Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
×
Apr 5, 2011 · In such cases, no discrete communities can be identified. We consider how the notion of community structure can be generalized to networks that are based on continuous-valued attributes: in general, a network may contain discrete communities which are ordered according to their attribute values.
People also ask
Community structure in networks is often a consequence of homophily, or assortative mixing, based on some attribute of the vertices. For example, researchers may be grouped into communities corresponding to their research topic. This is possible if vertex attributes have discrete values, but many networks exhibit ...
Abstract. Community structure in networks is often a consequence of homophily, or assortative mixing, based on some attribute of the vertices. For example, researchers may be grouped into communities corresponding to their research topic. This is possible if vertex attributes have discrete values, but many networks ...
Community structure in networks is often a consequence of homophily, or assortative mixing, based on some attribute of the vertices. For example, researchers may be grouped into communities corresponding to their research topic. This is possible if vertex attributes have unordered discrete values, but many networks ...
Community structure in networks is often a consequence of homophily, or assortative mixing, based on some attribute of the vertices. For example, researchers may be grouped into communities corresponding to their research topic. This is possible if vertex attributes have unordered discrete values, but many networks ...
Community structure in networks is often a consequence of homophily, or assortative mixing, based on some attribute of the vertices.
This idea, that true community structure in a network corresponds to a statistically surprising arrangement of edges, can be quantified by using the measure known as modularity (17). The modularity is, up to a multiplicative constant, the number of edges falling within groups minus the expected number in an equivalent ...
Missing: continuous | Show results with:continuous
May 10, 2013 · Identifying community structure is a fundamental problem in network analysis. Most community detection algorithms are based on optimizing a combinatorial parameter, for example modularity. This optimization is generally NP-hard, thus merely changing the vertex order can alter their assignments to ...
Mar 30, 2024 · This limitation is coupled with a lack of community detection methods that leverage subgraphs or higher-order structures. In this paper, we propose a new community detection method that effectively uses higher-order structures in a network.
Missing: continuous | Show results with:continuous
In the study of complex networks, a network is said to have community structure if the nodes of the network can be easily grouped into (potentially overlapping) sets of nodes such that each set of nodes is densely connected internally. In the particular case of non-overlapping community finding, this implies that ...
Missing: continuous | Show results with:continuous