Vorasidenib

Identification

Summary

Vorasidenib is a isocitrate dehydrogenase type 1 (IDH1) and 2 (IDH2) inhibitor used to treat Grade 2 astrocytoma or oligodendroglioma with a susceptible IDH1 or IDH2 mutation.

Brand Names
Voranigo
Generic Name
Vorasidenib
DrugBank Accession Number
DB17097
Background

Vorasidenib is a first-in-class dual isocitrate dehydrogenase-1 (IDH1) and isocitrate dehydrogenase-2 (IDH2) inhibitor.1 It works by suppressing the levels of D-2-hydroxyglutarate (2-HG), an oncometabolite produced by mutant IDH1 and IDH2 isoforms.6 Vorasidenib displayed improved brain penetration and higher drug exposure compared to other IDH inhibitors such as ivosidenib and enasidenib.1

Vorasidenib was first approved by the FDA on August 6, 2024, for the treatment of Grade 2 astrocytoma or oligodendroglioma with a susceptible IDH1 or IDH2 mutation.7

Type
Small Molecule
Groups
Approved, Investigational
Structure
Weight
Average: 414.74
Monoisotopic: 414.0794411
Chemical Formula
C14H13ClF6N6
Synonyms
  • 1,3,5-triazine-2,4-diamine, 6-(6-chloro-2-pyridinyl)-n2,n4-bis((1r)-2,2,2-trifluoro-1-methylethyl)-
  • Vorasidenib
External IDs
  • AG 881
  • AG-881
  • AG881

Pharmacology

Indication

Vorasidenib is indicated for the treatment of adult and pediatric patients 12 years and older with Grade 2 astrocytoma or oligodendroglioma with a susceptible isocitrate dehydrogenase-1 (IDH1) or isocitrate dehydrogenase-2 (IDH2) mutation following surgery including biopsy, sub-total resection, or gross total resection.6

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Associated Conditions
Indication TypeIndicationCombined Product DetailsApproval LevelAge GroupPatient CharacteristicsDose Form
Treatment ofGrade 2 astrocytoma••••••••••••••••••••••• ••••••••• ••••••••
Treatment ofGrade 2 astrocytoma••••••••••••••••••••••• ••••••••• ••••••••
Treatment ofGrade 2 oligodendroglioma••••••••••••••••••••••• ••••••••• ••••••••
Treatment ofGrade 2 oligodendroglioma••••••••••••••••••••••• ••••••••• ••••••••
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

Vorasidenib works to reduce tumour growth and invasion in IDH-mutant glioma. In patients with low-grade IDH-mutant glioma, vorasidenib significantly improved progression-free survival and delayed the time to the next anticancer intervention.4,5

Vorasidenib decreases 2-HG tumour concentrations in patients with IDH1 or IDH2 mutated glioma. Relative to tumours from patients in the untreated group, the posterior median percentage reduction (95% credible interval) in tumour 2-HG was 64% (22%, 88%) to 93% (76%, 98%) in tumours from patients who received vorasidenib at exposures that were 0.3 to 0.8 times the exposure observed with the highest recommended dosage. The exposure-response relationship and time course of pharmacodynamic response for the safety and effectiveness of vorasidenib have not been fully characterized.6

Mechanism of action

Mutations in the isocitrate dehydrogenase 1 and 2 (IDH1/2) enzymes can be identified in various malignancies, including acute myeloid leukemia (AML) and gliomas.1,2 Mutant enzymes produce an oncometabolite D-2-hydroxyglutarate (2-HG), which contributes to oncogenesis and tumour growth 1,2,3 by blocking the activity of α-ketoglutarate–dependent enzymes and causing epigenetic dysregulation, such as global DNA hypermethylation, and interfering with immunity.2,3

Vorasidenib is a small molecule inhibitor that targets isocitrate dehydrogenase-1 and 2 (IDH1 and IDH2) enzymes. In vitro, vorasidenib inhibited the IDH1 wild-type and mutant variants, including R132H and the IDH2 wild-type and mutant variants. In cell-based and in vivo tumour models expressing IDH1 or IDH2 mutated proteins, vorasidenib decreased the production of 2-2-HG and partially restored cellular differentiation.6

TargetActionsOrganism
AIsocitrate dehydrogenase [NAD] subunit alpha, mitochondrial
inhibitor
Humans
AIsocitrate dehydrogenase [NAD] subunit beta, mitochondrial
inhibitor
Humans
AIsocitrate dehydrogenase [NAD] subunit gamma, mitochondrial
inhibitor
Humans
AIsocitrate dehydrogenase [NADP] cytoplasmic
inhibitor
Humans
AIsocitrate dehydrogenase [NADP], mitochondrial
inhibitor
Humans
Absorption

Vorasidenib maximum plasma concentration (Cmax) and AUC increased approximately proportionally over the dose range of 10 to 200 mg (0.2 to 4 times the exposure of the highest approved recommended dosage) following once-daily administration of single and multiple doses. At the highest approved recommended dosage, steady-state mean (CV%) Cmax is 133 ng/mL (73%) and AUC is 1,988 h x ng/mL (95%). A steady state is achieved within 28 days of once-daily dosing, and the mean accumulation ratio of AUC is 4.4. The median (minimum, maximum) time to maximum plasma concentrations (Tmax) at steady-state is 2 hours (0.5 to 4 hours). The mean absolute bioavailability of vorasidenib is 34%.6

A high-fat and high-calorie (total 800-1,000 calories, of which 500-600 from fat) meal increased vorasidenib Cmax 3.1-fold and AUC 1.4-fold, compared to the fasting conditions. A low-fat and low-calorie (total 400-500 calories, of which 100-125 from fat) meal increased vorasidenib Cmax 2.3-fold and AUC 1.4-fold, compared to the fasting conditions.6

Volume of distribution

The mean (CV%) volume of distribution at steady-state of vorasidenib is 3,930 L (40%).6 Vorasidenib penetrates the blood-brain barrier: The brain tumour-to-plasma concentration ratio is 1.6.6

Protein binding

The protein binding is 97% in human plasma independent of vorasidenib concentrations in vitro.6

Metabolism

Vorasidenib is primarily metabolized by CYP1A2 with minor contributions from CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A. Non-CYP pathways may contribute up to 30% of its metabolism.6 The exact metabolic pathways and metabolites have not been fully elucidated.

Route of elimination

Following a single oral radiolabeled dose of vorasidenib, 85% of the dose was recovered in feces (56% unchanged) and 4.5% was recovered in urine.6

Half-life

The mean (CV%) steady state terminal half-life is 10 days (57%).6

Clearance

The mean (CV%) steady state oral clearance is 14 L/h (56%).6

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

There is no information regarding the acute toxicity (LD50) or overdose profile of vorasidenib.

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
AbametapirThe serum concentration of Vorasidenib can be increased when it is combined with Abametapir.
AbataceptThe metabolism of Vorasidenib can be increased when combined with Abatacept.
AbemaciclibThe metabolism of Abemaciclib can be increased when combined with Vorasidenib.
AbirateroneThe serum concentration of Vorasidenib can be increased when it is combined with Abiraterone.
AcalabrutinibThe metabolism of Acalabrutinib can be increased when combined with Vorasidenib.
Food Interactions
  • Take with or without food. A high-fat and high-calorie increases vorasidenib and Cmax, but not to a clinically significant extent.

Products

Drug product information from 10+ global regions
Our datasets provide approved product information including:
dosage, form, labeller, route of administration, and marketing period.
Access now
Access drug product information from over 10 global regions.
Access now
Product Ingredients
IngredientUNIICASInChI Key
Vorasidenib citrateX478M962XG2316810-02-1YOUTVRFNJAAFNS-DLVAHKFUSA-N
Vorasidenib citrate anhydrousW4XG3EQK7B2316810-00-9OCEHQNOYRLHJCI-WPRTUUMNSA-N
Brand Name Prescription Products
NameDosageStrengthRouteLabellerMarketing StartMarketing EndRegionImage
VoranigoTablet, film coated40 mg/1OralServier Pharmaceuticals LLC2024-08-07Not applicableUS flag
VoranigoTablet, film coated10 mg/1OralServier Pharmaceuticals LLC2024-08-07Not applicableUS flag
VoranigoTablet40 mgOralServierNot applicableNot applicableCanada flag
VoranigoTablet10 mgOralServierNot applicableNot applicableCanada flag

Categories

Drug Categories
Classification
Not classified
Affected organisms
Not Available

Chemical Identifiers

UNII
789Q85GA8P
CAS number
1644545-52-7
InChI Key
QCZAWDGAVJMPTA-RNFRBKRXSA-N
InChI
InChI=1S/C14H13ClF6N6/c1-6(13(16,17)18)22-11-25-10(8-4-3-5-9(15)24-8)26-12(27-11)23-7(2)14(19,20)21/h3-7H,1-2H3,(H2,22,23,25,26,27)/t6-,7-/m1/s1
IUPAC Name
6-(6-chloropyridin-2-yl)-N2,N4-bis[(2R)-1,1,1-trifluoropropan-2-yl]-1,3,5-triazine-2,4-diamine
SMILES
C[C@@H](NC1=NC(=NC(N[C@H](C)C(F)(F)F)=N1)C1=CC=CC(Cl)=N1)C(F)(F)F

References

General References
  1. Konteatis Z, Artin E, Nicolay B, Straley K, Padyana AK, Jin L, Chen Y, Narayaraswamy R, Tong S, Wang F, Zhou D, Cui D, Cai Z, Luo Z, Fang C, Tang H, Lv X, Nagaraja R, Yang H, Su SM, Sui Z, Dang L, Yen K, Popovici-Muller J, Codega P, Campos C, Mellinghoff IK, Biller SA: Vorasidenib (AG-881): A First-in-Class, Brain-Penetrant Dual Inhibitor of Mutant IDH1 and 2 for Treatment of Glioma. ACS Med Chem Lett. 2020 Jan 22;11(2):101-107. doi: 10.1021/acsmedchemlett.9b00509. eCollection 2020 Feb 13. [Article]
  2. Mellinghoff IK, Penas-Prado M, Peters KB, Burris HA 3rd, Maher EA, Janku F, Cote GM, de la Fuente MI, Clarke JL, Ellingson BM, Chun S, Young RJ, Liu H, Choe S, Lu M, Le K, Hassan I, Steelman L, Pandya SS, Cloughesy TF, Wen PY: Vorasidenib, a Dual Inhibitor of Mutant IDH1/2, in Recurrent or Progressive Glioma; Results of a First-in-Human Phase I Trial. Clin Cancer Res. 2021 Aug 15;27(16):4491-4499. doi: 10.1158/1078-0432.CCR-21-0611. Epub 2021 Jun 2. [Article]
  3. Ruda R, Horbinski C, van den Bent M, Preusser M, Soffietti R: IDH inhibition in gliomas: from preclinical models to clinical trials. Nat Rev Neurol. 2024 Jul;20(7):395-407. doi: 10.1038/s41582-024-00967-7. Epub 2024 May 17. [Article]
  4. Bombino A, Magnani M, Conti A: A Promising Breakthrough: The Potential of VORASIDENIB in the Treatment of Low-grade Glioma. Curr Mol Pharmacol. 2024 Feb 29. doi: 10.2174/0118761429290327240222061812. [Article]
  5. Mellinghoff IK, van den Bent MJ, Blumenthal DT, Touat M, Peters KB, Clarke J, Mendez J, Yust-Katz S, Welsh L, Mason WP, Ducray F, Umemura Y, Nabors B, Holdhoff M, Hottinger AF, Arakawa Y, Sepulveda JM, Wick W, Soffietti R, Perry JR, Giglio P, de la Fuente M, Maher EA, Schoenfeld S, Zhao D, Pandya SS, Steelman L, Hassan I, Wen PY, Cloughesy TF: Vorasidenib in IDH1- or IDH2-Mutant Low-Grade Glioma. N Engl J Med. 2023 Aug 17;389(7):589-601. doi: 10.1056/NEJMoa2304194. Epub 2023 Jun 4. [Article]
  6. FDA Approved Drug Products: VORANIGO (vorasidenib) tablets, for oral use [Link]
  7. FDA: FDA approves vorasidenib for Grade 2 astrocytoma or oligodendroglioma with a susceptible IDH1 or IDH2 mutation [Link]
ChemSpider
64835242
BindingDB
279948
RxNav
2690647
ChEMBL
CHEMBL4279047
PDBe Ligand
9UO
Wikipedia
Vorasidenib
PDB Entries
6adg / 6adi / 6vei / 6vfz

Clinical Trials

Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
PhaseStatusPurposeConditionsCountStart DateWhy Stopped100+ additional columns
Not AvailableAvailableNot AvailableDisease Attributes / Glioma / Neoplasm / Neoplasms by Histologic Type / Neoplasms, Embryonal Germ Cell Tumors / Neoplasms, Glandular and Epithelial / Neoplasms, Nerve Tissue / Neoplasms, Neuroepithelial / Neuroectodermal neoplasm / Pathologic Processes / Recurrences1somestatusstop reasonjust information to hide
3Active Not RecruitingTreatmentGrade II Glioma / Recurrent Gliomas / Residual Glioma1somestatusstop reasonjust information to hide
1Active Not RecruitingTreatmentGlioma1somestatusstop reasonjust information to hide
1CompletedBasic ScienceHealthy Male Participants1somestatusstop reasonjust information to hide
1CompletedBasic ScienceHealthy Volunteers (HV)1somestatusstop reasonjust information to hide

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage Forms
FormRouteStrength
TabletOral10 mg
TabletOral40 mg
Tablet, film coatedOral10 mg/1
Tablet, film coatedOral40 mg/1
Prices
Not Available
Patents
Not Available

Properties

State
Solid
Experimental Properties
Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.0508 mg/mLALOGPS
logP5.15ALOGPS
logP5.25Chemaxon
logS-3.9ALOGPS
pKa (Strongest Acidic)9.9Chemaxon
pKa (Strongest Basic)5.04Chemaxon
Physiological Charge0Chemaxon
Hydrogen Acceptor Count6Chemaxon
Hydrogen Donor Count2Chemaxon
Polar Surface Area75.62 Å2Chemaxon
Rotatable Bond Count7Chemaxon
Refractivity101.29 m3·mol-1Chemaxon
Polarizability33.89 Å3Chemaxon
Number of Rings2Chemaxon
Bioavailability1Chemaxon
Rule of FiveNoChemaxon
Ghose FilterYesChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleNoChemaxon
Predicted ADMET Features
Not Available

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted 1H NMR Spectrum1D NMRNot Applicable
Predicted 13C NMR Spectrum1D NMRNot Applicable
Chromatographic Properties
Collision Cross Sections (CCS)
Not Available

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Catalytic subunit of the enzyme which catalyzes the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers.
Specific Function
isocitrate dehydrogenase (NAD+) activity
Gene Name
IDH3A
Uniprot ID
P50213
Uniprot Name
Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial
Molecular Weight
39591.365 Da
References
  1. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Plays a structural role to facilitate the assembly and ensure the full activity of the enzyme catalyzing the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers.
Specific Function
electron transfer activity
Gene Name
IDH3B
Uniprot ID
O43837
Uniprot Name
Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial
Molecular Weight
42183.39 Da
References
  1. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Regulatory subunit which plays a role in the allosteric regulation of the enzyme catalyzing the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers.
Specific Function
ATP binding
Gene Name
IDH3G
Uniprot ID
P51553
Uniprot Name
Isocitrate dehydrogenase [NAD] subunit gamma, mitochondrial
Molecular Weight
42793.97 Da
References
  1. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Catalyzes the NADP(+)-dependent oxidative decarboxylation of isocitrate (D-threo-isocitrate) to 2-ketoglutarate (2-oxoglutarate), which is required by other enzymes such as the phytanoyl-CoA dioxygenase (PubMed:10521434, PubMed:19935646). Plays a critical role in the generation of NADPH, an important cofactor in many biosynthesis pathways (PubMed:10521434). May act as a corneal epithelial crystallin and may be involved in maintaining corneal epithelial transparency (By similarity).
Specific Function
cadherin binding
Gene Name
IDH1
Uniprot ID
O75874
Uniprot Name
Isocitrate dehydrogenase [NADP] cytoplasmic
Molecular Weight
46659.005 Da
References
  1. Konteatis Z, Artin E, Nicolay B, Straley K, Padyana AK, Jin L, Chen Y, Narayaraswamy R, Tong S, Wang F, Zhou D, Cui D, Cai Z, Luo Z, Fang C, Tang H, Lv X, Nagaraja R, Yang H, Su SM, Sui Z, Dang L, Yen K, Popovici-Muller J, Codega P, Campos C, Mellinghoff IK, Biller SA: Vorasidenib (AG-881): A First-in-Class, Brain-Penetrant Dual Inhibitor of Mutant IDH1 and 2 for Treatment of Glioma. ACS Med Chem Lett. 2020 Jan 22;11(2):101-107. doi: 10.1021/acsmedchemlett.9b00509. eCollection 2020 Feb 13. [Article]
  2. Mellinghoff IK, Penas-Prado M, Peters KB, Burris HA 3rd, Maher EA, Janku F, Cote GM, de la Fuente MI, Clarke JL, Ellingson BM, Chun S, Young RJ, Liu H, Choe S, Lu M, Le K, Hassan I, Steelman L, Pandya SS, Cloughesy TF, Wen PY: Vorasidenib, a Dual Inhibitor of Mutant IDH1/2, in Recurrent or Progressive Glioma; Results of a First-in-Human Phase I Trial. Clin Cancer Res. 2021 Aug 15;27(16):4491-4499. doi: 10.1158/1078-0432.CCR-21-0611. Epub 2021 Jun 2. [Article]
  3. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
  4. FDA Approved Drug Products: VORANIGO (vorasidenib) tablets, for oral use [Link]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Plays a role in intermediary metabolism and energy production (PubMed:19228619, PubMed:22416140). It may tightly associate or interact with the pyruvate dehydrogenase complex (PubMed:19228619, PubMed:22416140).
Specific Function
isocitrate dehydrogenase (NADP+) activity
Gene Name
IDH2
Uniprot ID
P48735
Uniprot Name
Isocitrate dehydrogenase [NADP], mitochondrial
Molecular Weight
50908.915 Da
References
  1. Konteatis Z, Artin E, Nicolay B, Straley K, Padyana AK, Jin L, Chen Y, Narayaraswamy R, Tong S, Wang F, Zhou D, Cui D, Cai Z, Luo Z, Fang C, Tang H, Lv X, Nagaraja R, Yang H, Su SM, Sui Z, Dang L, Yen K, Popovici-Muller J, Codega P, Campos C, Mellinghoff IK, Biller SA: Vorasidenib (AG-881): A First-in-Class, Brain-Penetrant Dual Inhibitor of Mutant IDH1 and 2 for Treatment of Glioma. ACS Med Chem Lett. 2020 Jan 22;11(2):101-107. doi: 10.1021/acsmedchemlett.9b00509. eCollection 2020 Feb 13. [Article]
  2. Mellinghoff IK, Penas-Prado M, Peters KB, Burris HA 3rd, Maher EA, Janku F, Cote GM, de la Fuente MI, Clarke JL, Ellingson BM, Chun S, Young RJ, Liu H, Choe S, Lu M, Le K, Hassan I, Steelman L, Pandya SS, Cloughesy TF, Wen PY: Vorasidenib, a Dual Inhibitor of Mutant IDH1/2, in Recurrent or Progressive Glioma; Results of a First-in-Human Phase I Trial. Clin Cancer Res. 2021 Aug 15;27(16):4491-4499. doi: 10.1158/1078-0432.CCR-21-0611. Epub 2021 Jun 2. [Article]
  3. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
  4. FDA Approved Drug Products: VORANIGO (vorasidenib) tablets, for oral use [Link]

Enzymes

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:19965576, PubMed:9435160). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:19965576, PubMed:9435160). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:11555828, PubMed:12865317). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2 (PubMed:11555828, PubMed:12865317). Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). May act as a major enzyme for all-trans retinoic acid biosynthesis in the liver. Catalyzes two successive oxidative transformation of all-trans retinol to all-trans retinal and then to the active form all-trans retinoic acid (PubMed:10681376). Primarily catalyzes stereoselective epoxidation of the last double bond of polyunsaturated fatty acids (PUFA), displaying a strong preference for the (R,S) stereoisomer (PubMed:19965576). Catalyzes bisallylic hydroxylation and omega-1 hydroxylation of PUFA (PubMed:9435160). May also participate in eicosanoids metabolism by converting hydroperoxide species into oxo metabolites (lipoxygenase-like reaction, NADPH-independent) (PubMed:21068195). Plays a role in the oxidative metabolism of xenobiotics. Catalyzes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin (PubMed:14725854). Metabolizes caffeine via N3-demethylation (Probable).
Specific Function
aromatase activity
Gene Name
CYP1A2
Uniprot ID
P05177
Uniprot Name
Cytochrome P450 1A2
Molecular Weight
58406.915 Da
References
  1. FDA Approved Drug Products: VORANIGO (vorasidenib) tablets, for oral use [Link]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
Inducer
General Function
A cytochrome P450 monooxygenase involved in the metabolism of endocannabinoids and steroids (PubMed:12865317, PubMed:21289075). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the epoxidation of double bonds of arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:21289075). Hydroxylates steroid hormones, including testosterone at C-16 and estrogens at C-2 (PubMed:12865317, PubMed:21289075). Plays a role in the oxidative metabolism of xenobiotics, including plant lipids and drugs (PubMed:11695850, PubMed:22909231). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850).
Specific Function
anandamide 11,12 epoxidase activity
Gene Name
CYP2B6
Uniprot ID
P20813
Uniprot Name
Cytochrome P450 2B6
Molecular Weight
56277.81 Da
References
  1. FDA Approved Drug Products: VORANIGO (vorasidenib) tablets, for oral use [Link]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
Inducer
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Primarily catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) with a preference for the last double bond (PubMed:15766564, PubMed:19965576, PubMed:7574697). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes all trans-retinoic acid toward its 4-hydroxylated form (PubMed:11093772). Displays 16-alpha hydroxylase activity toward estrogen steroid hormones, 17beta-estradiol (E2) and estrone (E1) (PubMed:14559847). Plays a role in the oxidative metabolism of xenobiotics. It is the principal enzyme responsible for the metabolism of the anti-cancer drug paclitaxel (taxol) (PubMed:26427316).
Specific Function
arachidonic acid epoxygenase activity
Gene Name
CYP2C8
Uniprot ID
P10632
Uniprot Name
Cytochrome P450 2C8
Molecular Weight
55824.275 Da
References
  1. FDA Approved Drug Products: VORANIGO (vorasidenib) tablets, for oral use [Link]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
Inducer
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids and steroids (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:15766564, PubMed:19965576, PubMed:7574697, PubMed:9866708). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Exhibits low catalytic activity for the formation of catechol estrogens from 17beta-estradiol (E2) and estrone (E1), namely 2-hydroxy E1 and E2 (PubMed:12865317). Catalyzes bisallylic hydroxylation and hydroxylation with double-bond migration of polyunsaturated fatty acids (PUFA) (PubMed:9435160, PubMed:9866708). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan (PubMed:25994031).
Specific Function
(R)-limonene 6-monooxygenase activity
Gene Name
CYP2C9
Uniprot ID
P11712
Uniprot Name
Cytochrome P450 2C9
Molecular Weight
55627.365 Da
References
  1. FDA Approved Drug Products: VORANIGO (vorasidenib) tablets, for oral use [Link]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
Inducer
General Function
A cytochrome P450 monooxygenase involved in the metabolism of polyunsaturated fatty acids (PUFA) (PubMed:18577768, PubMed:19965576, PubMed:20972997). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:18577768, PubMed:19965576, PubMed:20972997). Catalyzes the hydroxylation of carbon-hydrogen bonds. Hydroxylates PUFA specifically at the omega-1 position (PubMed:18577768). Catalyzes the epoxidation of double bonds of PUFA (PubMed:19965576, PubMed:20972997). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine. Hydroxylates fenbendazole at the 4' position (PubMed:23959307).
Specific Function
(R)-limonene 6-monooxygenase activity
Gene Name
CYP2C19
Uniprot ID
P33261
Uniprot Name
Cytochrome P450 2C19
Molecular Weight
55944.565 Da
References
  1. FDA Approved Drug Products: VORANIGO (vorasidenib) tablets, for oral use [Link]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
A cytochrome P450 monooxygenase involved in the metabolism of fatty acids, steroids and retinoids (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:19965576, PubMed:20972997). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 20-hydroxyeicosatetraenoic acid ethanolamide (20-HETE-EA) and 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:18698000, PubMed:21289075). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Catalyzes the oxidative transformations of all-trans retinol to all-trans retinal, a precursor for the active form all-trans-retinoic acid (PubMed:10681376). Also involved in the oxidative metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants.
Specific Function
anandamide 11,12 epoxidase activity
Gene Name
CYP2D6
Uniprot ID
P10635
Uniprot Name
Cytochrome P450 2D6
Molecular Weight
55768.94 Da
References
  1. FDA Approved Drug Products: VORANIGO (vorasidenib) tablets, for oral use [Link]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
Inducer
General Function
A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981).
Specific Function
1,8-cineole 2-exo-monooxygenase activity
Gene Name
CYP3A4
Uniprot ID
P08684
Uniprot Name
Cytochrome P450 3A4
Molecular Weight
57342.67 Da
References
  1. FDA Approved Drug Products: VORANIGO (vorasidenib) tablets, for oral use [Link]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inducer
General Function
Isoform 1 UDP-glucuronosyltransferase (UGT) that catalyzes phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase the metabolite's water solubility, thereby facilitating excretion into either the urine or bile (PubMed:18177842, PubMed:24641623). Essential for the elimination and detoxification of drugs, xenobiotics and endogenous compounds (PubMed:18177842). Involved in the glucuronidation of calcidiol, which is the major circulating form of vitamin D3 essential for the regulation of calcium and phosphate homeostasis (PubMed:24641623). Also glucuronidates the biologically active form of vitamin D3, calcitriol, probably leading to its biliary transport and intestinal reabsorption (PubMed:18177842).
Specific Function
enzyme binding
Gene Name
UGT1A4
Uniprot ID
P22310
Uniprot Name
UDP-glucuronosyltransferase 1A4
Molecular Weight
60024.535 Da
References
  1. FDA Approved Drug Products: VORANIGO (vorasidenib) tablets, for oral use [Link]

Transporters

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Broad substrate specificity ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes a wide variety of physiological compounds, dietary toxins and xenobiotics from cells (PubMed:11306452, PubMed:12958161, PubMed:19506252, PubMed:20705604, PubMed:28554189, PubMed:30405239, PubMed:31003562). Involved in porphyrin homeostasis, mediating the export of protoporphyrin IX (PPIX) from both mitochondria to cytosol and cytosol to extracellular space, it also functions in the cellular export of heme (PubMed:20705604, PubMed:23189181). Also mediates the efflux of sphingosine-1-P from cells (PubMed:20110355). Acts as a urate exporter functioning in both renal and extrarenal urate excretion (PubMed:19506252, PubMed:20368174, PubMed:22132962, PubMed:31003562, PubMed:36749388). In kidney, it also functions as a physiological exporter of the uremic toxin indoxyl sulfate (By similarity). Also involved in the excretion of steroids like estrone 3-sulfate/E1S, 3beta-sulfooxy-androst-5-en-17-one/DHEAS, and other sulfate conjugates (PubMed:12682043, PubMed:28554189, PubMed:30405239). Mediates the secretion of the riboflavin and biotin vitamins into milk (By similarity). Extrudes pheophorbide a, a phototoxic porphyrin catabolite of chlorophyll, reducing its bioavailability (By similarity). Plays an important role in the exclusion of xenobiotics from the brain (Probable). It confers to cells a resistance to multiple drugs and other xenobiotics including mitoxantrone, pheophorbide, camptothecin, methotrexate, azidothymidine, and the anthracyclines daunorubicin and doxorubicin, through the control of their efflux (PubMed:11306452, PubMed:12477054, PubMed:15670731, PubMed:18056989, PubMed:31254042). In placenta, it limits the penetration of drugs from the maternal plasma into the fetus (By similarity). May play a role in early stem cell self-renewal by blocking differentiation (By similarity).
Specific Function
ABC-type xenobiotic transporter activity
Gene Name
ABCG2
Uniprot ID
Q9UNQ0
Uniprot Name
Broad substrate specificity ATP-binding cassette transporter ABCG2
Molecular Weight
72313.47 Da
References
  1. FDA Approved Drug Products: VORANIGO (vorasidenib) tablets, for oral use [Link]

Drug created at November 14, 2022 20:35 / Updated at September 27, 2024 10:27