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Abstract

We identify and connect a set of physical properties to 3D
models to create a richly-annotated 3D model dataset with
data on physical sizes, static support, attachment surfaces,
material compositions, and weights. To collect these phys-
ical property priors, we leverage observations of 3D mod-
els within 3D scenes and information from images and text.
By augmenting 3D models with these properties we create
a semantically rich, multi-layered dataset of common in-
door objects. We demonstrate the usefulness of these anno-
tations for improving 3D scene synthesis systems, enabling
faceted semantic queries into 3D model datasets, and rea-
soning about how objects can be manipulated by people us-
ing weight and static friction estimates.

1. Introduction
Despite much recent progress in 3D scene understand-

ing, many simple questions about the structure of the vi-
sual world are hard to answer computationally: What is
in a kitchen? Where on a couch can an iPad be placed?
Can a person lift a refrigerator? How about a microwave?
Answers to these questions are predicated on fundamen-
tal physical properties of the objects, their functionality
within real-world environments, and common sense knowl-
edge that connects the two.

At the same time, 3D content is becoming increasingly
available. Online 3D model repositories continue to grow
on a daily basis and a revolution in scanning methods is
creating increasingly faithful 3D reconstructions of real en-
vironments. Yet, despite the geometric fidelity of 3D model
representations, the semantics of real objects are unavail-
able. This makes it very hard to answer common sense
questions and use the models in practical applications such
as 3D scene synthesis, and object recognition in computer
vision systems.

To address this lack of semantic information for 3D mod-
els we extract physical object properties from observations
of the 3D models in a database of 3D scenes. The statis-
tics of high-level structure in 3D scenes are easier to cap-

Figure 1. 3D scene of a kitchen containing 3D models of sev-
eral common indoor objects. We use observations of objects in
a corpus of 3D scenes and other information sources to create a
semantically-enriched dataset of 3D models with properties such
as physical sizes, natural orientations, and static support priors
(e.g., sandwiches are placed on plates).

ture than in image space where many open vision problems
have to be addressed: detection, segmentation, 3D layout
estimation among others.

We focus on defining a set of fundamental properties of
objects in the context of indoor 3D scenes, present simple
approaches to extract and aggregate these properties, and
finally demonstrate how these properties are useful in an-
swering many common sense questions. In the process, we
augment a dataset of 3D models with physical property an-
notations and provide it to the research community.1

Contributions We present how to connect several impor-
tant physical properties of objects to 3D model representa-
tions by leveraging observations within 3D scenes. We aug-
ment a corpus of 3D models with several physical properties
to create a semantically rich, multi-layered dataset of com-
mon indoor objects. We demonstrate the usefulness of these
annotations for improving 3D scene synthesis systems, en-
abling faceted semantic queries into 3D model datasets, and
reasoning about how objects can be manipulated by people
using weight and static friction estimates.

1http://graphics.stanford.edu/projects/semgeo/
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Figure 2. By jointly using estimates of the dimensions, static support surface height, material composition, and solidity of objects we
estimate occupied and free container volume (Vsol and Vfree ), weight W , and static support friction Ffr forces of objects. This allows us to
make predictions such as whether it would be easy for people to carry or push each object instance (indicated by symbols at bottom).

2. Related Work

Recently, there has been much interest in leveraging ob-
ject affordance information for a variety of tasks such as
object detection and recognition through associated human
poses. One line of work uses hallucinated human poses to
label objects in RGB-D data [11] and to plan placement of
objects in novel scenes [12]. Another recent effort con-
structs a knowledge base of affordances for objects and
demonstrates how it can be used for visual reasoning [31].
In recent robotics work, prediction of graspable and con-
tainer parts of 3D models is used for planning robot grasp-
ing [23]. We similarly focus on augmenting a dataset of
3D models with properties that correlate with functionality.
However, we leverage the context provided by observations
of models within 3D scenes to collect static support and at-
tachment priors.

Another line of work has focused on reasoning about the
stability of volumetrically reconstructed 3D scenes [30] for
scene understanding of RGB-D input data. We similarly
reason about static support within 3D scenes but we focus
on extracting support and attachment surface priors and us-
ing them to predict these surfaces on 3D models. More re-
cent work has extracted the statistics of static support re-
lations to enable novel interactive scene design interfaces
(Clutterpalette [27]). We take a similar approach in extract-
ing support priors, however we use 3D scenes instead of
annotated images as input, allowing us to reason at a finer
granularity about the geometry of the support surfaces of

objects.

Much prior work in computer graphics has focused on
low level geometric analysis tasks and has presented sev-
eral 3D model datasets to be used as benchmarks. The most
popular example is the Princeton Shape Benchmark [21].
However, such datasets typically only include object cat-
egory labels for the 3D models. In computer vision, re-
cent work has shown the benefit of a 3D model corpus for
joint object detection and shape reconstruction from RGB-
D data [22, 25]. The latter collected a large dataset of more
than 120 thousand 3D models and manually verified the cat-
egories and orientations of a 10 category subset with 4899
3D models. Inspired by the demonstrated success of data-
driven methods using 3D models for vision tasks, we create
a 3D model corpus with rich physical property annotations
containing 12490 models over 270 categories.

Most recently, the vision community is focusing on
defining a Visual Turing test for deep understanding of vi-
sual structure and semantics in order to perform complex
queries over image datasets for question answering and im-
age retrieval tasks [9, 17]. We believe that richly anno-
tated 3D representations of the world will become criti-
cal for making progress in these tasks. Recent work in
scene understanding compellingly demonstrates the value
of physically-grounded common sense knowledge [5, 6, 28,
29]. Our contribution of an approach to richly annotate 3D
models with physical properties is a step towards providing
a useful dataset for these opening research directions.



Figure 3. Distribution of 3D models in our corpus over categories
at different taxonomy levels (inner distributions are over lamp and
drawer furniture categories respectively). Our dataset is based on
a 3D scene synthesis dataset from prior work [7] and consists of
12000 object models in total over about 200 basic categories.

3. Semantic Annotations for 3D Models

We aim to collect information that is useful for answer-
ing common sense questions about the visual structure of
indoor environments. Some examples of such questions in-
clude:

• What objects are in a kitchen?
• Where can I look for apples in a living room?
• How big are apples?
• Which way does the TV face? Which way does the

fridge open?
• How heavy is the fridge? Can you lift it? Push it?
• Can you put things inside a fridge? Inside a jar?
• Where do I look for a desk lamp? Which side of the

desk lamp supports it? What about a wall lamp? A
ceiling lamp?

Though the first few questions are possible to an-
swer with high-level categorical knowledge and image co-
occurrence statistics, answers to the latter questions rely on
a knowledge of fundamental physical properties of objects:
physical sizes, natural orientations, material composition,
and object solidity. Our key insight is that many aspects of
these properties are reflected strongly in the contextualized
observations of 3D models within 3D scenes composed of
object models (e.g., a living room with tables, chairs, couch,
TV, etc.) We use a 3D scene dataset of common interior en-
vironments such as kitchens, living rooms and bedrooms
from prior work on scene synthesis [7]. We annotate the 3D
models used in these scenes with basic categories in a sim-
ple taxonomy (see Figure 3). Object models within scenes
are a rich source of data which we can combine with other
modalities to extract several important physical properties
of the objects:

Absolute sizes. An attribute of real objects which is un-
fortunately frequently inconsistent in public repositories of
3D models is the absolute size of the objects. Absolute size
is critical in the real world since it influences the usabil-
ity of objects and even their identity (e.g., a model airplane
vs a real airplane). The human cognitive system is also
strongly geared towards recognizing and organizing objects
by size [14]. We use a 3D model size estimation method
designed to propagate physical size priors between models
in 3D scenes [20] to obtain physical sizes for our corpus.

Natural Orientations. Objects are observed in the real
world in typical configurations which reflect their context
and the actions that they admit for people. Most artificial
objects have a clear upright orientation dictated by the func-
tions they admit to people (e.g., chairs for sitting). Sim-
ilarly, objects such as monitors, clocks and whiteboards
have a front side which is associated with the activities peo-
ple perform with them. We annotate the natural upwards
and front orientations for our object categories so that they
can be used in reasoning about relative orientations in 3D
scenes.

Static Support Priors. The most prevalent force which
dictates the structure of our world is gravity. The impact
of gravity can be felt continuously by people and influences
the structure of objects in the world. We collect a set of pri-
ors over the types of surfaces in different objects that sup-
port other objects being placed on them, and correspond-
ingly, typical attachment and support surfaces on an object
for placing the object in static equilibrium on other objects.
These priors are collected from observations of 3D models
within the context of 3D scenes.

Materiality. Real objects are composed of materials with
properties that influence the appearance, density and texture
of parts of the object and consequently their functionality
(e.g., many chair seats are made from fabrics that are soft
and comfortable to sit on). Such physical properties have
a big impact on the semantics of objects but are frequently
absent from 3D model representations. We establish priors
on the materials that different objects are composed from
by aggregating material annotations in 2D images [2] and
corresponding them to 3D model object categories.

Solidity. Physical objects occupy 3D space and have solid
volume—an aspect which is only implicit in surface repre-
sentations such as triangle meshes. Combined with the ma-
teriality of objects, a distinction between the solid regions
that a 3D model represents and any empty space it contains
is important for determining weight, potential for contain-
ment, and simulating physics. Since common geometric



representations are surface-based, extracting solidity priors
directly with geometric analysis is challenging. Our insight
is that solidity is reflected strongly by language describing
objects (e.g., the bowl is in the microwave). We estimate the
empty volume within 3D models by using priors extracted
from linguistic information that implies container-like ob-
jects.

In the following section we discuss our approach for
extracting these properties and connecting them to the 3D
model representations.

4. Constructing a Semantically-Enriched 3D
Model Dataset

Our general approach is to use simple algorithmic ap-
proaches that attempt to connect informative priors on each
of the physical properties we presented. As part of a larger
pipeline we plan to augment these algorithmic predictions
through manual annotation and verification by people using
crowdsourcing.

4.1. Categorization

We define a manual taxonomy of categories for our
dataset of 3D models. Since we focus on indoor scene
design, our taxonomy mainly consists of furniture, com-
mon household objects, and electronics. Using a taxonomy
is important, as it allows for generalization from fine-to-
coarse grained categories (see Figure 3). We break up basic
categories into subcategories mainly by geometric variation
and functionality. For example, the lamp basic category is
subcategorized into table lamp, desk lamp, floor lamp, wall
lamp, and ceiling lamp. The key distinction is the typical
location and the type of static support surface for the lamp.
For the contrast between table and desk lamps the differ-
ence is between radially symmetric and focused spotlights
for desk tasks.

4.2. Absolute Sizes

Another critical attribute of objects is their physical size.
Unfortunately, most commonly available 3D model formats
have incorrect or missing physical scale information. Prior
work has looked at propagating priors on 3D model physi-
cal sizes through observations of the models in scenes, and
predicting the size for new model instances [20]. We use
this approach on all models observed within our 3D scene
corpus to establish category-level size priors and then prop-
agate these priors to all models within each category.

4.3. Natural Orientations

Consistent alignments within each category of objects
are extremely useful in a variety of applications. There has
been some prior work in predicting the upright orientations
of 3D models [8]. However, since most models retrieved

Figure 4. Some examples of consistently oriented categories of
models: chairs, monitors, desk lamps, and cars.

from web repositories already have a consistent upright ori-
entation, we just manually verify each model. During this
verification, we also specify a front side, in addition to the
upright orientation, to provide a ground truth natural orien-
tation for each object. Though most object categories have a
common upright orientation, some categories may not have
a well-defined front side (e.g., bowls, round tables). In these
cases, the front side is assumed to be given by the original
orientation in which the 3D model was designed. The pres-
ence of rotational symmetries can indicate such cases, so an
interesting avenue for future work is to use geometric anal-
ysis to predict whether a semantic front exists for a given
model and if it does, identify it.

The specification of both up and front directions estab-
lishes a common reference frame for all 3D models (see
Figure 4). This common reference frame is valuable for per-
forming pose alignment of 3D models to images [1] and for
synthesizing 3D scenes with naturally oriented objects [4].

4.4. Static Support

The surfaces on which objects are statically supported
determine many other object attributes, and critically the
likely placements of objects within scenes. In order to es-
tablish a set of simple Bayesian priors for static support sur-
faces and object attachment points, we first segment our 3D
models using the SuperFace algorithm [13] to obtain a set
of mostly planar surfaces. Given a 3D scene dataset we now
extract priors on the support surface attributes and object at-
tachment surfaces/points by observing how the surfaces of
each model instance support other model instances in each
scene.

We use a scene dataset from prior work on 3D scene
synthesis [7], containing about 130 indoor scenes. This
dataset includes a support tree hierarchy for each scene from



Ceiling Lamp

Desk
Lamp

Floor
Lamp

Wall Lamp

Figure 5. Predictions of the highest likelihood attachment surfaces
for several types of lamp fixtures shown as colored surface regions
on the 3D models.

which we extract child-parent pairs of statically supported
and supporting objects. For each such pair, we identify the
surfaces on the supporting parent by a proximity threshold
to the midpoint of each bounding box face around the child
object. Given an identified pair of parent support surface
and child bounding box plane, we also retrieve the attach-
ment surfaces of the child object that are within a small
threshold (1 cm) of the attachment plane.

We aggregate the above detected support pairs onto the
parent and child object categories to establish a set of priors
on the supporting surfaces and attachment surfaces:

Psurf (s|Cc) =
count(Cc on surface with s)

count(Cc)

where Cp and Cc refer to the parent and child object cat-
egories, and s is a surface descriptor. We then use these
priors to evaluate the likelihood of support and most likely
supporting surface attributes in new instances of objects in
unlabeled scenes through a simple featurization of the sup-
porting and attachment surfaces s.

We first featurize the supported object attachment sur-
faces by bounding box side: top, bottom, front, back, left,
or right. For instance, posters are attached on their back side
to walls, rugs are attached on their bottom side to floors.
Then, we featurize the parent supporting surface depend-
ing on the direction of the surface normal (up, down, hor-
izontally) and whether the surface is interior (facing into

for floor lamp for desk lamp for bowl for poster

Figure 6. Left: predicted high likelihood support surfaces on a
bookcase model and a chair model (red indicates surface with high
probability of statically supporting other objects, magenta is low
probability). Right: Likelihoods of static support for some object
categories on surfaces in two different rooms.

the bounding box of the supporting object) or exterior (fac-
ing out of the bounding box). For instance, a room has a
floor which is an upwards interior supporting surface, roof
(upwards exterior), ceiling (downwards interior), and inside
walls (horizontally interior). Given this featurization, we
now learn from observations in scenes the distribution of
supporting surface and attachment surface type for each cat-
egory of object. With these learned Bayesian priors, we can
now predict the static attachment probability for a model’s
surface (Figure 5), and the support probability for each sur-
face of a candidate parent object within a 3D scene (Fig-
ure 6).

To handle data sparsity we utilize our category taxon-
omy. If there are fewer than k = 5 support observations
for a given category, we back off to a parent category in the
taxonomy for more informative priors. If there are no obser-
vations available we use the geometry of the model instance
to make a decision as follows. For attachment surfaces, if
the object has roughly equal dimensions in 3D we assume
the attachment surface is the bottom. If the object is flat, we
assume either the back or bottom are attachment surfaces,
choosing the one which is anti-parallel to the upright orien-
tation (e.g., iPad bottom side). If the object is thin and long
we choose a side along the long axis (e.g., side of a pen).

4.5. Materiality

We obtain an estimate of the material distribution for
each object category, by counting how frequently a given
material is annotated on instances of that category within
the OpenSurfaces dataset [2]. We note that this is a naive ap-
proach which does not take into account that specific object
instances may exhibit significant variation in the material
composition (e.g. some mugs are entirely ceramic whereas
others are entirely metallic). Instead, we only aggregate a
distribution at the category level. Despite this, the data of-
fers a useful first order estimate to establish common sense
priors. See Figure 7 for the computed material distributions
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Figure 7. Material composition priors for some common cate-
gories of objects extracted from OpenSurfaces dataset.

solid bed, bookcase, chair, mug, plate, table

container box, can, jar, microwave, oven, refrigerator, vase, window

Table 1. Solidity predictions for common object categories ex-
tracted by comparing probabilities of references “in X” and “on
X” from large-scale language models trained on web text [3]. Note
that “window” is an interesting failure case due to the common ex-
pression “in the window” which does not imply containment.

over some common categories of objects.
In order to leverage these material composition distribu-

tions for computing object weights, we also collect overall
material density values from the NIST STAR material com-
position database.2 We assume that the metal in indoor ap-
pliances is mostly aluminum, and that wood is oak wood
with average density.3

4.6. Solidity

Is an object internally mostly solid, or is it container-like
and designed with free space for containing other objects?
To determine whether 3D models represent solid objects or
mostly empty container-like objects we look at linguistic
cues indicating objects that are typically used as containers.
To get these linguistic cues we use recently developed lan-
guage models [10] that were learned from billions of web-
pages [3]. This pre-learned language model gives the prob-
ability of a sequence of words occurring together.

We establish the probability of the utterances “in X” and
“on X”, where X is an object category. We assume that
container-like objects will more frequently occur in sen-
tences with “in X” than “on X” thus giving us a simple test
for how likely an object X is to contain other objects. We
approximate “in X” as the average log probability of “in

2http://physics.nist.gov/cgi-bin/Star/compos.pl
3http://www.engineeringtoolbox.com/

wood-density-d_40.html

a(n) X” and “in the X”, and similarly for “on X”. We then
use the difference between these likelihoods to make the bi-
nary prediction for whether a certain object category is solid
or container-like. Table 1 shows predictions obtained using
this approach for several common object categories. This
approach will not perform well when statements such as “in
X” or “on X” are rare (e.g., rabbit) but otherwise gives cor-
rect predictions for many common categories of objects.

With these prediction for a given 3D model, we can now
estimate the total solid volume by either voxelizing the sur-
face 3D mesh representation or densely filling the same 3D
voxelization. We obtain both surface and solid voxeliza-
tions of 3D meshes using the voxelization approach imple-
mented by Binvox [19] with a resolution of 128x128x128
on the 3D model centered at the origin and rescaled to fit
within a unit cube. Combined with the physical dimension
estimates, we can thus compute the total occupied volume
of each 3D model.

5. Demonstrative Applications

We demonstrate the usefulness of the physical attributes
that we have collected by applying them to faceted semantic
querying of our 3D model corpus, and to scene synthesis. In
addition to the applications we describe here, we believe a
semantically-enriched dataset such as the one we described
can be useful for many vision and robotics applications. For
instance, prior work in vision has used 3D models for de-
tection [16, 22] and fine-grained classification [15].

5.1. Semantic Queries

The set of object attributes that we defined can be used to
enable faceted querying into the 3D model corpus. Beyond
the straight-forward keyword search over the category tax-
onomy we can now refine our queries with constraints on
the dimensions of the object, the number and the attributes
of static support surfaces, the material composition, and
the total weight. To illustrate this form of faceted search,
we compute the surface support and physical size statistics
of the bookcase models in our corpus. Figure 8 shows a
faceted query example where we can retrieve bookcases fit-
ting high-level descriptions of the approximate number of
books and the overall height compared to other bookcases.

5.2. Scene Synthesis

The object attributes that we collected are critical for en-
abling automatic scene layout and scene synthesis applica-
tions explored by much prior work [18, 26, 7]. The layout of
a scene is highly constrained by the priors of static support.
In other words, once we determine what objects we would
like to appear in a scene, knowing how they would support
each other is a big part of producing a realistic scene (e.g.,
plates are typically on dining tables). Static support priors

http://physics.nist.gov/cgi-bin/Star/compos.pl
http://www.engineeringtoolbox.com/wood-density-d_40.html
http://www.engineeringtoolbox.com/wood-density-d_40.html
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Figure 8. The physical properties we collected allow us to perform
high-level faceted queries into our 3D model corpus, demonstrated
here by searching for combinations of “tall” (above 80th percentile
height), “short” (below 20th), “can fit 20 or 100 books”, assuming
each book requires 100 cm2 of horizontal shelf space.

Physical sizes Static support priors Natural orientations

Figure 9. Comparison of scene synthesis without (top) and with
(bottom) annotations of physical sizes, static support surface pri-
ors, and natural orientations. Scenes generated with the system of
Chang et al. [4] constrained to use the same set of models with and
without each of the priors.

allow us to transform a set of objects into a static support
tree reflecting the structure of real-world environments.

The physical sizes of 3D models are also integral to
recreating a realistic 3D scene, as Figure 9 illustrates. With-
out priors on the absolute sizes of categories of objects and
specific size values for object instances a scene synthesis al-
gorithm can easily produce implausible configurations (Fig-
ure 9 left). Similarly, typical object orientations for each
object instance’s upright and front sides are invaluable (Fig-
ure 9 right). Without this information, clocks and monitors
can face in the wrong orientation rendering them unusable
in the synthesized scenes and lowering the plausibility of
the created environment.

5.3. Materiality for Physics

Given the aggregated material distributions for each cat-
egory and an estimated solid volume for a 3D model we
can compute a rough approximate of the total weight for
that object instance. By retrieving coefficients of static fric-
tion4 for the object material and combining them with the
predicted weight we can also compute the total force nec-
essary to horizontally displace the object. Combined with
tabulated values of the average maximum human lift and
push strengths [24] we can now predict whether the object
can be lifted or pushed horizontally by a person of average
strength. Figure 2 illustrates some of these predictions.

Though this rough approximation makes a series of naı̈ve
simplifying assumptions, it still demonstrates the benefit of
physical property annotations on 3D models for reasoning
about how people might physically interact with common
objects.

6. Future Work and Discussion
We defined and collected several key properties of 3D

models which can be used to answer common sense ques-
tions. We provided a dataset of 3D models that have been
enriched with these properties. Finally, we demonstrated
how such a richly-annotated 3D model corpus can be use-
ful in the setting of 3D scene synthesis, in faceted semantic
queries, and in predicting how people can interact with the
objects.

This is a small step towards the goal of a large-scale,
richly-annotated 3D model dataset. Following on this work,
we plan to use crowdsourcing to create a broader range and
larger volume of verified annotations. These annotations
can be used as ground truth data that will enable quantitative
evaluation of algorithmic predictions. We also hope that
this dataset will enable future research on the propagation
of semantic attributes to larger scale model datasets.

While we have highlighted some important physical at-
tributes, there are many other annotations that are useful.
For instance, part segmentation and part level annotation
(e.g., name, attributes, functionalities) are extremely impor-
tant for a finer-granularity understanding of object materi-
ality and functionality.

We hope this work will inspire the community to think
about how richly annotated 3D models can be used in a va-
riety of problems that deal with common sense knowledge.
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