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S1 Model Coupling Approach
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Figure S1: Schematization of the area reduction approach for a glacier that covers multiple grid cells used in
this study. The same relative area reduction is applied to all grid cells that the glacier covers. In each grid cell,
the glacier covered area is omitted in CWatM as shown on the right hand side. The black dot on the left hand
side indicates the terminus of the glacier and therefore the grid cell to which glacier-sourced melt of the entire
glacier is routed.



S2 Model Evaluation

S2.1 Snow cover penalty

The penalty for the snow cover error is a simple function that ensures that the automatic calibration is not
steered to parameter sets that represent the discharge well at the cost of snow cover representation. Therefore,
we assumed the mean snow cover in the selected river basins should be close to zero for at least two months per
year. To build a penalty sensitive to snow accumulation, we set a threshold of 0.2m above which the objective
function is negative (Eq. S1). We combine the snow cover error penality with the non-parametric KGE to
obtain a single objective function for calibration (Eq. S2).
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Figure 52: Comparison of the parameter values of CWatMyaee and CWatMgiacier for the upstream station of the
Rhone river basin. Each boxplot comprises five parameter values. The dashed lines depict the parameter range.
The parameters are explained in Burek et al. (2020) (Table 2). The crop factor, the preferential flow factor,
the lake evaporation factor and the soil depth factors are lower for CWatMypaee than for CWatMgjacier, Whereas
the recession factor is higher. This reduces evapotranspiration in CWatMy,,se to compensate for missing glacier
runoff.
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Figure S3: Spatial comparison of mean total evapotranspiration and groundwater contributions to streamflow
The variables over the five parameter sets for each CWatMpaee and
CWatMgjacier are compared. The difference in parameter sets upstream leads to lower evapotranspiration
and higher baseflow in CWatMy,s. Only in upstream grid cells with glacier cover, the evapotranspiration in

(baseflow) in the Rhone river basin.
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Figure S5: Hydrographs of the year with minimum and maximum annual discharge sum during the 30-year
period 19902019 for the downstream stations of the study basins. Years 2000 or later fall within the calibration
period. For the Rhone, the year with the second smallest discharge was chosen as the minimum year, because
for the year with the lowest discharge, no observational data was available.
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Figure S6: Hydrographs of the year with minimum and maximum annual discharge sum for the upstream

stations of the study basins. For the Rhone, the year with the second smallest discharge was chosen as the
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minimum year, because for the year with the lowest discharge, no observational data was available.
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Figure S8: Comparison of flow duration curves of discharge data from 1990 until the last year of available
observations (Fraser: 2016, Gloma and Rhine: 2018, Rhone: 2014). Over the whole period (first row) and split
by seasons (Winter:Dec-Feb, Spring:Mar-May, Summer:Jun-Aug, Autumn:Sep-Nov)
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S3 Future changes in study basins (5 arcmin)

S3.1 Estimating median temperature increase compared to pre-industrial levels

For estimating median temperature increases of 2070-2099 compared to the pre-industrial era, we used the
estimates of past temperature increases from the IPCC AR6 report (Figure 1.12 IPCC, 2021). This shows
that the temperature increase in the period 19862005 was 0.69°C and in 1995-2014 0.85°C compared to pre-
industrial levels. We thus calculated the global mean temperature for the same periods with our meteorological
data and the median global temperature of all GCMs for the period 2070-2099. We then derived the median
temperature increase compared to pre-industrial levels. This was 1.96°C for SSP1-2.6 and 4.25°C for SSP5-8.5
for using the period 19862005, and 1.98°C and 4.26°C using the period 1995-2014, respectively. Thus, we
rounded the temperature increase in our manuscript to 2.0°C and 4.3°C.
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Figure S11: Relative difference in mean annual and mean monthly discharge of CWatMgjacier compared to
CWatMy,se at the upstream gauges for 30 years from 2070-2099, shown per SSP scenario which translate into
warming levels of +1.9°C and +4.2°C compared to pre-industrial time.
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Figure S12: Relative change in mean annual and mean monthly discharge at the downstream stations for the
period 2070-2099 compared to 1990-2019 for CWatMypase and CWatMgjacier, shown per SSP scenario which
translate into warming levels of +1.9°C and 44.2°C compared to pre-industrial time. The height of the bar
indicates median change of GCMs and the grey lines indicate the maximum and minimum change of GCMs.
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Figure S13: Absolute change in mean annual and mean monthly discharge at the upstream stations for the
period 2070-2099 compared to 1990-2019 for CWatMypase and CWatMgjacier, shown per SSP scenario which
translate into warming levels of +1.9°C and +4.2°C compared to pre-industrial time. The height of the bar
indicates median change of GCMs and the grey lines indicate the maximum and minimum change of GCMs.
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S4 Changes in glacier volume,

Figure S14: Glacier volumes for the selected rivers simulated with OGGM, shown as water equivalent per
total river basin area [mm|, per SSP scenario which translate into mean warming levels of +1.9°C and +4.2°C
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Figure S15: Absolute mean glacier contribution to annual and monthly discharge at the downstream gauge for
the period 1990-2019 and for the period 2070-2099 for two SSP scenarios which translate into warming levels of
+1.9°C and +4.2°C compared to pre-industrial time. The height of the bar indicates median change of GCMs
and the grey lines indicate the maximum and minimum change of GCMs. Glacier contribution is estimated by
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Figure S16: Relative mean glacier contribution to annual and monthly discharge at the upstream gauge for the
period 1990-2019 and for the period 2070-2099 for two SSP scenarios which translate into warming levels of
41.9°C and +4.2°C compared to pre-industrial time. The height of the bar indicates median change of GCMs
and the grey lines indicate the maximum and minimum change of GCMs. Glacier contribution is estimated by
subtracting CWatMglacier,bare from CWatMgjacier-
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Figure S17: Simulated glacier-sourced melt volumes in the 56 glacierized river basins in the period 1990-2100.
For future projections, the thick lines show multi-GCM means and thin lines denote individual GCMs results
for SSP1-2.6 (blue) and SSP5-8.5 (red). Black line shows the past period (1990-2019)

XII



170°wW 160°W 150°wW 140°W 130°W 120°wW 110°wW 100°W 90°W
T T T T T T - T T T

— 20°W 10°W 0° 10°E 20°E 30°E
z| ?3’ T T T T T ]
R -
£ g =
E & ]
gL z
3 & _
Zl i 1 I 1 1 |
o
N b) Central Europe, Scandinavia and Iceland

(a) North America ®) P
1 1 1 1 | ] 1 1 1

40%E 50°E 60°E 70°E 80°E 90°E 100°E  110°E  120°E
80°W 70|°W T T T T T T T T
Relative annual
oL i glacier contribution [%] g - -
— ¢l
"
> 50%
g
£t 2l : i
o~ -
= o
. zl e AN i
ok - 25% ¥
™
=
gL /|
0 R
¥ .
0% z| i
- o
) - N
E i (c) South America (d) Asia
1

Figure S18: Relative mean glacier-sourced contribution to annual discharge for the period 1990-2019. Glacier-
sourced melt comprises all melt on glaciers. Glacier contribution is estimated by subtracting CWatMgiacicr,bare
from CWatMgacier-
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S5 Effects of
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Figure S20: The performance difference between CWatMgiacicr and CWatMypage compared to the glacier coverage.
The data is the same as for Fig. 7. Results are shown for individual calibrations (grey dots) and mean of all

calibrations (blue dots)

10-1 10° 10!
% glacierized area

for the 10 year period 2004 to 2013.

XIV



170°wW 160°W 150°W 140°W 130°W 120°wW 110°wW 100°W 90°W
T T T T T T T T T

— 20°W 10°W 0° 10°E 20°E 30°E
=z SF T T T T T T
al ) =3
z z| ESHY }
ar 8
gL z
3 1S i
Zl i I | 1 1 1
o
N b) Central Europe, Scandinavia and Iceland
(a) North America ®) P
| 1 1 | 1 1 | | 1

80°W 700W 40°E 50°E 60°E 70°E 80°E 90°E 100%E  110°E  120°E
. . . T T T T T T T T
T Relative difference in September
discharge of CWatMg,cier COMpared -
(%2}
&r s to CWatM ¢ ar 7
> +50%
" gL 4
ok 2
o r +25%
' ° 3
i g
A - 0% ¥
™
=
-25% Py d
wv ° 8
é .
]
<-50% z
o -
wn o~
- (c) South America (d) Asia
1 e

Figure S21: Relative difference in average discharge in March (1990-2019) between CWatMgjacier and
CWatMpase. Positive values indicate larger discharge of CWatMgiacier- The major glaciated river basins are
shown in black.
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Figure S22: Comparison of relative future change for annual discharge at end of the 215 century for CWatMpage
and CWatMgiacier for 56 glacierized river basins for SSP1-2.6. (a) Colored dots show the median of all GCMs and
grey dots show individual GCMs. (b) Boxplots showing the relative future change of all basins for CWatMpase
and CWatMglacier and their difference.
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Figure S23: Comparison of relative future discharge change for the month with largest glacier-sourced melt
contribution in the past at end of the 215 century for CWatMpase and CWatMgjacier for 56 glacierized river
basins for SSP5-8.5. (a) Colored dots show the median of all GCMs and grey dots show individual GCMs. (b)
Boxplots showing the relative future change of all basins for CWatMypase and CWatMgiacier and their difference.
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S6 Influence of Precipitation Factor

The precipitation correction is handled differently in OGGM and CWatM as explained in Section 2.3 of the
main paper. This difference in precipitation correction between OGGM and CWatM led to a larger precipitation
input for CWatMgjacier compared to CWatMpase as discussed in Section 6.2.1.

The additional snowfall (S,4q) on glaciers resulting from a precipitation factor larger than one is obtained
from OGGM model output (snowfall_on, S). Snowfall on glaciers was post-processed similar to melt and rain
on glaciers to obtain results per grid cells.

Sada = S/ps - (pr —1) (S3)

The difference in precipitation input was assessed by comparing the precipitation/snowfall of CWatMpase
(Pyase) to the sum of precipitation input of CWatMpa.se and additional snowfall on the glaciers (Sqqq)-

The precipitation input was summed across each of the 56 glacierized river basins using zonal statistics.
It was repeated for a precipitation factor of py = 1, py = 2 and py = 3 (Fig. S24). Differences between
CWatMgiacier, p; =1 and CWatMpase are marginal for most basins, suggesting that the impact of differences
in mountainous terrain representations in the two models (discussed in Section 6.2.3) is low in most basins.
Precipitation input differences between CWatMgjacier and CWatMy,s. increase with increasing pys and are larger
for snowfall. The mean difference over all basins was +5% for total precipitation and +17% for snowfall for the
past period for py = 3. This shows that the difference at basin level is much lower than the difference at glacier
locations, for which the snowfall input in OGGM is three times as high as in CWatM.
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Figure S24: Boxplots of difference in precipitation and snowfall input across the 56 glacierized river basins
between CWatMglacier with different precipitation factors (py) and CWatMp,se (base) for annual averages for
the period 1990-2019. Each boxplot is based on 56 data points.

We also ran additional simulations with CWatMypage using Ppase + Saqq as input to investigate whether the
performance improvement of CWatMgiacier compared to CWatMp,se can be attributed to increased precipitation
input. The results show that the performance of CWatMy,se is higher with the increased precipitation input
(Fig. S25). However, this is not sufficient to explain the performance increase for<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>