Arachidonic Acid

Identification

Summary

Arachidonic Acid is a natural fatty acid that plays an essential role in physiological homeostases, such as repair and growth of cells.

Generic Name
Arachidonic Acid
DrugBank Accession Number
DB04557
Background

An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes. [PubChem]

Type
Small Molecule
Groups
Experimental
Structure
Weight
Average: 304.4669
Monoisotopic: 304.240230268
Chemical Formula
C20H32O2
Synonyms
Not Available

Pharmacology

Indication

Not Available

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

Not Available

Mechanism of action
TargetActionsOrganism
AProstaglandin G/H synthase 1
inhibitor
Humans
UPeroxisome proliferator-activated receptor alphaNot AvailableHumans
UBile acid receptor
ligand
Humans
URetinoic acid receptor RXR-alphaNot AvailableHumans
U14 kDa fatty acid-binding proteinNot AvailableBlood fluke
Absorption

Not Available

Volume of distribution

Not Available

Protein binding

Not Available

Metabolism

Hover over products below to view reaction partners

Route of elimination

Not Available

Half-life

Not Available

Clearance

Not Available

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

Not Available

Pathways
PathwayCategory
Piroxicam Action PathwayDrug action
Rofecoxib Action PathwayDrug action
Diclofenac Action PathwayDrug action
Sulindac Action PathwayDrug action
Nabumetone Action PathwayDrug action
Valdecoxib Action PathwayDrug action
Antipyrine Action PathwayDrug action
Flurbiprofen Action PathwayDrug action
Nepafenac Action PathwayDrug action
Etodolac Action PathwayDrug action
Ketoprofen Action PathwayDrug action
Ibuprofen Action PathwayDrug action
Celecoxib Action PathwayDrug action
Suprofen Action PathwayDrug action
Indomethacin Action PathwayDrug action
Diflunisal Action PathwayDrug action
Leukotriene C4 Synthesis DeficiencyDisease
Antrafenine Action PathwayDrug action
Fenoprofen Action PathwayDrug action
Magnesium Salicylate Action PathwayDrug action
Lornoxicam Action PathwayDrug action
Trisalicylate-Choline Action PathwayDrug action
Tolmetin Action PathwayDrug action
Tiaprofenic Acid Action PathwayDrug action
Tenoxicam Action PathwayDrug action
Salicylic Acid Action PathwayDrug action
Alpha Linolenic Acid and Linoleic Acid MetabolismMetabolic
Arachidonic Acid MetabolismMetabolic
Acetylsalicylic Acid Action PathwayDrug action
Ketorolac Action PathwayDrug action
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
AbataceptThe metabolism of Arachidonic Acid can be increased when combined with Abatacept.
AbrocitinibThe metabolism of Abrocitinib can be decreased when combined with Arachidonic Acid.
AcenocoumarolThe metabolism of Arachidonic Acid can be decreased when combined with Acenocoumarol.
AcetohexamideThe metabolism of Arachidonic Acid can be decreased when combined with Acetohexamide.
Acetyl sulfisoxazoleThe metabolism of Arachidonic Acid can be decreased when combined with Acetyl sulfisoxazole.
Food Interactions
Not Available

Products

Drug product information from 10+ global regions
Our datasets provide approved product information including:
dosage, form, labeller, route of administration, and marketing period.
Access now
Access drug product information from over 10 global regions.
Access now
Unapproved/Other Products
NameIngredientsDosageRouteLabellerMarketing StartMarketing EndRegionImage
SIMILAC ALIMENTUM 400 G TOZArachidonic Acid (0.013 g/100ml) + Doconexent (0.007 g/100ml) + Linoleic acid (0.54 g/100ml) + alpha-Linolenic acid (0.058 g/100ml)ABBOTT LABORATUARLARI İTHALAT İHRACAT VE TİC. LTD. ŞTİ.2015-08-18Not applicableTurkey flag

Categories

Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms.
Kingdom
Organic compounds
Super Class
Lipids and lipid-like molecules
Class
Fatty Acyls
Sub Class
Fatty acids and conjugates
Direct Parent
Long-chain fatty acids
Alternative Parents
Unsaturated fatty acids / Straight chain fatty acids / Monocarboxylic acids and derivatives / Carboxylic acids / Organic oxides / Hydrocarbon derivatives / Carbonyl compounds
Substituents
Aliphatic acyclic compound / Carbonyl group / Carboxylic acid / Carboxylic acid derivative / Hydrocarbon derivative / Long-chain fatty acid / Monocarboxylic acid or derivatives / Organic oxide / Organic oxygen compound / Organooxygen compound
Molecular Framework
Aliphatic acyclic compounds
External Descriptors
long-chain fatty acid, omega-6 fatty acid, icosa-5,8,11,14-tetraenoic acid (CHEBI:15843) / Unsaturated fatty acids, Polyunsaturated fatty acids (C00219) / Unsaturated fatty acids (LMFA01030001)
Affected organisms
Not Available

Chemical Identifiers

UNII
27YG812J1I
CAS number
506-32-1
InChI Key
YZXBAPSDXZZRGB-DOFZRALJSA-N
InChI
InChI=1S/C20H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(21)22/h6-7,9-10,12-13,15-16H,2-5,8,11,14,17-19H2,1H3,(H,21,22)/b7-6-,10-9-,13-12-,16-15-
IUPAC Name
(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoic acid
SMILES
CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O

References

Synthesis Reference

Derek R. Buckle, "Arachidonic acid analogues, processes for their preparation and their use in medicine." U.S. Patent US4699995, issued July, 1973.

US4699995
General References
Not Available
Human Metabolome Database
HMDB0060102
KEGG Compound
C00219
PubChem Compound
444899
PubChem Substance
46506683
ChemSpider
392692
BindingDB
22319
RxNav
1368624
ChEBI
15843
ChEMBL
CHEMBL15594
ZINC
ZINC000004474696
Therapeutic Targets Database
DNC000249
PDBe Ligand
ACD
PDB Entries
1adl / 1cvu / 1diy / 1gnj / 1u67 / 1vyg / 2lbv / 3fg4 / 3hs5 / 3olt
show 20 more

Clinical Trials

Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
PhaseStatusPurposeConditionsCountStart DateWhy Stopped100+ additional columns
Not AvailableCompletedNot AvailableSquamous Cell Carcinoma of the Head and Neck (SCCHN)1somestatusstop reasonjust information to hide
Not AvailableEnrolling by InvitationTreatmentDevelopment, Child / Premature Births1somestatusstop reasonjust information to hide
4CompletedTreatmentDevelopment, Child / Premature Births1somestatusstop reasonjust information to hide

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage Forms
FormRouteStrength
Capsule, liquid filledOral
CapsuleOral
Prices
Not Available
Patents
Not Available

Properties

State
Solid
Experimental Properties
PropertyValueSource
melting point (°C)-49.5 °CPhysProp
boiling point (°C)170 °C at 1.50E-01 mm HgPhysProp
logP6.98SANGSTER (1993)
Predicted Properties
PropertyValueSource
Water Solubility0.000151 mg/mLALOGPS
logP6.8ALOGPS
logP6.59Chemaxon
logS-6.3ALOGPS
pKa (Strongest Acidic)4.82Chemaxon
Physiological Charge-1Chemaxon
Hydrogen Acceptor Count2Chemaxon
Hydrogen Donor Count1Chemaxon
Polar Surface Area37.3 Å2Chemaxon
Rotatable Bond Count14Chemaxon
Refractivity99.95 m3·mol-1Chemaxon
Polarizability37.2 Å3Chemaxon
Number of Rings0Chemaxon
Bioavailability0Chemaxon
Rule of FiveNoChemaxon
Ghose FilterNoChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleNoChemaxon
Predicted ADMET Features
PropertyValueProbability
Human Intestinal Absorption+0.9945
Blood Brain Barrier+0.9539
Caco-2 permeable+0.8371
P-glycoprotein substrateNon-substrate0.5962
P-glycoprotein inhibitor INon-inhibitor0.9487
P-glycoprotein inhibitor IINon-inhibitor0.8964
Renal organic cation transporterNon-inhibitor0.9272
CYP450 2C9 substrateNon-substrate0.7643
CYP450 2D6 substrateNon-substrate0.8954
CYP450 3A4 substrateNon-substrate0.6678
CYP450 1A2 substrateInhibitor0.9107
CYP450 2C9 inhibitorNon-inhibitor0.8972
CYP450 2D6 inhibitorNon-inhibitor0.9545
CYP450 2C19 inhibitorNon-inhibitor0.9467
CYP450 3A4 inhibitorNon-inhibitor0.9295
CYP450 inhibitory promiscuityLow CYP Inhibitory Promiscuity0.9349
Ames testNon AMES toxic0.9674
CarcinogenicityNon-carcinogens0.6568
BiodegradationReady biodegradable0.811
Rat acute toxicity1.3991 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.9133
hERG inhibition (predictor II)Non-inhibitor0.9103
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397)

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
GC-MS Spectrum - GC-MS (1 TMS)GC-MSsplash10-005c-9800000000-87c290971fc8a628fb23
Predicted GC-MS Spectrum - GC-MSPredicted GC-MSsplash10-0006-7390000000-7004b9cd28a9b3d9c991
GC-MS Spectrum - GC-MSGC-MSsplash10-005c-9800000000-87c290971fc8a628fb23
GC-MS Spectrum - GC-EI-TOFGC-MSsplash10-0006-6900000000-6870df266b6c73f2a4a1
LC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , NegativeLC-MS/MSsplash10-0nmi-0913000000-95846e8d5e8afd29664b
MS/MS Spectrum - ESI-TOF 10V, NegativeLC-MS/MSsplash10-005l-0902100000-6fc8730bd28daa779b66
MS/MS Spectrum - ESI-TOF 20V, NegativeLC-MS/MSsplash10-005l-0902100000-6fc8730bd28daa779b66
MS/MS Spectrum - ESI-TOF , NegativeLC-MS/MSsplash10-005l-0902100000-6fc8730bd28daa779b66
MS/MS Spectrum - ESI-TOF 10V, NegativeLC-MS/MSsplash10-0udi-0009000000-4dd23c77f8e48c0ab9ec
MS/MS Spectrum - ESI-TOF 30V, NegativeLC-MS/MSsplash10-0udi-0009000000-4dd23c77f8e48c0ab9ec
MS/MS Spectrum - ESI-TOF 10V, NegativeLC-MS/MSsplash10-0udi-0009000000-6bd9d0477c122d3eed94
MS/MS Spectrum - ESI-TOF 20V, NegativeLC-MS/MSsplash10-0udi-0009000000-510ea33e558fa238a1d2
MS/MS Spectrum - ESI-TOF , NegativeLC-MS/MSsplash10-0udi-0009000000-73a6b21464acba15463c
MS/MS Spectrum - ESI-TOF 10V, NegativeLC-MS/MSsplash10-0udi-0009000000-4dd23c77f8e48c0ab9ec
MS/MS Spectrum - ESI-TOF 30V, NegativeLC-MS/MSsplash10-0udi-0049000000-102d050109d3c78b1a25
LC-MS/MS Spectrum - LC-ESI-IT , negativeLC-MS/MSsplash10-0a4i-0090000000-2fb9003e782ec3d05e20
LC-MS/MS Spectrum - LC-ESI-QTOF , negativeLC-MS/MSsplash10-0nmi-0913000000-95846e8d5e8afd29664b
LC-MS/MS Spectrum - LC-ESI-TOF , negativeLC-MS/MSsplash10-0udi-0009000000-6bd9d0477c122d3eed94
LC-MS/MS Spectrum - LC-ESI-TOF , negativeLC-MS/MSsplash10-0udi-0009000000-510ea33e558fa238a1d2
LC-MS/MS Spectrum - LC-ESI-TOF , negativeLC-MS/MSsplash10-0udi-0049000000-102d050109d3c78b1a25
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-000i-5592000000-a4cb284192a5379e8498
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-0udi-0009000000-72d7e08f45ac0712b087
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-0udi-0249000000-addbe76ff7a22a945c93
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-01cc-5790000000-6f6c986c160f551716f7
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-000l-3490000000-749a5c20239a2c162d37
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-0536-9600000000-5d62e1d3554798da85ba
Predicted 1H NMR Spectrum1D NMRNot Applicable
Predicted 13C NMR Spectrum1D NMRNot Applicable
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (Å2)Source typeSource
[M-H]-222.9278022
predicted
DarkChem Lite v0.1.0
[M-H]-223.1946022
predicted
DarkChem Lite v0.1.0
[M-H]-179.2348664
predicted
DarkChem Standard v0.1.0
[M-H]-223.4693022
predicted
DarkChem Lite v0.1.0
[M-H]-223.7542022
predicted
DarkChem Lite v0.1.0
[M-H]-190.8317
predicted
DeepCCS 1.0 (2019)
[M+H]+193.18968
predicted
DeepCCS 1.0 (2019)
[M+Na]+199.28285
predicted
DeepCCS 1.0 (2019)

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Dual cyclooxygenase and peroxidase that plays an important role in the biosynthesis pathway of prostanoids, a class of C20 oxylipins mainly derived from arachidonate ((5Z,8Z,11Z,14Z)-eicosatetraenoate, AA, C20:4(n-6)), with a particular role in the inflammatory response. The cyclooxygenase activity oxygenates AA to the hydroperoxy endoperoxide prostaglandin G2 (PGG2), and the peroxidase activity reduces PGG2 to the hydroxy endoperoxide prostaglandin H2 (PGH2), the precursor of all 2-series prostaglandins and thromboxanes. This complex transformation is initiated by abstraction of hydrogen at carbon 13 (with S-stereochemistry), followed by insertion of molecular O2 to form the endoperoxide bridge between carbon 9 and 11 that defines prostaglandins. The insertion of a second molecule of O2 (bis-oxygenase activity) yields a hydroperoxy group in PGG2 that is then reduced to PGH2 by two electrons (PubMed:7947975). Involved in the constitutive production of prostanoids in particular in the stomach and platelets. In gastric epithelial cells, it is a key step in the generation of prostaglandins, such as prostaglandin E2 (PGE2), which plays an important role in cytoprotection. In platelets, it is involved in the generation of thromboxane A2 (TXA2), which promotes platelet activation and aggregation, vasoconstriction and proliferation of vascular smooth muscle cells (Probable). Can also use linoleate (LA, (9Z,12Z)-octadecadienoate, C18:2(n-6)) as substrate and produce hydroxyoctadecadienoates (HODEs) in a regio- and stereospecific manner, being (9R)-HODE ((9R)-hydroxy-(10E,12Z)-octadecadienoate) and (13S)-HODE ((13S)-hydroxy-(9Z,11E)-octadecadienoate) its major products (By similarity).
Specific Function
heme binding
Gene Name
PTGS1
Uniprot ID
P23219
Uniprot Name
Prostaglandin G/H synthase 1
Molecular Weight
68685.82 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [Article]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [Article]
  3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [Article]
  4. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Ligand-activated transcription factor. Key regulator of lipid metabolism. Activated by the endogenous ligand 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC). Activated by oleylethanolamide, a naturally occurring lipid that regulates satiety. Receptor for peroxisome proliferators such as hypolipidemic drugs and fatty acids. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as a transcription activator for the ACOX1 and P450 genes. Transactivation activity requires heterodimerization with RXRA and is antagonized by NR2C2. May be required for the propagation of clock information to metabolic pathways regulated by PER2.
Specific Function
DNA binding
Gene Name
PPARA
Uniprot ID
Q07869
Uniprot Name
Peroxisome proliferator-activated receptor alpha
Molecular Weight
52224.595 Da
References
  1. Murakami K, Ide T, Suzuki M, Mochizuki T, Kadowaki T: Evidence for direct binding of fatty acids and eicosanoids to human peroxisome proliferators-activated receptor alpha. Biochem Biophys Res Commun. 1999 Jul 14;260(3):609-13. [Article]
  2. Downie MM, Sanders DA, Maier LM, Stock DM, Kealey T: Peroxisome proliferator-activated receptor and farnesoid X receptor ligands differentially regulate sebaceous differentiation in human sebaceous gland organ cultures in vitro. Br J Dermatol. 2004 Oct;151(4):766-75. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Ligand
General Function
Ligand-activated transcription factor. Receptor for bile acids (BAs) such as chenodeoxycholic acid (CDCA), lithocholic acid, deoxycholic acid (DCA) and allocholic acid (ACA). Plays a essential role in BA homeostasis through the regulation of genes involved in BA synthesis, conjugation and enterohepatic circulation. Also regulates lipid and glucose homeostasis and is involved innate immune response (PubMed:10334992, PubMed:10334993, PubMed:21383957, PubMed:22820415). The FXR-RXR heterodimer binds predominantly to farnesoid X receptor response elements (FXREs) containing two inverted repeats of the consensus sequence 5'-AGGTCA-3' in which the monomers are spaced by 1 nucleotide (IR-1) but also to tandem repeat DR1 sites with lower affinity, and can be activated by either FXR or RXR-specific ligands. It is proposed that monomeric nuclear receptors such as NR5A2/LRH-1 bound to coregulatory nuclear responsive element (NRE) halfsites located in close proximity to FXREs modulate transcriptional activity (By similarity). In the liver activates transcription of the corepressor NR0B2 thereby indirectly inhibiting CYP7A1 and CYP8B1 (involved in BA synthesis) implicating at least in part histone demethylase KDM1A resulting in epigenomic repression, and SLC10A1/NTCP (involved in hepatic uptake of conjugated BAs). Activates transcription of the repressor MAFG (involved in regulation of BA synthesis) (By similarity). Activates transcription of SLC27A5/BACS and BAAT (involved in BA conjugation), ABCB11/BSEP (involved in bile salt export) by directly recruiting histone methyltransferase CARM1, and ABCC2/MRP2 (involved in secretion of conjugated BAs) and ABCB4 (involved in secretion of phosphatidylcholine in the small intestine) (PubMed:12754200, PubMed:15471871, PubMed:17895379). Activates transcription of SLC27A5/BACS and BAAT (involved in BA conjugation), ABCB11/BSEP (involved in bile salt export) by directly recruiting histone methyltransferase CARM1, and ABCC2/MRP2 (involved in secretion of conjugated BAs) and ABCB4 (involved in secretion of phosphatidylcholine in the small intestine) (PubMed:10514450, PubMed:15239098, PubMed:16269519). In the intestine activates FGF19 expression and secretion leading to hepatic CYP7A1 repression (PubMed:12815072, PubMed:19085950). The function also involves the coordinated induction of hepatic KLB/beta-klotho expression (By similarity). Regulates transcription of liver UGT2B4 and SULT2A1 involved in BA detoxification; binding to the UGT2B4 promoter seems to imply a monomeric transactivation independent of RXRA (PubMed:12806625, PubMed:16946559). Modulates lipid homeostasis by activating liver NR0B2/SHP-mediated repression of SREBF1 (involved in de novo lipogenesis), expression of PLTP (involved in HDL formation), SCARB1 (involved in HDL hepatic uptake), APOE, APOC1, APOC4, PPARA (involved in beta-oxidation of fatty acids), VLDLR and SDC1 (involved in the hepatic uptake of LDL and IDL remnants), and inhibiting expression of MTTP (involved in VLDL assembly (PubMed:12554753, PubMed:12660231, PubMed:15337761). Increases expression of APOC2 (promoting lipoprotein lipase activity implicated in triglyceride clearance) (PubMed:11579204). Transrepresses APOA1 involving a monomeric competition with NR2A1 for binding to a DR1 element (PubMed:11927623, PubMed:21804189). Also reduces triglyceride clearance by inhibiting expression of ANGPTL3 and APOC3 (both involved in inhibition of lipoprotein lipase) (PubMed:12891557). Involved in glucose homeostasis by modulating hepatic gluconeogenesis through activation of NR0B2/SHP-mediated repression of respective genes. Modulates glycogen synthesis (inducing phosphorylation of glycogen synthase kinase-3) (By similarity). Modulates glucose-stimulated insulin secretion and is involved in insulin resistance (PubMed:20447400). Involved in intestinal innate immunity. Plays a role in protecting the distal small intestine against bacterial overgrowth and preservation of the epithelial barrier (By similarity). Down-regulates inflammatory cytokine expression in several types of immune cells including macrophages and mononuclear cells (PubMed:21242261). Mediates trans-repression of TLR4-induced cytokine expression; the function seems to require its sumoylation and prevents N-CoR nuclear receptor corepressor clearance from target genes such as IL1B and NOS2 (PubMed:19864602). Involved in the TLR9-mediated protective mechanism in intestinal inflammation. Plays an anti-inflammatory role in liver inflammation; proposed to inhibit pro-inflammatory (but not antiapoptotic) NF-kappa-B signaling) (By similarity).
Specific Function
bile acid binding
Gene Name
NR1H4
Uniprot ID
Q96RI1
Uniprot Name
Bile acid receptor
Molecular Weight
55913.915 Da
References
  1. Zhao A, Yu J, Lew JL, Huang L, Wright SD, Cui J: Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets. DNA Cell Biol. 2004 Aug;23(8):519-26. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Receptor for retinoic acid that acts as a transcription factor (PubMed:11162439, PubMed:11915042, PubMed:37478846). Forms homo- or heterodimers with retinoic acid receptors (RARs) and binds to target response elements in response to their ligands, all-trans or 9-cis retinoic acid, to regulate gene expression in various biological processes (PubMed:10195690, PubMed:11162439, PubMed:11915042, PubMed:16107141, PubMed:17761950, PubMed:18800767, PubMed:19167885, PubMed:28167758, PubMed:37478846). The RAR/RXR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5 to regulate transcription (PubMed:10195690, PubMed:11162439, PubMed:11915042, PubMed:17761950, PubMed:28167758). The high affinity ligand for retinoid X receptors (RXRs) is 9-cis retinoic acid (PubMed:1310260). In the absence of ligand, the RXR-RAR heterodimers associate with a multiprotein complex containing transcription corepressors that induce histone deacetylation, chromatin condensation and transcriptional suppression (PubMed:20215566). On ligand binding, the corepressors dissociate from the receptors and coactivators are recruited leading to transcriptional activation (PubMed:20215566, PubMed:37478846, PubMed:9267036). Serves as a common heterodimeric partner for a number of nuclear receptors, such as RARA, RARB and PPARA (PubMed:10195690, PubMed:11915042, PubMed:28167758, PubMed:29021580). The RXRA/RARB heterodimer can act as a transcriptional repressor or transcriptional activator, depending on the RARE DNA element context (PubMed:29021580). The RXRA/PPARA heterodimer is required for PPARA transcriptional activity on fatty acid oxidation genes such as ACOX1 and the P450 system genes (PubMed:10195690). Together with RARA, positively regulates microRNA-10a expression, thereby inhibiting the GATA6/VCAM1 signaling response to pulsatile shear stress in vascular endothelial cells (PubMed:28167758). Acts as an enhancer of RARA binding to RARE DNA element (PubMed:28167758). May facilitate the nuclear import of heterodimerization partners such as VDR and NR4A1 (PubMed:12145331, PubMed:15509776). Promotes myelin debris phagocytosis and remyelination by macrophages (PubMed:26463675). Plays a role in the attenuation of the innate immune system in response to viral infections, possibly by negatively regulating the transcription of antiviral genes such as type I IFN genes (PubMed:25417649). Involved in the regulation of calcium signaling by repressing ITPR2 gene expression, thereby controlling cellular senescence (PubMed:30216632).
Specific Function
DNA binding domain binding
Gene Name
RXRA
Uniprot ID
P19793
Uniprot Name
Retinoic acid receptor RXR-alpha
Molecular Weight
50810.835 Da
References
  1. Lengqvist J, Mata De Urquiza A, Bergman AC, Willson TM, Sjovall J, Perlmann T, Griffiths WJ: Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Mol Cell Proteomics. 2004 Jul;3(7):692-703. Epub 2004 Apr 8. [Article]
Kind
Protein
Organism
Blood fluke
Pharmacological action
Unknown
General Function
May play a role in the transport of fatty acids. Binds various fatty acids, such as arachidonic, oleic, palmitic and linolenic acid (in vitro).
Specific Function
fatty acid binding
Gene Name
Not Available
Uniprot ID
P29498
Uniprot Name
14 kDa fatty acid-binding protein
Molecular Weight
14847.73 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [Article]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [Article]

Enzymes

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids and steroids (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:15766564, PubMed:19965576, PubMed:7574697, PubMed:9866708). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Exhibits low catalytic activity for the formation of catechol estrogens from 17beta-estradiol (E2) and estrone (E1), namely 2-hydroxy E1 and E2 (PubMed:12865317). Catalyzes bisallylic hydroxylation and hydroxylation with double-bond migration of polyunsaturated fatty acids (PUFA) (PubMed:9435160, PubMed:9866708). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan (PubMed:25994031).
Specific Function
(R)-limonene 6-monooxygenase activity
Gene Name
CYP2C9
Uniprot ID
P11712
Uniprot Name
Cytochrome P450 2C9
Molecular Weight
55627.365 Da
References
  1. Mo SL, Zhou ZW, Yang LP, Wei MQ, Zhou SF: New insights into the structural features and functional relevance of human cytochrome P450 2C9. Part I. Curr Drug Metab. 2009 Dec;10(10):1075-126. [Article]

Carriers

Kind
Protein
Organism
Humans
Pharmacological action
No
General Function
FABPs are thought to play a role in the intracellular transport of long-chain fatty acids and their acyl-CoA esters. FABP2 is probably involved in triglyceride-rich lipoprotein synthesis. Binds saturated long-chain fatty acids with a high affinity, but binds with a lower affinity to unsaturated long-chain fatty acids. FABP2 may also help maintain energy homeostasis by functioning as a lipid sensor.
Specific Function
fatty acid binding
Gene Name
FABP2
Uniprot ID
P12104
Uniprot Name
Fatty acid-binding protein, intestinal
Molecular Weight
15237.195 Da
References
  1. Rowland A, Knights KM, Mackenzie PI, Miners JO: Characterization of the binding of drugs to human intestinal fatty acid binding protein (IFABP): potential role of IFABP as an alternative to albumin for in vitro-in vivo extrapolation of drug kinetic parameters. Drug Metab Dispos. 2009 Jul;37(7):1395-403. doi: 10.1124/dmd.109.027656. Epub 2009 Apr 27. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
No
General Function
Binds water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs (Probable). Its main function is the regulation of the colloidal osmotic pressure of blood (Probable). Major zinc transporter in plasma, typically binds about 80% of all plasma zinc (PubMed:19021548). Major calcium and magnesium transporter in plasma, binds approximately 45% of circulating calcium and magnesium in plasma (By similarity). Potentially has more than two calcium-binding sites and might additionally bind calcium in a non-specific manner (By similarity). The shared binding site between zinc and calcium at residue Asp-273 suggests a crosstalk between zinc and calcium transport in the blood (By similarity). The rank order of affinity is zinc > calcium > magnesium (By similarity). Binds to the bacterial siderophore enterobactin and inhibits enterobactin-mediated iron uptake of E.coli from ferric transferrin, and may thereby limit the utilization of iron and growth of enteric bacteria such as E.coli (PubMed:6234017). Does not prevent iron uptake by the bacterial siderophore aerobactin (PubMed:6234017).
Specific Function
antioxidant activity
Gene Name
ALB
Uniprot ID
P02768
Uniprot Name
Albumin
Molecular Weight
69365.94 Da
References
  1. Petitpas I, Grune T, Bhattacharya AA, Curry S: Crystal structures of human serum albumin complexed with monounsaturated and polyunsaturated fatty acids. J Mol Biol. 2001 Dec 14;314(5):955-60. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Lipid transport protein in adipocytes. Binds both long chain fatty acids and retinoic acid. Delivers long-chain fatty acids and retinoic acid to their cognate receptors in the nucleus.
Specific Function
fatty acid binding
Gene Name
FABP4
Uniprot ID
P15090
Uniprot Name
Fatty acid-binding protein, adipocyte
Molecular Weight
14718.815 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [Article]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [Article]
  3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [Article]

Transporters

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
Mediates the transport of prostaglandins (PGs, mainly PGE2, PGE1, PGE3, PGF2alpha, PGD2, PGH2) and thromboxanes (thromboxane B2) across the cell membrane (PubMed:11997326, PubMed:26692285, PubMed:8787677). PGs and thromboxanes play fundamental roles in diverse functions such as intraocular pressure, gastric acid secretion, renal salt and water transport, vascular tone, and fever (PubMed:15044627). Plays a role in the clearance of PGs from the circulation through cellular uptake, which allows cytoplasmic oxidation and PG signal termination (PubMed:8787677). PG uptake is dependent upon membrane potential and involves exchange of a monovalent anionic substrate (PGs exist physiologically as an anionic monovalent form) with a stoichiometry of 1:1 for divalent anions or of 1:2 for monovalent anions (PubMed:29204966). Uses lactate, generated by glycolysis, as a counter-substrate to mediate PGE2 influx and efflux (PubMed:11997326). Under nonglycolytic conditions, metabolites other than lactate might serve as counter-substrates (PubMed:11997326). Although the mechanism is not clear, this transporter can function in bidirectional mode (PubMed:29204966). When apically expressed in epithelial cells, it facilitates transcellular transport (also called vectorial release), extracting PG from the apical medium and facilitating transport across the cell toward the basolateral side, whereupon the PG exits the cell by simple diffusion (By similarity). In the renal collecting duct, regulates renal Na+ balance by removing PGE2 from apical medium (PGE2 EP4 receptor is likely localized to the luminal/apical membrane and stimulates Na+ resorption) and transporting it toward the basolateral membrane (where PGE2 EP1 and EP3 receptors inhibit Na+ resorption) (By similarity). Plays a role in endometrium during decidualization, increasing uptake of PGs by decidual cells (PubMed:16339169). Involved in critical events for ovulation (PubMed:27169804). Regulates extracellular PGE2 concentration for follicular development in the ovaries (By similarity). Expressed intracellularly, may contribute to vesicular uptake of newly synthesized intracellular PGs, thereby facilitating exocytotic secretion of PGs without being metabolized (By similarity). Essential core component of the major type of large-conductance anion channel, Maxi-Cl, which plays essential roles in inorganic anion transport, cell volume regulation and release of ATP and glutamate not only in physiological processes but also in pathological processes (By similarity). May contribute to regulate the transport of organic compounds in testis across the blood-testis-barrier (Probable).
Specific Function
lipid transporter activity
Gene Name
SLCO2A1
Uniprot ID
Q92959
Uniprot Name
Solute carrier organic anion transporter family member 2A1
Molecular Weight
70043.33 Da
References
  1. Kanai N, Lu R, Satriano JA, Bao Y, Wolkoff AW, Schuster VL: Identification and characterization of a prostaglandin transporter. Science. 1995 May 12;268(5212):866-9. [Article]

Drug created at June 13, 2005 13:24 / Updated at August 26, 2024 19:22