
Layered Environment-Map Impostors for Arbitrary Scenes

Stefan Jeschke
Institute of Computer Graphics and Algorithms

Vienna University of Technology

Michael Wimmer
Institute of Computer Graphics and Algorithms

Vienna University of Technology
Heidrun Schuman

Institute of Computer Graphics
Department of Computer Science

University of Rostock

Abstract
This paper presents a new impostor-based approach to

accelerate the rendering of very complex static scenes.
The scene is partitioned into viewing regions, and a lay-
ered impostor representation is precalculated for each of
them. An optimal placement of impostor layers guaran-
tees that our representation is indistinguishable from the
original geometry. Furthermore the algorithm exploits
common graphics hardware both during preprocessing
and rendering. Moreover the impostor representation is
compressed using several strategies to cut down on stor-
age space.

Key words: virtual environments, walkthroughs, image-
based rendering, impostors, environment maps

1 Introduction

The real-time display of very large and complex virtual
environments has been one focus of computer graphics
research for a considerable amount of time already. Al-
though many advances have been made, the goal of dis-
playing arbitrary (i.e., without restrictions on scene struc-
ture or navigation methods) scenes of high complexity
at frame rates above 30 or even 60 Hz has consistently
eluded any approach.

For instance, visibility calculations [25] can dramati-
cally reduce the geometry to be rendered in walkthroughs
of densely occluded environments. However, many
scenes do not provide sufficient occlusion, and even for
densely occluded scenes, switching to a different naviga-
tion behavior (like flyovers) can render visibility culling
ineffective. In such cases, image-based rendering (IBR)
[7] methods are usually called for, because their render-
ing complexity only depends on the output resolution of
the image, not on the total number of primitives in the
scene.

In this paper, we present a new algorithm that uses sev-
eral optimally placed layers of image-based primitives—
so-called impostors—to represent distant geometry. Each

layer is arranged in a fashion similar to a cubic envi-
ronment map. The layered impostors are generated in a
preprocessing step for individual regions of space called
view cells, and further optimized so that they take up little
storage space and can be processed efficiently by current
graphics hardware. A new error metric guarantees that
the representation is practically indistinguishable from
the original geometry it replaces, avoiding cracks and
popping artifacts. Geometry near the viewer will be dis-
played using polygonal rendering.

Figure 1 shows an example of our impostor technique.

Figure 1: Example for layered environment-map impos-
tors: (a) observer’s view, (b) same scene from a bird’s eye
view.

The main contribution of this paper is an image-based
geometry representation method that offers several ad-
vantages over previous methods:

1. It can deal with arbitrary static models with dif-
fuse illumination, even if no scene structure is avail-
able. This is especially important because most
available models consist of unstructured “polygon
soups”, which cannot be dealt with satisfactorily in
most other methods.

2. High output image quality. The optimal layer place-



ment shown in this paper guarantees that the dif-
ferences between impostor and the geometry it rep-
resents are practically imperceptible. In particular,
it avoids image cracks due to missing information
about hidden geometry and popping artifacts when
switching between different impostors.

3. Compact impostor representation. Although the
precalculated impostors for all view cells need to
be stored on hard disk, the specific layer arrange-
ment allows using special-purpose algorithms that
dramatically reduce memory requirements both on
harddisk and in texture memory.

4. Fast rendering. The method naturally supports con-
ventional graphics hardware. Additionally, since no
online calculations are necessary, optimal runtime
efficiency is achieved.

The remainder of the paper is organized as follows:
after a short review of previous work in section 2, an
overview of the impostor system is given in section 3.
Section 4 introduces the error metric used to calculate the
optimal layer placement, and section 5 presents the tech-
niques used to compress the impostor textures. Results of
the system are given in section 6, and section 7 presents
final conclusions.

2 Previous work

A huge amount of literature deals with methods to accel-
erate the real-time rendering of highly complex environ-
ments, including level-of-detail rendering [10], visibility
culling [25], point-based rendering [24], light-field ren-
dering [14], or image warping [7], to name just a few.
Many of them share similar problems: they are not gen-
eral enough for arbitrary scenes (e.g., visibility culling,
see the introduction), or are not amenable to hardware ac-
celeration, as is the case for most image-based rendering
methods. We will review here only a subset of image-
based methods that are directly related to our work.

The idea of using image-based representations to re-
place complex geometric objects in virtual walkthroughs
was first introduced by Maciel in 1995 [15]. A particular
object is rendered into a texture map with transparency
information, and then mapped onto a quadriliteral placed
into the scene in place of the object. The resulting primi-
tive is called an impostor. Schaufler et al. [20] and Shade
et al. [22] used this idea to build a hierarchical image
cache for an online system, with relaxed constraints for
image quality.

When using only one quadriliteral, the object is repre-
sented poorly by the impostor if the observer moves too
far away from the reference viewpoint. Therefore, sev-
eral authors have presented methods that use varying lev-

els of geometric information to overcome this drawback.
Starting from a planar impostor, depth information can
be added using triangles [8, 16, 23], with the resulting
primitive sometimes called textured depth mesh (TDM).
TDMs are, however, prone to distortion and disocclusion
artifacts. Depth can also be added per point sample—
in particular, layered depth images (LDI) [17, 21] pro-
vide greater flexibility by allowing several depth values
per image sample. However, LDIs contain more informa-
tion than necessary for a good representation of parallax
effects, and are not amenable to hardware acceleration.
TDMs [1] and LDIs [2] can also be used to represent dis-
tant geometry for a whole view cell.

Finally, in a way closely related to our work, depth in-
formation can be added using layers [13, 18, 19]. There,
an object is sliced into several impostors, each of them
representing a different depth range. However, this tech-
nique was only used to simplify individual objects in a
scene, and it is based on equidistant layers.

In this paper, we show how to use layered impostors to
simplify distant geometry, and how to optimally place the
layers so as to provide the highest possible image qual-
ity [5], while at the same time keeping storage cost to a
tolerable level using an image-based visibility algorithm
which is conceptually related to the extended projections
technique [9].

3 Overview

Our system consists of two stages: a preprocessing stage
in which layered impostors are calculated and optimized
for all view cells in the scene, and a runtime compo-
nent in which the compressed impostors are prefetched
on demand and displayed in place of the original geome-
try. Each layer is arranged similar to a cubic environment
map around the view cell.

More specifically, the preprocessing stage consists of
the following steps:

1. The user needs to decide on the size of the view
cells, on the number of layers, and on the display
resolution the impostors should be calculated for.

2. Partition the space of possible viewing positions into
view cells.

3. Generate the layered impostors in the following
steps:

(a) Determine the distance to the individual im-
postor layers (section 4.2) and the regions for
which the impostors are used.

(b) Render the geometry for each impostor layer
into a texture using conventional graphics
hardware.



(c) Compress the impostor textures by exploiting
the special structure of the problem (section 5):

i. Erase those parts of every impostor tex-
ture that are always occluded by impostor
layers closer to the view cell (section 5.2).

ii. partition the impostor polygon into
smaller polygons that are well filled.

iii. combine the textures for the smaller poly-
gons into larger textures for efficient
graphics hardware treatment.

iv. compress those textures using PNG for ef-
ficient storage on disk.

(d) Finally, a list of the near geometry that is not
represented by impostors is generated.

The runtime component is a simple 3D viewer where
the user can freely navigate through the 3D model. Since
most of the work was already done during preprocessing,
the runtime component only has to:

1. Determine the current view cell of the observer.

2. Prefetch the geometry and impostors of adjacent
view cells in order to avoid varying frame rates
[11] (assuming—as is common for most prefetching
schemes—a limited observer speed). To amortize
the cost of texture downloads over several frames,
prefetched impostor textures are downloaded to tex-
ture memory in smaller chunks.

3. Render the near geometry not represented by impos-
tors.

4. Render the impostor polygons for the current view
cell.

Note that the last two steps are done using graphics hard-
ware.

4 Optimal impostor-layer placement

This section explains how the impostor layers are ar-
ranged around a view cell and how the optimal placement
is calculated.

4.1 Layer arrangement
Figure 2 shows how impostor layers are arranged as im-
postor cubes around a particular view cell. Note that each
impostor layer represents geometry within a certain depth
range to the front and to the back of the layer. The bor-
ders show where the transition between two layers takes
place: objects in front of a particular border are repre-
sented by the impostor nearer to the view cell, objects to
the back are represented by the impostor farther from the
view cell.

Near field cube

Reference viewpoint

Impostor cube

View cell

Far field

Border cube

Figure 2: Layout of the impostors around a view cell.

When generating an impostor layer, each side of its im-
postor cube is rendered from the reference viewpoint, i.e.,
the center of the view cell, with the near and far clipping
planes set to the appropriate sides of the adjacent border
cubes.

The innermost border cube (near field cube in figure
2) is especially noteworthy: it defines the border between
the near field and the far field. All geometry in the near
field will be rendered using polygonal rendering, whereas
geometry in the far field is represented by impostors.

While the size of the view cell is defined by the user
directly, the placement of the impostor layers and their
corresponding depth ranges (i.e., position of the borders)
will be calculated automatically. The only user inputs to
this calculation are the desired number of impostor layers
and the desired image resolution.

4.2 Layer placement calculation
Two errors have to be taken into account when calculating
an optimal placement of the layers: parallax errors and
gaps between texels of consecutive layers.

Parallax errors: The impostor layers need to be placed
so that every layer “faithfully” represents the geometry it
replaces as long as the observer stays within the associ-
ated view cell. In order to quantify “faithfully”, we char-
acterize the error that occurs when viewing the impostor
from a position different from the reference position us-
ing the parallax angle α (see figure 3). This is the angle
between the true 3D position of a point F and its pro-
jection F ′ to the impostor, when seen from a position V
different from the reference viewpoint Vr (see also [22]).

The goal is to find out in which configuration the maxi-
mum parallax error occurs, so that we can calculate from
this the maximum possible depth range that guarantees
that a given parallax angle will not be exceeded. There-
fore, while the parallax angle can be calculated for any
viewing position and any point on an object, we are actu-
ally only interested in the extremal case where the view-
point is moved to a corner of the view cell, and we only



�

F

V

Vr

F’

�
2

� � m

Fy

F’y

Fx

Figure 3: Maximum parallax angle within a view cell.

consider points on a border cube, i.e., points on a plane
parallel to the impostor. For this case, a very intriguing
result can now be shown1:

Assume a given view cell, an impostor layer
and a border cube. Then the maximum parallax
angle between a point on the border cube and
its projection to the impostor, when seen from
the corner of the view cell, always occurs for a
viewing direction of φ = π

4 − β
2 from the view

cell corner, where β = π
4 for the 2D case and

β = arctan(
√

2) for the general 3D case (see
figure 3).

The following equations show how to calculate from a
known border Fy the next closer layer F ′

y (or respectively
from a known layer Fy the next closer border F ′

y):

m = sizeviewcell

2
;

Fx = tan(φ − α

2
)(Fy − m) − m tan(β);

γ = arctan(
Fx

Fy
);

F ′
y = m cos(γ ) sin(φ + α

2 + β)

cos(β) sin(φ + α
2 − γ )

. (1)

When calculating the following border (or respectively
layer), Fy must simply be set to F ′

y from the previous

1For a detailed proof of this statement see [12].

step. To obtain the distance to the first impostor layer, Fy

can be set infinitely far away, where γ becomes φ − α
2 .

Gaps between texels: Two successive impostor layers
should not move more than one texel against each other
because visibility gaps might appear in a continuous sur-
face represented in both layers.

As can easily be shown, the maximum texel movement
appears when the observer looks from one corner of the
view cell to texels at the opposite border of the impostor
as shown in figure 4.

Fy

V

Py

m
Vr

Res

Figure 4: Maximum pixel movement within a view cell.

The minimum allowable distance to the next closer im-
postor layer, Py , is then

Py = Fy m Res

m Res + Fy − m
, (2)

where Res is the resolution of an impostor layer. This
value is compared to the value F ′

y obtained by two suc-
cessive evaluations of equation 1. The larger of the two
defines the actual distance of the impostor layer. If Py

is chosen, then the border between the two layers can be
recalculated using equation 1 by setting α to

α = 2 arctan
(

f cos(β) 4

√
Py(Fy − m)

Fy(Py − m)
− tan(β)

)
− 2φ.

Here f = 2 in the 2D case and f = 3 in the 3D case.

4.3 Discussion
Choosing α: An obvious choice for α is the minimal an-
gle subtended by a pixel in the output image.
Choosing the number of layers: Using only one impos-
tor for the far field is equivalent to a conventional cubic
environment map, except that the error incurred by using
the environment map is a maximum of one pixel. The re-
sulting near field is too large for most practical purposes,
however. For example, an output resolution of 512x512



pixels and a view cell size of 10x10 m would result in a
near field distance of 1738 m.

Using more layers, which represent different depth
ranges of the far field, dramatically reduces the size of
the near field because the parallax movements are “split”
and assigned to different layers. For example, with the
same output resolution of 512x512 pixels and a view cell
size of 10x10 m, using 64 layers will place the near field
distance already at 42 m.

5 Impostor compilation

The layered impostors generated for each view cell need
to be compressed before they can be used. For exam-
ple, the impostors for a single view cell would require
384 MB at a resolution of 512x512 texels and using 64
layers. Therefore, we apply several methods to reduce
the storage requirements of impostors on harddisk and,
even more importantly, in texture memory. Finally, be-
fore generating the impostor geometry, it is necessary to
close one-pixel visibility gaps that might arise between
two impostor layers.

The methods presented here exploit the fact that all im-
postor layers use the same resolution, and that two adja-
cent layers only move by a maximum of one pixel against
each other in any view. This allows us to use fast image
processing techniques as described in the following sec-
tions.

5.1 Gap filling
The aim of gap filling is to prevent holes from appear-
ing in continuous surfaces represented by different lay-
ers. Figure 5 (left) shows the problem in 1D: The line

Opaque texel Border

S

Transparent texel

T1

T3

S1

T1

T2

S2

Inserted texel

T2 T3

Figure 5: Filling the appearing gap between T1 and T3
by copying the texel T1 to T2. This may result in correct
(left) or incorrect (right) visibility.

S is sampled so that the texel T2 is not opaque. If the
viewer now moves from the center of the view cell to the
left, a hole of one texel appears between the near and the
far layer. To avoid such undesirable artifacts, we fill the
texel T2 by copying the color information from texel T1
to it. Thus we can always guarantee that continuous sur-

faces will have no holes.
The right side of figure 5 shows a case where the fill-

ing of T2 results in incorrect visibility, but the error intro-
duced thereby is usually not noticeable. It is not possible
to avoid this problem, since after sampling the geometry,
it is not possible to distinguish between the two cases.

In practice, the hole-filling operation is done easily by
copying opaque texels that have at least one transparent
neighbor (opaque border texels) of the current (closer)
layer to texels at the same position in the next (more
distant) layer, that are either opaque texels or transpar-
ent border texels (transparent texels that have at least one
opaque neighbor).

5.2 Removing invisible texels
Normally, many texels in each layer are occluded by
closer layers2. Therefore, we remove texels that are never
visible because they are always hidden by texels of closer
layers.

The algorithm for doing that proceeds by repeating the
following operations for each pair of adjacent layers (see
figure 6 for the problem in 1D, (a) shows the initial con-
figuration):

Mark texels in the more distant layer as hidden if they
are behind opaque texels of the closer layer which are not
border texels (see figures 6 (b) or (c)). If texels in the
closer layer were already marked as hidden in the previ-
ous iteration, they must be interpreted as opaque in this
iteration (see figure 6 (c)) and set as transparent before
proceeding to the next pair of layers (this can be seen in
figure 6 (d)).

Transparent texel Opaque texel

Hidden texel

(b)

(c) (d)

Opaque border texel

(a)

Figure 6: Removing texels in the layers that are hidden
behind layers closer to the viewpoint.

2Note that occlusion due to near-field geometry is very complex and
not addressed in our system.



After removing invisible texels, the layers contain ex-
actly the information that might become visible when the
viewer walks within the associated view cell.

5.3 Generation of impostor polygons
Since occluded texels have been removed in the previous
step, most layers will contain a large amount of transpar-
ent texels that actually need not be stored at all. There-
fore, we extract the opaque texels of every layer by split-
ting the texture into a number of smaller textures (mi-
cro textures) that tightly cover the opaque regions in the
impostor texture, and creating corresponding rectangular
impostor polygons (see the example in figure 7). The goal
is to find a good tradeoff between minimizing the num-
ber of impostor polygons and the number of transparent
texels in the microtextures.

Figure 7: Representation of an impostor layer with only
few covering polygons.

Since this problem is NP-complete, we employ a fast,
greedy algorithm to find a good solution. First, overlay
the impostor texture with a regular grid—with smaller
grid size giving preference to a more accurate solution,
but creating more polygons (we used an 8x8 grid). Then,
as long as there is such a cell left, we choose a cell that
is not completely transparent and try to grow it until the
percentage of opaque pixels in the cell falls below a user-
defined threshold. The cell can be grown in any direction
(including diagonals), but is constrained to maintain rect-
angular shape. In each growing step, the direction that
gives the best percentage of opaque pixels is chosen. If
the cell cannot be grown further (either because there are
no non-transparent cells in any direction, or because the
threshold is reached), a microtexture and its correspond-
ing impostor polygon is created, and all its grid cells are
set to transparent.

Even tighter packing might be achieved using more in-
volved algorithms [4] at the expense of longer prepro-
cessing time.

5.4 Microtexture packing
As the number of microtextures created for a view cell
in the previous step can be quite large (hundreds or even
thousands, depending on the parameters), we try to pack

microtextures into larger macrotextures. This reduces the
general overhead involved in handling a large number of
textures, and especially favors current graphics hardware
which penalizes textures switches. Furthermore, we can
account for the fact that graphics hardware can usually
only handle textures with resolutions of powers of two
(this restriction can be lifted for newer hardware).

Again, since the 2D rectangle packing problem is NP-
complete [3], we use a fast, greedy algorithm that tries to
generate very few macrotextures, while achieving a good
coverage of the textures with opaque texels. First, all mi-
crotextures are rotated so that they are top-down. Af-
terwards they are sorted into a list by decreasing height
and—for equal heights—by increasing width. The height
of a new macrotexture is then determined using the height
of the first microtexture in the list enlarged to the next
power of two. The width of the macrotexture is calcu-
lated by dividing the summed area of all microtextures
by the determined height and also enlarge this value to
the next power of two (assuming the first microtexture
will fit).

For filling the new macrotexture with microtextures, a
bottom-left placement rule [6] is used beginning with the
first in the sorted list, until the right border of the macro-
texture is reached. The remaining space is filled by the re-
maining microtextures using a left-bottom placement rule
beginning with the last (smallest) microtexture in the list.

After all microtextures are tested and possibly placed,
the algorithm resumes by constructing the next macrotex-
ture. This is repeated until there is no microtexture left.

The final result is a low number of relatively well-filled
macrotextures that can be sent directly to graphics hard-
ware. For storing them on disk, they are compressed us-
ing PNG compression.

6 Results

We have implemented the methods presented in this pa-
per in C++ and OpenGL, and applied them to a 3D model
of the ancient Aztec city of Tenochtitlan (which is freely
available on the Internet). In order to provide adequate
complexity, we replicated the model 3x3 times for a to-
tal of 854586 polygons. The Aztec model demonstrates
the performance of the method in a scene with wide open
spaces and sparse buildings, and shows that the method
performs equally well for walkthrough situations and fly-
overs. A PC with an Athlon 1.2 GHz processor, 512 MB
of main memory and a GeForce 3 graphics card was used
for all tests.

Table 1 shows some statistics for the model. A corri-
dor of 11x27 view cells (i.e., 154x378 m) was selected
for preprocessing, which took slightly above 12 hours
in our unoptimized implementation. Preprocessing the



whole model would have taken prohibitively long, so—
as is usual for methods involving preprocessing—it is ad-
visable to carefully select the areas where the observer is
expected to move around.

Polygons of whole model 854586
Side length of whole model 1350 m
Side length of view cell 14 m
Side length of near field cube 118 m
Avg. preproc. time per view cell 2.5 min

Table 1: Model statistics

Size of impostor layers 256 MB
Size of macrotextures 6018KB
Size of macrotextures after PNG 288 KB

Table 2: Effect of compression on avg. per view cell

The selected output resolution was 512x512 pixels,
and the number of layers was set to 64. Note that since
we move relatively near to the ground plane and the sky
is not complex enough to warrant an efficient impostor
representation, we only calculated impostors for the 4 di-
rections orthogonal to the ground plane. Table 2 shows
the compression achieved on average when going from
the layers of a view cell to macrotextures, and after PNG
compression of the macrotextures, for these selected pa-
rameters.

In order to test the runtime performance of the system,
we have recorded a path (with both walkthrough and fly-
over characteristics) through the preprocessed part of the
model, containing 2197 frames. Figure 8 shows the frame
rates our system achieves for each frame of the path, and
for comparison, the frame rates of an unaccelerated sys-
tem using only OpenGL display lists. It can be seen that

0

20

40

60

80

100

120

140

fr
a

m
e

s
p

e
r

s
e

c
o

n
d

impostors

geometry

Figure 8: Frame rates for the recorded path containing
2197 frames. The vertical lines indicate where the view
cell changed.

while the unaccelerated system never exceeds 3 frame per
second (fps), our layered impostor system consistently
reaches 40 fps, with an average of of more than 60 fps.
This means that our system achieves a speedup of more
than one order of magnitude over the unaccelerated sys-
tem.

Finally, figure 9 shows the number of polygons used
for impostors, the number of polygons remaining in the
near field, and the total number of polygons for each
frame of the same walkthrough.

0

5000

10000

15000

20000

25000

30000

n
o

.
o

f
p

o
ly

g
o

n
s

total

near field

far field

Figure 9: Complexity of the near field and far field for the
recorded path.

Reconstruction quality is limited to the sampling pro-
vided by OpenGL at the moment, and includes an ad-
ditional bias towards the reference viewpoint, which is
however negligible in practice due to our error metric.
While it would theoretically be possible to improve re-
construction quality by storing view-dependent informa-
tion in the textures and using multiple rays for filter-
ing [24], the expected preprocessing times and space re-
quired for the additional texture information would be
prohibitively high.

7 Conclusions

We have presented a novel approach to render very com-
plex, arbitrary virtual environments. The system repre-
sents distant geometry as layered textured polygons ar-
ranged similar to environment maps. The major contri-
butions of the paper are twofold:

First, the impostor layers are optimally placed so that
the parallax error remains bounded. This is particularly
advantageous for distant geometry, since the layers can be
placed increasingly farther apart. In addition, this place-
ment guarantees that the output image never differs by
more than a pixel from an image obtained with the origi-
nal geometry.

Second, the special-purpose algorithms for compress-
ing the generated impostor textures achieve a significant
reduction in storage space. In particular, these algorithms
also reduce the amount of texture memory required for



impostor textures on the graphics hardware, which is cru-
cial insofar as this allows textures for several view cells
to be held in texture memory simultaneously, allowing
prefetching.

In general, the method can be said to decouple the ren-
dering speed of the far field from its geometric complex-
ity. Note especially that the placement of the farthest
layer—and therefore the number of layers required—
does not depend on the extent of the scene (which can
be arbitrarily large), but only on the desired output
resolution. It also exploits the considerable polygon-
rendering and texture-mapping capabilities of today’s
graphics hardware by using standard polygonal render-
ing for the near field (where using impostors would not
be feasible because of the large parallax errors), and im-
postor polygons for the far field, which would overwhelm
the graphics hardware if rendered using geometry alone.

We believe that layered environment-map impostors
can be used to render models of hitherto unseen com-
plexity. The method is especially interesting in appli-
cations where conventional acceleration methods such
as visibility culling, level-of-detail rendering or previ-
ous image-based rendering methods fail due to the na-
ture of the scene (e.g., only little occlusion), the naviga-
tion metaphor (e.g., flyovers), or missing structure infor-
mation about the scene (e.g., polygon soups). However,
since complexity is basically shifted into the preprocess-
ing phase, some attention should be given to the choice of
the possible viewing region. While the preprocess can be
trivially parallelized to run on multiple PCs, a large possi-
ble viewing region can take prohibitively long to compute
on a single computer.

In terms of future research, it is desirable to have an
automatic method for choosing the size and the arrange-
ment of the view cells. Furthermore, as is typical of pre-
processing methods, the algorithm partly shifts the nec-
essary processing-power for rendering a model from the
pure polygon throughput of the graphics hardware to-
wards the bandwidth of the bus between main memory
and graphic system, and to the CPU. We are therefore in-
vestigating novel prefetching algorithms to make best use
of this tradeoff.

Acknowledgements

This work was supported by the German Research Foun-
dation (DFG) in the frame of the postgraduate program
“processing, administrating, visualization and transfer of
multimedia data—technical basics and social implica-
tions”, and the Austrian Science Fund (FWF) contract no.
P13867-INF.

References
[1] D. Aliaga, J. Cohen, A. Wilson, E. Baker, H. Zhang, C. Erikson, K. Hoff,

T. Hudson, W. Stürzlinger, R. Bastos, M. Whitton, F. Brooks, and
D. Manocha. MMR: An interactive massive model rendering system using
geometric and image-based acceleration. In 1999 Symposium on interactive
3D Graphics, pages 199–206, 1999.

[2] D. Aliaga and A. Lastra. Automatic image placement to provide a guaran-
teed frame rate. In SIGGRAPH 99 Conference Proceedings, pages 307–316,
1999.

[3] B. S. Baker, E. G. Coffman, Jr., and R. L. Rivest. Orthogonal packings in
two dimensions. In Proc. 16th Annual Allerton Conf. on Communication,
Control, and Computing, pages 626–635, 1978.

[4] Becker, Franciosa, Gschwind, Ohler, Thiemt, and Widmayer. An optimal
algorithm for approximating a set of rectangles by two minimum area rect-
angles. In CGMAA: Computational Geometry–Methods, Algorithms and
Applications, 1991.

[5] J. Chai, X. Tong, S. Chan, and Heung-Yeung Shum. Plenoptic sampling. In
SIGGRAPH 2000 Conference Proceedings, pages 307–318, 2000.

[6] B. Chazelle. The bottom-left bin-packing heuristic: An efficient implemen-
tation. IEEE Transaction on Computers C-28(8), pages 697–707, 1983.

[7] S. Chen. QuickTime VR – an image-based approach to virtual environment
navigation. In SIGGRAPH 95 Conference Proceedings, pages 29–38, 1995.

[8] L. Darsa, B. Costa Silva, and A. Varshney. Navigating static environments
using image-space simplification and morphing. In 1997 Symposium on
Interactive 3D Graphics, pages 25–34, 1997.

[9] F. Durand, G. Drettakis, J. Thollot, and C. Puech. Conservative visibility
preprocessing using extended projections. In SIGGRAPH 2000 Conference
Proceedings, pages 239–248, 2000.

[10] R. Scopigno E. Puppo. Simplification, lod and multiresolution - principles
and applications. In Eurographics’97 Tutorial Notes PS97 TN4, pages 31–
42, 1997.

[11] T. A. Funkhouser, C. H. Sequin, and S. J. Teller. Management of large
amounts of data in interactive building walkthroughs. In 1992 Symposium
on Interactive 3D Graphics, volume 25, pages 11–20, March 1992.

[12] S. Jeschke and M.Wimmer. An error metric for layered environment-map
impostors. Technical Report TR-186-2-02-04, Vienna University of Tech-
nology, 2002.

[13] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp factor-
ization of the viewing transformation. In SIGGRAPH 94 Conference Pro-
ceedings, pages 451–458, 1994.

[14] Marc Levoy and Pat Hanrahan. Light field rendering. In SIGGRAPH 96
Conference Proceedings, pages 31–42, 1996.

[15] P. Maciel and P. Shirley. Visual navigation of large environments using
textured clusters. In 1995 Symposium on Interactive 3-D Graphics, pages
95–102, 1995.

[16] W. Mark, L. McMillan, and G. Bishop. Post-rendering 3D warping. In 1997
Symposium on Interactive 3D Graphics, pages 7–16, 1997.

[17] N. Max and K. Ohsaki. Rendering trees from precomputed Z-buffer views.
In Rendering Techniques ’95, pages 74–81, 1995.

[18] A. Meyer and F. Neyret. Interactive volumetric textures. In Rendering Tech-
niques ’98, pages 157–168, 1998.

[19] G. Schaufler. Per-object image warping with layered impostors. In Render-
ing Techniques ’98, pages 145–156, 1998.

[20] G. Schaufler and W. Stürzlinger. A three-dimensional image cache for vir-
tual reality. Computer Graphics Forum, 15(3):227–235, 1996.

[21] J. Shade, S. Gortler, L. He, and R. Szeliski. Layered depth images. In
SIGGRAPH 98 Conference Proceedings, pages 231–242, 1998.

[22] J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Snyder. Hierarchical
image caching for accelerated walkthroughs of complex environments. In
SIGGRAPH 96 Conference Proceedings, pages 75–82, 1996.

[23] F. Sillion, G. Drettakis, and B. Bodelet. Efficient impostor manipulation-
for real-time visualization of urban scenery. Computer Graphics Forum,
16(3):207–218, 1997.

[24] M. Wimmer, P. Wonka, and F. Sillion. Point-based impostors for real-time
visualization. In Rendering Techniques 2001, pages 163–176, 2001.

[25] P. Wonka, M. Wimmer, and F. X. Sillion. Instant visibility. Computer
Graphics Forum, 20(3):411–421, 2001.


