, default=1.,
help='Regularization weight for embedding cosine similarity.')
parser.add_argument('--k_mr', type=int, required=False, default=2,
help='K for margin-ranking loss.')
parser.add_argument('--mr_margin', type=float, default=0.5,
required=False, help='Margin for margin-ranking loss.')
parser.add_argument('--fitting_epochs', type=int, required=False, default=20,
help='Number of epochs to finetune on coreset after each task.')
parser.add_argument('--lr_finetune', type=float, required=False, default=0.01,
help='Learning Rate for finetuning.')
parser.add_argument('--imprint_weights', type=int, choices=[0, 1], required=False, default=1,
help='Apply weight imprinting?')
return parser
class CustomClassifier(nn.Module):
def __init__(self, in_features, cpt, n_tasks):
super().__init__()
self.weights = nn.ParameterList(
[nn.parameter.Parameter(torch.Tensor(cpt, in_features))
for _ in range(n_tasks)]
)
self.sigma = nn.parameter.Parameter(torch.Tensor(1))
self.in_features = in_features
self.task = 0
self.cpt = cpt
self.n_tasks = n_tasks
self.reset_parameters()
self.weights[0].requires_grad = True
def reset_parameters(self):
for i in range(self.n_tasks):
stdv = 1. / math.sqrt(self.weights[i].size(1))
self.weights[i].data.uniform_(-stdv, stdv)
self.weights[i].requires_grad = False
self.sigma.data.fill_(1)
def forward(self, x):
return self.noscale_forward(x) * self.sigma
def reset_weight(self, i):
stdv = 1. / math.sqrt(self.weights[i].size(1))
self.weights[i].data.uniform_(-stdv, stdv)
self.weights[i].requires_grad = True
self.weights[i - 1].requires_grad = False
def noscale_forward(self, x):
out = None
x = F.normalize(x, p=2, dim=1).reshape(len(x), -1)
for t in range(self.n_tasks):
o = F.linear(x, F.normalize(self.weights[t], p=2, dim=1))
if out is None:
out = o
else:
out = torch.cat((out, o), dim=1)
return out
class Lucir(ContinualModel):
NAME = 'lucir'
COMPATIBILITY = ['class-il', 'task-il']
def __init__(self, backbone, loss, args, transform):
super(Lucir, self).__init__(backbone, loss, args, transform)
self.dataset = get_dataset(args)
# Instantiate buffers
self.buffer = Buffer(self.args.buffer_size, self.device)
self.eye = torch.eye(self.dataset.N_CLASSES_PER_TASK *
self.dataset.N_TASKS).to(self.device)
self.old_net = None
self.task = 0
self.epochs = int(args.n_epochs)
self.lamda_cos_sim = args.lamda_base
self.net.classifier = CustomClassifier(
self.net.classifier.in_features, self.dataset.N_CLASSES_PER_TASK, self.dataset.N_TASKS)
upd_weights = [p for n, p in self.net.named_parameters()
if 'classifier' not in n and '_fc' not in n] + [self.net.classifier.weights[0], self.net.classifier.sigma]
fix_weights = list(self.net.classifier.weights[1:])
self.opt = torch.optim.SGD([{'params': upd_weights, 'lr': self.args.lr, 'momentum': self.args.optim_mom, 'weight_decay': self.args.optim_wd}, {
'params': fix_weights, 'lr': 0, 'momentum': self.args.optim_mom, 'weight_decay': 0}])
self.ft_lr_strat = [10]
self.c_epoch = -1
def update_classifier(self):
self.net.classifier.task += 1
self.net.classifier.reset_weight(self.task)
def forward(self, x):
with torch.no_grad():
outputs = self.net(x)
return outputs
def observe(self, inputs, labels, not_aug_inputs, logits=None, epoch=None, fitting=False):
if not hasattr(self, 'classes_so_far'):
self.register_buffer('classes_so_far', labels.unique().to('cpu'))
else:
self.register_buffer('classes_so_far', torch.cat((
self.classes_so_far, labels.to('cpu'))).unique())
self.opt.zero_grad()
loss = self.get_loss(
inputs, labels.long(), self.task)
loss.backward()
self.opt.step()
return loss.item()
def get_loss(self, inputs: torch.Tensor, labels: torch.Tensor,
task_idx: int) -> torch.Tensor:
"""
Computes the loss tensor.
:param inputs: the images to be fed to the network
:param labels: the ground-truth labels
:param task_idx: the task index
:return: the differentiable loss value
"""
pc = task_idx * self.dataset.N_CLASSES_PER_TASK
ac = (task_idx + 1) * self.dataset.N_CLASSES_PER_TASK
outputs = self.net(inputs, returnt='features').float()
cos_output = self.net.classifier.noscale_forward(outputs)
outputs = outputs.reshape(outputs.size(0), -1)
loss = F.cross_entropy(cos_output * self.net.classifier.sigma, labels)
if task_idx > 0:
with torch.no_grad():
logits = self.old_net(inputs, returnt='features')
logits = logits.reshape(logits.size(0), -1)
loss2 = F.cosine_embedding_loss(
outputs, logits.detach(), torch.ones(outputs.shape[0]).to(outputs.device)) * self.lamda_cos_sim
# Remove rescale by sigma before this loss
loss3 = lucir_batch_hard_triplet_loss(
labels, cos_output, self.args.k_mr, self.args.mr_margin, pc) * self.args.lamda_mr
loss = loss + loss2 + loss3
return loss
def begin_task(self, dataset):
if self.task > 0:
icarl_replay(self, dataset)
with torch.no_grad():
# Update model classifier
self.update_classifier()
if self.args.imprint_weights == 1:
self.imprint_weights(dataset)
# Restore optimizer LR
upd_weights = [p for n, p in self.net.named_parameters()
if 'classifier' not in n] + [self.net.classifier.weights[self.task], self.net.classifier.sigma]
fix_weights = list(
self.net.classifier.weights[:self.task])
if self.task < self.dataset.N_TASKS - 1:
fix_weights += list(
self.net.classifier.weights[self.task + 1:])
self.opt = torch.optim.SGD([{'params': upd_weights, 'lr': self.args.lr, 'weight_decay': self.args.optim_wd}, {
'params': fix_weights, 'lr': 0, 'weight_decay': 0}], lr=self.args.lr, momentum=self.args.optim_mom, weight_decay=self.args.optim_wd)
def end_task(self, dataset) -> None:
self.old_net = deepcopy(self.net.eval())
self.net.train()
with torch.no_grad():
fill_buffer(self, self.buffer, dataset, self.task)
if self.args.fitting_epochs is not None and self.args.fitting_epochs > 0:
self.fit_buffer(self.args.fitting_epochs)
self.task += 1
# Adapt lambda
self.lamda_cos_sim = math.sqrt(
self.task) * float(self.args.lamda_base)
def imprint_weights(self, dataset):
self.net.eval()
old_embedding_norm = torch.cat([self.net.classifier.weights[i] for i in range(self.task)]).norm(
dim=1, keepdim=True)
average_old_embedding_norm = torch.mean(
old_embedding_norm, dim=0).cpu().type(torch.DoubleTensor)
num_features = self.net.classifier.in_features
novel_embedding = torch.zeros(
(self.dataset.N_CLASSES_PER_TASK, num_features))
loader = dataset.train_loader
cur_dataset = deepcopy(loader.dataset)
for cls_idx in range(self.task * self.dataset.N_CLASSES_PER_TASK, (self.task + 1) * self.dataset.N_CLASSES_PER_TASK):
cls_indices = np.asarray(
loader.dataset.targets) == cls_idx
cur_dataset.data = loader.dataset.data[cls_indices]
cur_dataset.targets = np.zeros((cur_dataset.data.shape[0]))
dt = DataLoader(
cur_dataset, batch_size=self.args.batch_size, num_workers=0)
num_samples = cur_dataset.data.shape[0]
cls_features = torch.empty((num_samples, num_features))
for j, d in enumerate(dt):
tt = self.net(d[0].to(self.device), returnt='features').cpu()
if 'ntu' in self.args.dataset:
tt = F.adaptive_avg_pool3d(tt, 1)
cls_features[j * self.args.batch_size:(
j + 1) * self.args.batch_size] = tt.reshape(len(tt), -1)
norm_features = F.normalize(cls_features, p=2, dim=1)
cls_embedding = torch.mean(norm_features, dim=0)
novel_embedding[cls_idx - self.task * self.dataset.N_CLASSES_PER_TASK] = F.normalize(
cls_embedding, p=2, dim=0) * average_old_embedding_norm
self.net.classifier.weights[self.task].data = novel_embedding.to(
self.device)
self.net.train()
def fit_buffer(self, opt_steps):
old_opt = self.opt
# Optimize only final embeddings
self.opt = torch.optim.SGD(self.net.classifier.parameters(
), self.args.lr_finetune, momentum=self.args.optim_mom, weight_decay=self.args.optim_wd)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
self.opt, milestones=self.ft_lr_strat, gamma=0.1)
with bn_track_stats(self, False):
for _ in range(opt_steps):
examples, labels, _ = self.buffer.get_all_data(self.transform)
dt = DataLoader([(e, l) for e, l in zip(examples, labels)],
shuffle=True, batch_size=self.args.batch_size)
for inputs, labels in dt:
self.observe(inputs, labels, None, fitting=True)
lr_scheduler.step()
self.opt = old_opt