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Abstract In this paper, we focus on the generation of the spatial

The simulation and visualization of large groups ofdistribution of plants. Specifically, we extend the meth-
plants has many applications. The extreme visual coneds reported in[3] with the ecologically and visually im-
plexity of the resulting scenes can be captured using myportant phenomena of clustering and succession of plants.
tilevel models. For example, in two-level models, plantVe also introduce the formalism ofultiset L-system®
distributions may be determined using coarse plant refiermalize some of these models.

resentations, and realistic visualizations may be obtained Previous work on multilevel modeling of plant ecosys-
by substituting detailed plant models for the coarse onesms is summarized in Sectifn 2. Following the approach
In this paper, we focus on the coarse aspect of modehtroduced there, we distinguish thecal-to-global ap-

ing, the specification of plant distribution. We consideproach, in which the distribution of plant densities is
two classes of models: local-to-global models, rootedetermined by a simulation of interactions between the
in the individual-based ecosystem simulations, and inndividual plants, and thelobal-to-local approach, in
verse, global-to-local models, in which positions of inwhich positions of individual plants are inferred from
dividual plants are inferred from a given distribution ofgiven large-scale density distributions. In Sectjor] 3.1,
plant densities. We extend previous results obtained uge introduce multiset L-systems as an extension of the
ing both classes of models with additional phenomena.system modeling framework. This extension allows
including clustering and succession of plants. We alsgs to use L-systems, long an individual plant modeling
introduce the formalism of multiset L-systems to formalparadigm, to express local-to-global algorithms for gen-
ize the individual-based simulation models. erating plant distributions as well. Sample applications of

Key words: realistic image synthesis, multilevel modelMultiset L-systems are given in Sectidns 3.719 3.4. The

ing, plant ecosystem, spatial distribution, clustering, succo"cept and examples of the global-to-local modeling of
cession, multiset L-system plant distribution are presented in Sectign 4, which ex-

tends preliminary results reported [f [7]. Conclusions are
1 Introduction presented in Sectidh 5.

The simulation and visualization of plant ecosystems h
many theoretical and practical applications. They includ
fundamental research in ecology, visual impact analysMultilevel modeling of plant communities for image syn-

of forestry practices, and synthesis of complex sceneifiesis purposes was introduced in [3], although related
for computer animations, among others. The inheregchniques had been used earlkeg.[1]. The main con-
complexity of the scenes resulting from the ecosyste®ept was to consider the generation of a plant ecosystem
simulations can be managed using the multilevel apa,sahierarchy of tasks: specification of the terrain, gener-
proach to modeling([3]. Rather than model the entir@tion of plant distribution using coarse plant models, syn-
ecosystem at the detailed level of plant organs, such #iesis of detailed plant models as needed to populate the
leaves, flowers, apices, and internodes [13], the multBcene, and the rendering of the final scene using instances
level approach employs a hierarchy of models. For exef these detailed models.

ample, in the simplest, two-level case, a high-level model Two different methods were used il [3] to create
determines the distribution of the plants, and lower-levgblant distributions. The first one was an individual-
models determine the plants’ shapes. The models abased ecosystem simulation, based on a model of Fir-
coupled so that information created at a higher level camank and Watkinsori][4]. Following that model, simulated
affect the outcome of the model at the lower level. plants were placed in the field at random, then iteratively

Previous work



‘grown’, and ‘killed’ when dominated by larger plants. |- . .. . . X!
The resulting distribution fit theself-thinning curveof - ) . .
plant ecology [8], a relationship between the average

mass and average density in a monoculture of plants of |+ - _ C ' o
the same age. The individual-based approach was also| -’ R - S o
used in [3] to produce a hierarchy (distribution) of plant | . .=/, - o W S
sizes ¢.f.[8]), similar to that observed in nature. L ol " i o8

The second method was intended to allow more user

control in defining the local density of plants. The inpUtFigure 1: The effect of clustering on plant distribution.
was a greyscale image representing a map of the de”SEXft.- an overdispersed distribution with H = 0.4. Right:
of plants throughout the field. The Floyd-Steinberg errof, .;..«tored distribution with H = 2.4.

diffusion algorithm [5] was used to create the positions

of individual plants conforming to these densities. The

points produced by this algorithm were slightly jittered3 Local-to-global modeling of plant distribution

to make the distribution appear more random. 3.1 Multiset L-systems

These two methods exemplify two different ap- L .
proaches to ecological modeling. The individual-basey/e model the individual plants using L-systerns [13] and
: I . a related technique based on Chomsky gramniars [14]. In
simulation is representative of the local-to-global ap- | ~.- :

. . dition, we extend the L-system formalism to generate
proach. It is characterized by the emergence of globa ant distributions usina the local-to-alobal approach. To
features from the local interactions of individual plantsp . Istributl using . g pp '
¥1IS end, we introduce the notion ofultiset L-systems

In contrast, the error diffusion method is an example o del | q
the inverse, global-to-local approach, in which local char- A" L-System model generates plants represented as

acteristics are derived from global properties of the digStfiNgs Of symbols({9] with optional parametersi[13].
tribution. This distinction is similar to the distinction be- These strings define both the topology and the geome-

tween local-to-global and global-to-local methods usel]y of the resulting structures. An L-system specification
to model individual plantsT14] consists of three components: thiphabet which is the
The methods describedL in [3] tend to create uniforniet of symbpls that. represent distinct _cgr_‘nponents of the
plant distributions. In reality, however, plants often aré’lam’ theaxiom which rep.resents thg |n|t|alistate 9f the
clustered Clustering also known aglumpingor under- modeled structure; and a list pfoductions which define
dispersion[?], is a common phenomenon, caused by ent-_he development of the plant’s_ com_pon_er_wts over steps of
vironmental factors (plants of the same type tend to cludime. The alphabet may be deflnedllmpllcnly, as the set of
ter in the areas favorable to their growth), propagatioﬁymbds that appear in the productions. The development

(seeds fall close to their parent plants, or plants prop:S’—f aplant is simulated in gsequ_encedafnvaﬂon _steps )
gate by runners), as well as other mechanisms. It had any step, each symbol is rewritten using the first appli-

a significant impact on the appearance of plant distrib2P'e pFOdUC“O_” on the "_St (o rewritte_n into itself if no
tions, which is why we are seeking to model it. production applies), yielding a new string. An extension

The effect of clustering can be quantified using sever&'c L-systemg callegpseudo-L-syster&l] .makes_|t pos-
statistical measures. We use thepkins indexs], which S'ble, to rewrite two or more symbols using a smglfa pro-
is defined as the average distance from arandomly chongC;'On: Anothglr extension, calle;pen L',SySteme' al, h
point to its nearest plant within a given region, divided by dels I; p|033| € :jo ﬁapture the interactions between the
the average distance from a randomly chosen plant to {f8°9€'€d P ants and their environment.

nearest plant: Multiset L-systems unify and extend to branching
structures two previously defined notions of the L-

- (min;(||x — pil])), system theory: developmental systems with finite axiom

~ (min;(||p, —Pz‘||)>j' sets [16] and L-systems with fragmentationl[17]. In mul-

tiset L-systems, the set of productions operates on a mul-
Distributions that are completely uncorrelated (‘random’Jiset of strings that represent many plants, rather than a
have anH value of 1. Distributions that are more dis-single string that represents an individual plant. New
persed than random (‘regular’) have &h value less strings can be dynamically added to or removed from this
than 1, and distributions that are clustered haveHan multiset, representing organisms that are added to or re-
value greater than 1. For example, Fig{ire 1 comparegoved from the population.
an overdispersed distribution with a Hopkins index of 0.4 Formally, a context-free non-parametric multiset L-
and a clustered distribution with a Hopkins index of 2.4.system is a four-tupl& = (V, %, 2, P) whereV is the



alphabet(a finite set of symbols)?% ¢ V is a reserved
fragmentation symbpK) C V™ is a finite set of words
overV called theaxiom andP C V x (V U {%})* is
a finite set ofproductions The alphabet’ may contain,
in particular, a pair of bracket§and], which are used to
delimit branches in théracketed stringhotation of tree
structures([13].

A derivation step in a multiset L-system consists of two
sub-steps. First, all words; in the predecessor multiset
are replaced by the intermediate successor wgrdsing
productions inP. The individual derivationg; — y; are
performed as in an ordinary L-system. Second, the words
y; that contain one or more fragmentation symbols % are
subdivided. In this process, symbol % acts as the markfgggure 2

of positions_ at which brancheg;, are cut off the treg;. self-thinning. Dark grey circles represent growing plants,
The remaining part of the trag and the cut off branches . ioh¢ grey circle represents a dominated plant, and

yir become the members of the successor multiset. e pjack circle represents a mature plant that no longer
For example, let us consider the multiset L-syster%rows_

specified below.

Diagrammatic representation of a model of

Alphabet:  {A,B,I,[,]1} 3.2 Self-thinning

Axiom: {A,B} As the first illustration of the concepts described above,

Productions: 1. A— I[B]JA let us consider a multiset L-system implementation of
2. B— B%A the individual-based self-thinning model outlined iin [3].

Self-thinning takes place among a group of plants of the
Starting with the axiom, the first two derivation stepssame species and age. As the plants grow and compete

yield the multisets listed in the Tabje 1. with each other for resources, smaller and weaker plants
becomedominatedby larger, stronger plants, and even-
step | intermediate multiset  final multiset tually die. The essence of this process can be captured
0 | {A/B} {A,B} using the set of rules shown in Figyie 2. The correspond-
1 | {I[B]JA, B%A } {I[BJA,B, A } ing L-systems is given below:
2 | {I[B%A]I[B]A, { I[B]I[BIA, A,
B%A, I[B]A } B, A I[BJA } Axiom: { T(Z,r1)?E(1),
T(Z2,r2)?E(1) ,
Table 1: Operation of a sample multiset L-system :I.'l(:é'n,rn)?E(l)}
Extensions of L-systems, such as pseudo-L-systems T@r)?EE) : c==0— ¢
and open L-systems, also apply to the multiset L-systems. T@r) ‘1> R— T(Z,R)
In particular, in the simulations of ecosystems we rely ex3. T(z,r)?E() — T(Z,r + grow(r, At))

tensively on thecommunication symbolRE, introduced
in [T0] as a part of the open L-system formalism. The Each plant is described by modulezT«) followed by
communication symbol is a vehicle for information ex-the communication module ?E(c). Vectdand number
change between plant models and their environment. sttrepresent position and size (shoot radius) of the plant.
can be associated with one or more parameters, whi¢tarametet is used for communication with the environ-
are set by the environmental program interfaced with theental process, which setso 1 if the plant is not domi-
L-system-based simulator. nated and to O if it is dominated. The environmental pro-
The plant models used in the ecosystem simulatiorcess considers each plant as a circle of a radjusnd
are extremely simplified, in order to accommodate a larggetermines which circles are intersecting. The smaller of
number of plants. We have used the L-system-basedhy pair of intersecting circles is considered dominated.
plant modeling softward.-studio/cpfg [I2], ex- The axiom introduces plants with random positions
tended with multiset capabilities, to both generate plarand sizes (the initial distribution of plants could also be
distributions and model the individual plants. generated algorithmically). The first production, guarded



o ° %a0® of 00 o ® .

...,%’.:n:,'s;,?._, S0 8% .’20.0. ® 0 ‘ o

e 500 ,2 $ R “ Qo g
@

...,.' 5o .
WEHREY: 00 90 @ @49

Figure 3: Three stages of simulation of the self-thinning process. Dark grey circles are growing plants, light grey
circles are dominated plants, and black circles are mature plants, as in Figure [.

by the conditionc == 0, removes any dominated plant In this model a plant is represented by the module
and its associated communication module from the pofd«(Z,r,sp). Parameterg andr denote the plant’s position
ulation. Production 2 stops the growth of a plant that haand radius, as in the previous model. Parameids the
reached its the maximum size. Finally, production 3 plant’s species identifier, either 1 or 2. Production 1 adds
increases the size of a plant that is neither dominated narnew plants of species 1 and new plants of species
mature. The user-defined function grewf\t) captures 2 to the population. The production predecessor X reap-
growth of a plant of radius over time intervalA¢. pears in the successor multiset, thus new plants are added

Figure[B shows three stages of a self-thinning proced3 every simulation step. Productions 2 and 3 remove a
simulated using this L-system. As the plant communitglominated plant with probability — shaded(splff. The
develops over time, dominated plants gradually disappe¥flue shadedp], called theshade tolerancef the plant,
and thin out the distribution. Sample visualizations oblS @ measure of how likely it is to survive in shadow.
tained by substituting realistic plant models for the indi- Productions 4 and 5 model the senescence of plants.
vidual circles are shown ini[3]. Once a plant has reached the radiyst survives with the
probability oldagefp]; a plant that does not survive dies
and is removed from the community. Production 6 uses
An extension to the previous L-system transforms it intgne growth function grow(sp,At) to simulate the growth
a model of interaction between two plant species: of plants that are neither dominated nor old, according to

their size and species.

3.3 Plant succession

Axiom: { X } With the right parameterization, this model cap-
tures the phenomenon afuccessionB]. If species
1. X— T(#r1,0)?ED) % 1 has a higher growth rate but lower shade tolerance
and old-age survivorship than species 2 (grohfit)
T(@, ., 1)?E(L) % > grow(r,2,At), shgqv;d[l]< shac!ed[z]{ oldage[1k
T(@s1,mms1,2)?E(L) % oldage[2]), then an initially empty field will be populated
in stages. First, the field will be dominated by species
T@ oo 2) ?E(L) % X 1. As the largest members of species 1 die, smaller
members of species 2, which have survived due to their
2. T@rsp) > ?E(C): c==08&& greater shade tolgrance and now ha\{e a sjze advantage
random(1)< shaded§p] — T(Z.r.sp) over young seeo_lllngs pf species 1, will fill in the gaps.
3. T(@rsp) ?E(C) : == 0 ¢ Eventually, the field will be dominated by members of
species 2. A straightforward extension of this model to
4. T(@rsp):r> R && random(1)< oldagefy] three plant species is illustrated in Figlire 4.
— T(f,R,Sp)

. r r> o ) )
5 T@rsp):irzR—e 1 Recall that the production list is ordered, thus the string rewrit-

ing mechanism will first attempt to apply production 2, and only use
6. T(@r,sp) — T(Zr+grow(,sp, At),sp) production 3 if the condition of production 2 is not satisfied.



Figure 4: Four stages of ecosystem simulation using the plant succession model. Left: results of coarse-level simula-
tion, using pink circles to indicate position of herbaceous plants (fireweed), orange circles to indicate positions of the
early-succession deciduous trees, and green circles to indicate positions of the late-succession coniferous trees. Right:
synthetic images obtained by placing tree models at the locations generated by the coarse-level simulation.



3.4 Plant propagation species. For example, the Hopkins indices of species 1

The evaluation of the Hopkins index for the distributionst the three stages shown are equal to 1.1, 4.2, and 11,

shown in Figurg]3 yields values df equal to 0.8, 0.4, respectively.

and 0.4, respectively. Similarly, the evaluation of the ] -

Hopkins index for the distributions in FiguFe 4 results in*  Global-to-local modeling of plant communities

H values of 0.6, 0.7, 0.7, and 0.6. This shows that thé.1 The deformation-kernel method

competition for space leads to overdispersed plant distrFhe effect one plant in the self-thinning model (Sec-

butions. tion 32) has on the probability of finding another plant
We can see why this is the case. If any two plants spearby is shown diagramatically in Figue 6. Within the

much as touch each other, one of them will become donneference plant radiug;, the probability of finding an-

inated. In our self-thinning model, the dominated planbther plant is very small; outside that radius, the proba-

immediately dies; in the succession model, it dies witlpility is not affected by the reference plant.

some probability per derivation step. In either case, the The functionk shown in Figurd]6 is an example of

competition for space drives the plants apart, and there dsdeformation kernel If we suppose there is a field of

no opposite mechanism encouraging plants to cluster. values that characterizes the probability of placing a new
One clustering mechanism observed in nature is locplant at various locations, the deformation kernel cap-

propagation. We can capture it, for instance, by ‘sowingfures the impact of an existing plant on this field. Var-

new plants near the parent plants of the same species, iBus interactions between plants can be described using

stead of making them appear at random throughout thieformation kernels of different shapes, as suggested in

field. The resulting alteration of the succession model igigure[y.

given below. A simple plant placement algorithm can now be de-
) veloped using this deformation kernel idea. We maintain
Axiom: { T(z1,r1,1)?E(1) a joint probability density functiofs] f(z,y), which
e characterizes the probability(z, y)dzdy of placing a
T(Zn,rn,1)?EQ) , new plant in the aredxdy centered at pointz,y). The
T(Znt1.m041,2)?E(1) plants are placed one at a time; as each is placed, its de-
e formation kernel modifies the probability functighnthat
T(ZptmTn+m,2)?E(1)} will be used to determine the position of the next plant.
In this manner, a distribution of plants will eventually be
1. T@r,sp)>7?E(C):c==08&& formed.
random(1)< shadedfp] — T(Z'\r,sp) Formally, the joint density functiorf defines a proba-
2. T(@rsp)?E(C):c==0-¢ bility field, where the probability of a new plant growing
B in the rectanglé0, z;] x [0, ys], wWith 0 < 2, < x4, and
3. T@wrsp):r > R &&random(1)> oldagepp] 0 < ¥s < Ymaas IS given by the cumulative probability
— T(Z,R,sp) distribution function

4. T@rsp):r>R—e¢

5. T@r,sp) ?E(c)— T(Z,r + grow(sp,r,At),sp) ?E(c) F(zs,ys) = Plo <5,y <ys}
% T(X + AZ,rg,sp) ?E(C) Ts rYs
/ f(z,y) dz dy.
0 0

The axiom defines the initial state of the model by plac-
ing n plants of species 1 andgh plants of species 2 at o)
random n the field. The_ subsequent productions are t_rfﬁe whole field is one, thus the density function must sat-
same as in the succession model, except for producti Q‘ythe normalizing equation
5. According to it, a plant that is not dominated creates a
new plant at positior¥ + AZ, whereAZ is a small ran-
dom vector. Since the new plant is in close proximity to /ra/ydc Fay) dody = 1

0 0

bviously, the probability that the plant will be found in

@)

its parent, this propagation mechanism encourages clus-
tering in the distribution.

Figure [§ illustrates the operation of this model. At We find the positioriz;, y;) of the plant to be added by
the beginning, plants are randomly distributed. Agalculating first itsy, then itsxz coordinate. To this end,
the ecosystem develops, the two species become spa@ven the two-dimensional density functigiiz, y), we
tially segregated, creating large clusters of plants of eaaheate themarginal distribution functionFy (y,). That
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Figure 5:

Three stages of ecosystem development simulated using the plant propagation model. Left: results of coarse-

level simulation, using orange circles to indicate positions of poplar trees and green circles to indicate positions of
spruce trees. Right: synthetic images obtained by placing tree models at the locations generated by the coarse-level

simulation.

distribution function describes the probability that <
ys independently of the choice af f :

FY(ys) - P{xt < Tmax, Yt < ys} = F(xmazays)~

We choose thg; coordinate for the plant using the-
verse transformation methdds]. To this end, we gen-
erate a random numberfrom the uniform distribution
on [0,1]. We then perform a binary search &k (y) to

2There is a corresponding marginal distribution functigg (),
which describes the probability that < z,, independent of what is
chosen fory;.

find the valuey, such thatF’y (y;) = u. As Fy is mono-
tone and continuougy, exists and is unique. This is our
plant’sy coordinate.

Once we have chosep, we calculate theonditional
distribution F'x|y (x | v:), which describes the probabil-
ity thatx, < x, for a given ay valuey;,:

Oﬂis f(xa yt) dx
foxmaz f(xa yt) dx

We then apply the inverse transformation method to find
coordinater;, given Fx|y (zs | yz).

Fxyy(@s |yr) = Play < as [y} =




We determine the coordinatg of the newly placed plant
using the inverse transformation method. To this end, we
pick a random number from the uniform distribution
K on the interval0, R,,—1], then perform a binary search to
locateR; such thatR; < u < R;41. We then linearly in-
terpolate betwee(, R;) and(i+1, R;4+1) to find (y:, u).
X Now a vectorC of values representing the conditional
X, Xt distribution Fiy|y (x5 | y:) is computed by interpolating
rows: andi + 1 of the arrayf;;.

Y

Figure 6: The effect of a reference plant on the probabil-

ity of finding neighboring plants . k ] k
Cr = (yo — 1) Zf(i+1)j +((i+1) = yo) Zfija
j=0

=0
a. b. C. d.
Given the values’,, £k = 0,1,...,n — 1, we choose a
’ , , , value from the uniform random distribution on the inter-
val [0, C,,_1], and use the inverse transformation method
TN

—\_ /"~ tofindz,.
= The kernel is applied by simply calculating the dis-

tanced of every sampling point, j) from (x¢, y:), then
Figure 7: Examples of deformation kernels: a) kernel that  multiplying the valuef;; of the distribution functiory at
has no effect on the neighboring plants, b) kernel that has  that point by/f(r—dt),

a promotional effect, c) kernel that has an inhibitory ef- If there arem plants to be placed and the functign
fect, d) kernel that has an inhibitory short-range effect is represented using? values fi;j» the above algorithm
and promotional longer-range effect. will take O(mn?) time to run, since the sumg; must

be recalculated each time a new plant is placed. We im-
prove on this result by updating the arrRyincremen-

Having placed a plant of size at position (s, y:), o1 \When a kernel is applied to the distribution, the dif-
we now deform the probability density functigi{x, y) ferences betweeyi, andx( ) f,; are summed for each

in order to simulate the effects of that plant on the place-. ~, ~ . . e )
ment of nearby plants. To this end wz first muItipIF))/ the(z,]) within the range of the plant, and the differences are

. ; . : ~ “applied to the arrajr. Assuming that the kernel is only
zgggr?'lgte{r?:&s(gygnc“mf(x’y) by the plant's defor applied to a small fraction of the cells in the grid, this

operation can be performed @(n) time per plant.
Fremp(,y) = fz,9)K (2, y), The operation of the kernel method is illustrated in Fig-
ure[@. The deformation kernel is that of Figdife 7d. The
then renormalize the functiorfie,,,(z,y) to satisfy initial distribution is uniform;f(z,y) = c. In the mid-
Equation[]L. The deformation kernel typically is a func-dle, a single plant has been added to the field; the density

tion of the form function has been altered in the plant’s neighborhood. On
. . the bottom, four more plants have been added; the density

K(z,y) = (\/(l’ —2)*+ (Y —wr) ) ’ function has been modified near each of them.
Tt Figure[® shows point patterns generated using this al-

) ~_gorithm with different deformation kernels. The Hopkins
where the function(r) measures the effect a unit-sizedingices of these patterns are 0.4, 1.0, 1.2, and 2.4, con-
plant has on the formation of plants at a distand®m  firming the visual observation that the kernel method is
It _ . _capable of creating a range of distributions, from overdis-

An obvious way to implement the above concepts iBersed to random and clustered.
to represgnt values of the probability density function |, Figure[ID points have been replaced by simple mod-
f(z,y) using ann by n array of samplesi;. To cal-  g|s of daisies, created using an L-system. The overdis-
culate position of a new plant, we create a ved®of  ersed pattern at the top of Figure 10 looks less realistic
partial sums of the rows, where than the clustered pattern at the bottom, which justifies
b the introduction of clustering into the model.
Ry = Z fijy k=0,1,...,n—1. The distrib.ut_ic.m; .shown in Figu@lo havg been gen-
=0 erated after initializing the probability density function

i

j=



Figure 8: An example of the deformation kernel algo-
rithm, using the kernel of Figure [{d. Left: the plant dis-
tribution. Right: the joint probability density function f.
From top to bottom: the initial state, the state after plac-
ing the first plant, and the state after placing four more
plants.

a b. d d
’ , , , Figure 10: Point patterns corresponding to Figures Qa
and [Qc, rendered as fields of daisies.

Figure 9: Some kernels and the point patterns they gener-
ate. The kernels are drawn at a larger scale than the point
patterns.

f to a constant value. If, instead, we initialiZeto a
user-defined field (with a paint program, for example)
we can generate spatial distributions of plants that co
form to this field, as shown in Figufe]11.

This result improves on the methodolo describeFigure 11: Plant distributions created from the user-
P ay efined density map, shown at the top. The Hopkins in-

in [B], which allowed for the application of a user- N _ .
specified density map, but did not make it possible yJex values are H ~ 1.2 (left) and H ~ 1.9 (right).

control the degree of plant clustering.



Number of Time take

J\J’\— s Fig. different | primitives | distribution
plants | plants | (millions) | generatio plants | rendering

M = i
- Ha| 2688 20 34 9sec30sed 8min
N/ YA b| 1593 20 18 72sed27sed 8 min
c| 1409 20 30 2min|30sed 9min
d| 834 20 78 3min|40seq 11 min
) ) Ba| 5584 24 141 2min|[30sed 15 min
F1guFe 12: The concept of the kernel matrix M for two b| 5526 24 147 22 minl 30 sed 14 min
species c| 3427 24 100 44 min| 30 sed 12 min
10| 100 8 1.5 0.05se¢ 2secd 2min
14| 1599 36 147 0.5seg65sed 11 min

4.2 Extensions
The kernel-based method can be extended to include in- ? Times recorded on a 733 MHz Pentium Iil processor.

formation about the plants’ sizes, as well as to model the ® For Figured4 and 5, the times given show how long the simulation

. . . took to reach the given frame.

interaction of several species.

Size information is taken into account by placing Taple 2: Statistics pertinent to Figures @, B, [[0, and [3
plants in order of size, largest first. Larger, older plants
then affect the positioning of smaller, younger plants, as
it is to be expected. The actual sizes may be drawn frofgsulting kernel deformation method can produce plant
a distribution that gives few large plants, more plants ofiistributions with a wide range of clustering values, from
medium size, and still more small plants. overdispersed to random to highly clustered. We have il-

Plants of species 1 may have a different effect on othéstrated the use of this method using several models of
plants of species 1 than they do on plants of species plant communities.

Different kernels are thus required to capture these ef- Both methods make it possible to generate plant

fects. In fact, for two species, the total of four kernels i€cosystems at the speeds required for their practical ap-
required: one for the effects species 1 has on itself, orfications to realistic image synthesis. Statistics pertinent
for the effects species 1 has on species 2, one for the & the scenes included in this paper are given in Tgble 2.

fects species 2 has on species 1, and one for the effectdVe believe that the proposed methods can be applied
species 2 has on itself. This leads, in the general case,tomodel diverse plant ecosystems and have various prac-
akernel matrix\/ (Figure[IR), which defines the effectstical applications, such as scene dressing for computer
that each species has on itself and on each other speci@gimation purposes, and visual impact analysis of tree

In an extension of the kernel placement methodito cutting and regrowth on the landscape. The realism of
species, we keep track efdifferent probability density the resulting scenes can be further improved using more
functionsf;. As plants are placed, each probability denaccurate models of the underlying biological processes,
sity function is deformed by the relevant kernel; thus if &2nd more sophisticated rendering methods.
plant of specieg is placed, each functiofi is deformed
by kernelM; ;, wherei = 1,2,...,n. This process is
illustrated in Figuré13.

A sample application of the above method is presented we thank Martin Fuhrer for the model of fireweed used
in Figure@. The mOdeling of trees incorporated in th|$n Figure Bll Lars Mindermann for the model of grass
scenes was discussed in[14]. used in Figure§10 an@]11, and the referees for their
insightful comments. We acknowledge Radoslaw Kar-
wowski and Radomir Mch for the development of the
We formalized and extended the methods for deﬁrt_studiolcpfg p|ant mode”ng Software, and Craig
ing plant distributions that had originally been proposegolp for the development of theayshade ray tracer,
in [B]. To this end, we introduced multiset L-systems, afyhich we used to render the scenes. The partial support
extension of the L-system formalism, to model groups off this research by grants from the Natural Sciences and

plants, rather than single plants alone. We then appligthgineering Research Council of Canada is also grate-
these L-systems to simulate the essence of self-thinningyly acknowledged.

succession, and clustering of plants in an ecosystem.
We also improved the interactive techniques for gener-

ating plant distributions, making is possible to specify not

only global densities, but also levels of clustering. The

Acknowledgments

5 Conclusions



Figure 13: Generation of a two-species distribution using the deformation kernel algorithm with the kernel matrix
shown in Figure [[2. On the left, the probability density function of species 1; on the right, that of species 2. From top
to bottom: the state of the system after placing the first plant of species 1, after placing the first plant of species 2, and
after placing several plants of each species.

Figure 14: A forest model consisting of four species of trees. Left: distribution of plants. Right: realistic visualization
of the model.
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