-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
executable file
·289 lines (255 loc) · 13.9 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# Copyright 2022-present, Lorenzo Bonicelli, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import pickle
import math
import sys
from argparse import Namespace
from typing import Tuple
import torch
from datasets import get_dataset
from datasets.utils.continual_dataset import ContinualDataset
from models.utils.continual_model import ContinualModel
from utils.ood_manager import get_ood_test_loader
from utils.loggers import *
from utils.status import ProgressBar
from utils.evaluation import evaluate, evaluate_ood
from utils.np_losses import linear_schedule_rate
try:
import wandb
except ImportError:
wandb = None
def save_checkpoint(model, optimizer, save_path, epoch, dump_dir="wts_dump"):
save_path = f"{dump_dir}/{save_path}"
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'epoch': epoch
}, save_path)
def save_pickle(obj, fname, dump_dir="wts_dump"):
pickle.dump(obj, open(f"{dump_dir}/{fname}.obj","wb"))
def load_checkpoint(model, np_head, fname, optimizer=None, dump_dir = "wts_dump"):
if os.path.isdir(dump_dir):
for f in os.listdir(dump_dir):
if f.startswith(fname):
load_path = f"{dump_dir}/{fname}"
model_checkpoint = torch.load(load_path + "_backbone.pt")
np_checkpoint = torch.load(load_path + "_np.pt")
model.load_state_dict(model_checkpoint['model_state_dict'])
np_head.load_state_dict(np_checkpoint['model_state_dict'])
epoch=None
if optimizer is not None:
optimizer.load_state_dict(model_checkpoint['optimizer_state_dict'])
epoch = model_checkpoint['epoch']
model.eval()
np_head.eval()
return model, np_head, optimizer
return None, None, None
def load_pickle(fname, dump_dir="wts_dump", train_flag=False):
full_path = f"{dump_dir}/{fname}.obj"
obj = None
try:
with open(full_path, "rb") as f:
obj = pickle.load(f)
f.close()
except FileNotFoundError:
train_flag = True
return obj, train_flag
def get_total_warmup_steps(train_loader_len, n_epochs, warmup_portion):
total_training_steps = train_loader_len * n_epochs
total_warmup_steps = warmup_portion * total_training_steps
return total_warmup_steps, total_training_steps
def train(model: ContinualModel, dataset: ContinualDataset,
args: Namespace) -> None:
"""
The training process, including evaluations and loggers.
:param model: the module to be trained
:param dataset: the continual dataset at hand
:param args: the arguments of the current execution
"""
print(args)
if not args.nowand:
assert wandb is not None, "Wandb not installed, please install it or run without wandb"
wandb.init(project=args.wandb_project, entity=args.wandb_entity, config=vars(args))
args.wandb_url = wandb.run.get_url()
model.net.train()
model.net.to(model.device)
if model.np_head is not None:
model.np_head.train()
model.np_head.to(model.device)
results, results_mask_classes = [], []
if not args.disable_log:
logger = Logger(dataset.SETTING, dataset.NAME, model.NAME)
progress_bar = ProgressBar(verbose=not args.non_verbose)
if not args.ignore_other_metrics:
dataset_copy = get_dataset(args)
for t in range(dataset.N_TASKS):
model.net.train()
_, _, _ = dataset_copy.get_data_loaders()
if model.NAME != 'icarl' and model.NAME != 'pnn':
random_results_class, random_results_task = evaluate(model, dataset_copy, dummy_test=True)
ood_test_loader = get_ood_test_loader(args) if args.eval_ood else None
print(file=sys.stderr)
for t in range(dataset.N_TASKS):
train_loader, test_loader, context_loader = dataset.get_data_loaders()
if hasattr(model, 'begin_task'):
model.begin_task(dataset)
if t and not args.ignore_other_metrics:
accs = evaluate(model, dataset, last=True)
results[t-1] = results[t-1] + accs[0]
if dataset.SETTING == 'class-il':
results_mask_classes[t-1] = results_mask_classes[t-1] + accs[1]
scheduler = dataset.get_scheduler(model, args)
global_step = 0
total_warmup_steps, total_training_steps = get_total_warmup_steps(len(train_loader),
model.args.n_epochs,
model.args.warmup_portion)
context_iter = iter(context_loader)
train_flag = False
if model.args.load_checkpoint and model.np_head is not None:
filename = f'{args.dataset}_task_{t}_{dataset.N_TASKS}_tasks_{dataset.N_CLASSES_PER_TASK}_cls_per_task'
pickled_obj, train_flag = load_pickle(filename+'_buffer', train_flag=train_flag)
if not train_flag:
model.buffer.num_seen_examples, model.buffer.examples, model.buffer.labels, model.buffer.task_labels = pickled_obj
model.net, model.np_head, model.opt = load_checkpoint(model.net, model.np_head, filename, model.opt)
model.previous_time_to_task_distributions, _ = load_pickle(filename+'_tdist')
model.previous_time_to_global_distributions, _ = load_pickle(filename+'_gdist')
print(f"\nSuccessfully loaded pretrained model !")
else:
train_flag = True
if train_flag:
for epoch in range(model.args.n_epochs):
if args.model == 'joint':
continue
for i, data in enumerate(train_loader):
if global_step < total_warmup_steps:
learning_rate = linear_schedule_rate(0.00001, model.args.lr, global_step, total_warmup_steps)
for param_group in model.opt.param_groups:
param_group['lr'] = learning_rate
# for param_group in model.opt.param_groups:
# print(param_group['lr'], global_step)
if args.debug_mode and i > 3:
break
if hasattr(dataset.train_loader.dataset, 'logits'):
inputs, labels, not_aug_inputs, logits = data
inputs = inputs.to(model.device)
labels = labels.to(model.device)
not_aug_inputs = not_aug_inputs.to(model.device)
logits = logits.to(model.device)
loss = model.meta_observe(inputs, labels, not_aug_inputs, logits, dataset.TASK_TO_LABELS)
else:
inputs, labels, not_aug_inputs = data
m = None
if args.use_context:
context_indices = model.get_context_indices(labels,
m=math.ceil(args.context_batch_factor * inputs.size(0)), random=False)
context_inputs, context_labels = inputs[context_indices], labels[context_indices]
# try:
# context_data = next(context_iter)
# except StopIteration:
# context_iter = iter(context_loader)
# context_data = next(context_iter)
# context_inputs, context_labels, _ = context_data
m = context_inputs.size(0)
inputs = torch.cat((context_inputs, inputs))
labels = torch.cat((context_labels, labels))
inputs, labels = inputs.to(model.device), labels.to(
model.device)
not_aug_inputs = not_aug_inputs.to(model.device)
loss = model.meta_observe(inputs, labels, not_aug_inputs, m, t, dataset.TASK_TO_LABELS, global_step, total_training_steps, epoch)
assert not math.isnan(loss)
progress_bar.prog(i, len(train_loader), epoch, t, loss)
global_step += 1
if scheduler is not None:
scheduler.step()
# record current and global task distributions
if epoch == args.n_epochs - 1 and 'np' in args.np_type:
observe_and_update_distributions(args, train_loader, context_loader, model, dataset, t, context_iter)
if hasattr(model, 'end_task'):
model.end_task(dataset)
accs = evaluate(model, dataset)
if model.args.eval_ood:
_ = evaluate_ood(model, dataset, ood_test_loader=ood_test_loader)
results.append(accs[0])
results_mask_classes.append(accs[1])
mean_acc = np.mean(accs, axis=1)
print_mean_accuracy(mean_acc, t + 1, dataset.SETTING)
if not args.disable_log:
logger.log(mean_acc)
logger.log_fullacc(accs)
if not args.nowand:
d2={'RESULT_class_mean_accs': mean_acc[0], 'RESULT_task_mean_accs': mean_acc[1],
**{f'RESULT_class_acc_{i}': a for i, a in enumerate(accs[0])},
**{f'RESULT_task_acc_{i}': a for i, a in enumerate(accs[1])}}
wandb.log(d2)
# if train_flag:
# filename = f'{args.dataset}_task_{t}_{dataset.N_TASKS}_tasks_{dataset.N_CLASSES_PER_TASK}_cls_per_task'
# save_checkpoint(model.net, model.opt, filename + '_backbone.pt', epoch)
# save_checkpoint(model.np_head, model.opt, filename + '_np.pt', epoch)
# save_pickle((model.buffer.num_seen_examples, model.buffer.examples, model.buffer.labels,
# model.buffer.task_labels), filename + '_buffer')
# save_pickle(model.previous_time_to_global_distributions, filename + '_gdist')
# save_pickle(model.previous_time_to_task_distributions, filename + '_tdist')
if model.args.visualize_latent:
model.get_averaged_task_to_epoch_to_kl(dataset.N_TASKS-1)
pickle.dump(model.task_to_epoch_to_kl, open(f"{args.np_type}{'_residual_' if args.residual_normal_kl else ''}_"
f"task_to_epoch_to_kl_klt_{args.kl_t}_klg_{args.kl_g}_"
f"{'warmup' if args.kl_warmup else ''}"
f"{'cutoff_' + str(args.kl_cutoff) if args.min_info_constraint else ''}.pkl", "wb"))
if not args.disable_log and not args.ignore_other_metrics:
logger.add_bwt(results, results_mask_classes)
logger.add_forgetting(results, results_mask_classes)
if model.NAME != 'icarl' and model.NAME != 'pnn':
logger.add_fwt(results, random_results_class,
results_mask_classes, random_results_task)
if not args.disable_log:
logger.write(vars(args))
if not args.nowand:
d = logger.dump()
d['wandb_url'] = wandb.run.get_url()
wandb.log(d)
if not args.nowand:
wandb.finish()
def observe_and_update_distributions(args, train_loader, context_loader, model, dataset, t, context_iter):
all_batches_dist_task = []
all_batches_dist_global = []
with torch.no_grad():
for i, data in enumerate(train_loader):
inputs, labels, _ = data
if args.use_context:
# context_indices = model.get_context_indices(labels, m=math.ceil(args.context_batch_factor * inputs.size(0)), random=True)
# context_inputs, context_labels = inputs[context_indices], labels[context_indices]
try:
context_data = next(context_iter)
except StopIteration:
context_iter = iter(context_loader)
context_data = next(context_iter)
context_inputs, context_labels, _ = context_data
m = context_inputs.size(0)
inputs = torch.cat((context_inputs, inputs))
labels = torch.cat((context_labels, labels))
inputs, labels = inputs.to(model.device), labels.to(
model.device)
global_task_dist_, cur_task_dist_ = model.observe_dist(inputs, labels,
m, t,
dataset.TASK_TO_LABELS)
if global_task_dist_ is not None:
if len(all_batches_dist_global) == 0:
all_batches_dist_global = [global_task_dist_[0].detach(), global_task_dist_[1].detach()]
else:
all_batches_dist_global[0] += global_task_dist_[0].detach()
all_batches_dist_global[1] += global_task_dist_[1].detach()
if cur_task_dist_ is not None:
if len(all_batches_dist_task) == 0:
all_batches_dist_task = [cur_task_dist_[t][0].detach(), cur_task_dist_[t][1].detach()]
else:
all_batches_dist_task[0] += cur_task_dist_[t][0].detach()
all_batches_dist_task[1] += cur_task_dist_[t][1].detach()
divisor = len(train_loader)
if len(all_batches_dist_task) > 0:
model.previous_time_to_task_distributions.update(
{t: (torch.div(all_batches_dist_task[0], divisor), torch.div(all_batches_dist_task[1], divisor))})
if len(all_batches_dist_global) > 0:
model.previous_time_to_global_distributions.update(
{t: (torch.div(all_batches_dist_global[0], divisor), torch.div(all_batches_dist_global[1], divisor))})