
Generating Spatial Distributions for Multilevel Models of Plant
Communities

Brendan Lane Przemyslaw Prusinkiewicz

Department of Computer Science
University of Calgary

laneb| pwp @ cpsc.ucalgary.ca

Abstract
The simulation and visualization of large groups of

plants has many applications. The extreme visual com-
plexity of the resulting scenes can be captured using mul-
tilevel models. For example, in two-level models, plant
distributions may be determined using coarse plant rep-
resentations, and realistic visualizations may be obtained
by substituting detailed plant models for the coarse ones.
In this paper, we focus on the coarse aspect of model-
ing, the specification of plant distribution. We consider
two classes of models: local-to-global models, rooted
in the individual-based ecosystem simulations, and in-
verse, global-to-local models, in which positions of in-
dividual plants are inferred from a given distribution of
plant densities. We extend previous results obtained us-
ing both classes of models with additional phenomena,
including clustering and succession of plants. We also
introduce the formalism of multiset L-systems to formal-
ize the individual-based simulation models.

Key words: realistic image synthesis, multilevel model-
ing, plant ecosystem, spatial distribution, clustering, suc-
cession, multiset L-system

1 Introduction

The simulation and visualization of plant ecosystems has
many theoretical and practical applications. They include
fundamental research in ecology, visual impact analysis
of forestry practices, and synthesis of complex scenery
for computer animations, among others. The inherent
complexity of the scenes resulting from the ecosystem
simulations can be managed using the multilevel ap-
proach to modeling [3]. Rather than model the entire
ecosystem at the detailed level of plant organs, such as
leaves, flowers, apices, and internodes [13], the multi-
level approach employs a hierarchy of models. For ex-
ample, in the simplest, two-level case, a high-level model
determines the distribution of the plants, and lower-level
models determine the plants’ shapes. The models are
coupled so that information created at a higher level can
affect the outcome of the model at the lower level.

In this paper, we focus on the generation of the spatial
distribution of plants. Specifically, we extend the meth-
ods reported in [3] with the ecologically and visually im-
portant phenomena of clustering and succession of plants.
We also introduce the formalism ofmultiset L-systemsto
formalize some of these models.

Previous work on multilevel modeling of plant ecosys-
tems is summarized in Section 2. Following the approach
introduced there, we distinguish thelocal-to-globalap-
proach, in which the distribution of plant densities is
determined by a simulation of interactions between the
individual plants, and theglobal-to-local approach, in
which positions of individual plants are inferred from
given large-scale density distributions. In Section 3.1,
we introduce multiset L-systems as an extension of the
L-system modeling framework. This extension allows
us to use L-systems, long an individual plant modeling
paradigm, to express local-to-global algorithms for gen-
erating plant distributions as well. Sample applications of
multiset L-systems are given in Sections 3.2 to 3.4. The
concept and examples of the global-to-local modeling of
plant distribution are presented in Section 4, which ex-
tends preliminary results reported in [7]. Conclusions are
presented in Section 5.

2 Previous work

Multilevel modeling of plant communities for image syn-
thesis purposes was introduced in [3], although related
techniques had been used earlier,e.g.[1]. The main con-
cept was to consider the generation of a plant ecosystem
as a hierarchy of tasks: specification of the terrain, gener-
ation of plant distribution using coarse plant models, syn-
thesis of detailed plant models as needed to populate the
scene, and the rendering of the final scene using instances
of these detailed models.

Two different methods were used in [3] to create
plant distributions. The first one was an individual-
based ecosystem simulation, based on a model of Fir-
bank and Watkinson [4]. Following that model, simulated
plants were placed in the field at random, then iteratively

‘grown’, and ‘killed’ when dominated by larger plants.
The resulting distribution fit theself-thinning curveof
plant ecology [8], a relationship between the average
mass and average density in a monoculture of plants of
the same age. The individual-based approach was also
used in [3] to produce a hierarchy (distribution) of plant
sizes (c.f. [8]), similar to that observed in nature.

The second method was intended to allow more user
control in defining the local density of plants. The input
was a greyscale image representing a map of the density
of plants throughout the field. The Floyd-Steinberg error
diffusion algorithm [5] was used to create the positions
of individual plants conforming to these densities. The
points produced by this algorithm were slightly jittered
to make the distribution appear more random.

These two methods exemplify two different ap-
proaches to ecological modeling. The individual-based
simulation is representative of the local-to-global ap-
proach. It is characterized by the emergence of global
features from the local interactions of individual plants.
In contrast, the error diffusion method is an example of
the inverse, global-to-local approach, in which local char-
acteristics are derived from global properties of the dis-
tribution. This distinction is similar to the distinction be-
tween local-to-global and global-to-local methods used
to model individual plants [14].

The methods described in [3] tend to create uniform
plant distributions. In reality, however, plants often are
clustered.Clustering, also known asclumpingor under-
dispersion[2], is a common phenomenon, caused by en-
vironmental factors (plants of the same type tend to clus-
ter in the areas favorable to their growth), propagation
(seeds fall close to their parent plants, or plants propa-
gate by runners), as well as other mechanisms. It has
a significant impact on the appearance of plant distribu-
tions, which is why we are seeking to model it.

The effect of clustering can be quantified using several
statistical measures. We use theHopkins index[6], which
is defined as the average distance from a randomly chosen
point to its nearest plant within a given region, divided by
the average distance from a randomly chosen plant to its
nearest plant:

H =
〈mini(‖x− pi‖)〉x
〈mini(‖pj − pi‖)〉j

.

Distributions that are completely uncorrelated (‘random’)
have anH value of 1. Distributions that are more dis-
persed than random (‘regular’) have anH value less
than 1, and distributions that are clustered have anH
value greater than 1. For example, Figure 1 compares
an overdispersed distribution with a Hopkins index of 0.4
and a clustered distribution with a Hopkins index of 2.4.

Figure 1: The effect of clustering on plant distribution.
Left: an overdispersed distribution with H = 0.4. Right:
a clustered distribution with H = 2.4.

3 Local-to-global modeling of plant distribution

3.1 Multiset L-systems
We model the individual plants using L-systems [13] and
a related technique based on Chomsky grammars [14]. In
addition, we extend the L-system formalism to generate
plant distributions using the local-to-global approach. To
this end, we introduce the notion ofmultiset L-systems.

An L-system model generates plants represented as
strings of symbols [9] with optional parameters [13].
These strings define both the topology and the geome-
try of the resulting structures. An L-system specification
consists of three components: thealphabet, which is the
set of symbols that represent distinct components of the
plant; theaxiom, which represents the initial state of the
modeled structure; and a list ofproductions, which define
the development of the plant’s components over steps of
time. The alphabet may be defined implicitly, as the set of
symbols that appear in the productions. The development
of a plant is simulated in a sequence ofderivation steps.
In any step, each symbol is rewritten using the first appli-
cable production on the list (or rewritten into itself if no
production applies), yielding a new string. An extension
of L-systems calledpseudo-L-systems[11] makes it pos-
sible to rewrite two or more symbols using a single pro-
duction. Another extension, calledopen L-systems[10],
makes is possible to capture the interactions between the
modeled plants and their environment.

Multiset L-systems unify and extend to branching
structures two previously defined notions of the L-
system theory: developmental systems with finite axiom
sets [16] and L-systems with fragmentation [17]. In mul-
tiset L-systems, the set of productions operates on a mul-
tiset of strings that represent many plants, rather than a
single string that represents an individual plant. New
strings can be dynamically added to or removed from this
multiset, representing organisms that are added to or re-
moved from the population.

Formally, a context-free non-parametric multiset L-
system is a four-tupleG = 〈V,%,Ω, P 〉 whereV is the

alphabet(a finite set of symbols),% 6∈ V is a reserved
fragmentation symbol, Ω ⊂ V ? is a finite set of words
overV called theaxiom, andP ⊂ V × (V ∪ {%})? is
a finite set ofproductions. The alphabetV may contain,
in particular, a pair of brackets,[and], which are used to
delimit branches in thebracketed stringnotation of tree
structures [13].

A derivation step in a multiset L-system consists of two
sub-steps. First, all wordsxi in the predecessor multiset
are replaced by the intermediate successor wordsyi using
productions inP . The individual derivationsxi → yi are
performed as in an ordinary L-system. Second, the words
yi that contain one or more fragmentation symbols % are
subdivided. In this process, symbol % acts as the marker
of positions at which branchesyik are cut off the treeyi.
The remaining part of the treeyi and the cut off branches
yik become the members of the successor multiset.

For example, let us consider the multiset L-system
specified below.

Alphabet: {A, B, I, [,] }
Axiom: { A, B }
Productions: 1. A→ I[B]A

2. B→ B%A

Starting with the axiom, the first two derivation steps
yield the multisets listed in the Table 1.

step intermediate multiset final multiset
0 {A, B} { A, B }
1 { I[B]A, B%A } {I[B]A, B, A }
2 {I[B%A]I[B]A, { I[B]I[B]A, A,

B%A, I[B]A } B, A, I[B]A }

Table 1: Operation of a sample multiset L-system

Extensions of L-systems, such as pseudo-L-systems
and open L-systems, also apply to the multiset L-systems.
In particular, in the simulations of ecosystems we rely ex-
tensively on thecommunication symbols?E, introduced
in [10] as a part of the open L-system formalism. The
communication symbol is a vehicle for information ex-
change between plant models and their environment. It
can be associated with one or more parameters, which
are set by the environmental program interfaced with the
L-system-based simulator.

The plant models used in the ecosystem simulations
are extremely simplified, in order to accommodate a large
number of plants. We have used the L-system-based
plant modeling softwareL-studio/cpfg [12], ex-
tended with multiset capabilities, to both generate plant
distributions and model the individual plants.

Figure 2: Diagrammatic representation of a model of
self-thinning. Dark grey circles represent growing plants,
the light grey circle represents a dominated plant, and
the black circle represents a mature plant that no longer
grows.

3.2 Self-thinning
As the first illustration of the concepts described above,
let us consider a multiset L-system implementation of
the individual-based self-thinning model outlined in [3].
Self-thinning takes place among a group of plants of the
same species and age. As the plants grow and compete
with each other for resources, smaller and weaker plants
becomedominatedby larger, stronger plants, and even-
tually die. The essence of this process can be captured
using the set of rules shown in Figure 2. The correspond-
ing L-systems is given below:

Axiom: { T(~x1,r1)?E(1) ,
T(~x2,r2)?E(1) ,
... ,
T(~xn,rn)?E(1)}

1. T(~x,r)?E(c) : c == 0→ ε
2. T(~x,r) : r ≥ R→ T(~x,R)
3. T(~x,r)?E(c) → T(~x,r + grow(r,∆t))

Each plant is described by module T(~x,r) followed by
the communication module ?E(c). Vector~x and number
r represent position and size (shoot radius) of the plant.
Parameterc is used for communication with the environ-
mental process, which setsc to 1 if the plant is not domi-
nated and to 0 if it is dominated. The environmental pro-
cess considers each plant as a circle of a radiusr, and
determines which circles are intersecting. The smaller of
any pair of intersecting circles is considered dominated.

The axiom introducesn plants with random positions
and sizes (the initial distribution of plants could also be
generated algorithmically). The first production, guarded

Figure 3: Three stages of simulation of the self-thinning process. Dark grey circles are growing plants, light grey
circles are dominated plants, and black circles are mature plants, as in Figure 2.

by the conditionc == 0, removes any dominated plant
and its associated communication module from the pop-
ulation. Production 2 stops the growth of a plant that has
reached its the maximum sizeR. Finally, production 3
increases the size of a plant that is neither dominated nor
mature. The user-defined function grow(r,∆t) captures
growth of a plant of radiusr over time interval∆t.

Figure 3 shows three stages of a self-thinning process
simulated using this L-system. As the plant community
develops over time, dominated plants gradually disappear
and thin out the distribution. Sample visualizations ob-
tained by substituting realistic plant models for the indi-
vidual circles are shown in [3].

3.3 Plant succession

An extension to the previous L-system transforms it into
a model of interaction between two plant species:

Axiom: { X }

1. X→ T(~x1,r1,1)?E(1) %
· · ·
T(~xn,rn,1)?E(1) %
T(~xn+1,rn+1,2)?E(1) %
· · ·
T(~xn+m,rn+m,2)?E(1) % X

2. T(~x,r,sp) > ?E(c) : c == 0 &&
random(1)< shaded[sp] → T(~x,r,sp)

3. T(~x,r,sp) ?E(c) : c == 0→ ε

4. T(~x,r,sp) : r ≥ R && random(1)< oldage[sp]
→ T(~x,R,sp)

5. T(~x,r,sp) : r ≥ R→ ε

6. T(~x,r,sp)→ T(~x,r + grow(r,sp, ∆t),sp)

In this model a plant is represented by the module
T(~x,r,sp). Parameters~x andr denote the plant’s position
and radius, as in the previous model. Parametersp is the
plant’s species identifier, either 1 or 2. Production 1 adds
n new plants of species 1 andm new plants of species
2 to the population. The production predecessor X reap-
pears in the successor multiset, thus new plants are added
in every simulation step. Productions 2 and 3 remove a
dominated plant with probability1 − shaded[sp]1. The
value shaded[sp], called theshade toleranceof the plant,
is a measure of how likely it is to survive in shadow.

Productions 4 and 5 model the senescence of plants.
Once a plant has reached the radiusR, it survives with the
probability oldage[sp]; a plant that does not survive dies
and is removed from the community. Production 6 uses
the growth function grow(r,sp,∆t) to simulate the growth
of plants that are neither dominated nor old, according to
their size and species.

With the right parameterization, this model cap-
tures the phenomenon ofsuccession[8]. If species
1 has a higher growth rate but lower shade tolerance
and old-age survivorship than species 2 (grow(r,1∆t)
> grow(r,2,∆t), shaded[1]< shaded[2], oldage[1]<
oldage[2]), then an initially empty field will be populated
in stages. First, the field will be dominated by species
1. As the largest members of species 1 die, smaller
members of species 2, which have survived due to their
greater shade tolerance and now have a size advantage
over young seedlings of species 1, will fill in the gaps.
Eventually, the field will be dominated by members of
species 2. A straightforward extension of this model to
three plant species is illustrated in Figure 4.

1 Recall that the production list is ordered, thus the string rewrit-
ing mechanism will first attempt to apply production 2, and only use
production 3 if the condition of production 2 is not satisfied.

Figure 4: Four stages of ecosystem simulation using the plant succession model. Left: results of coarse-level simula-
tion, using pink circles to indicate position of herbaceous plants (fireweed), orange circles to indicate positions of the
early-succession deciduous trees, and green circles to indicate positions of the late-succession coniferous trees. Right:
synthetic images obtained by placing tree models at the locations generated by the coarse-level simulation.

3.4 Plant propagation
The evaluation of the Hopkins index for the distributions
shown in Figure 3 yields values ofH equal to 0.8, 0.4,
and 0.4, respectively. Similarly, the evaluation of the
Hopkins index for the distributions in Figure 4 results in
H values of 0.6, 0.7, 0.7, and 0.6. This shows that the
competition for space leads to overdispersed plant distri-
butions.

We can see why this is the case. If any two plants so
much as touch each other, one of them will become dom-
inated. In our self-thinning model, the dominated plant
immediately dies; in the succession model, it dies with
some probability per derivation step. In either case, the
competition for space drives the plants apart, and there is
no opposite mechanism encouraging plants to cluster.

One clustering mechanism observed in nature is local
propagation. We can capture it, for instance, by ‘sowing’
new plants near the parent plants of the same species, in-
stead of making them appear at random throughout the
field. The resulting alteration of the succession model is
given below.

Axiom: { T(~x1,r1,1)?E(1) ,
... ,
T(~xn,rn,1)?E(1) ,
T(~xn+1,rn+1,2)?E(1) ,
... ,
T(~xn+m,rn+m,2)?E(1)}

1. T(~x,r,sp) > ?E(c) : c == 0 &&
random(1)< shaded[sp] → T(~x,r,sp)

2. T(~x,r,sp) ?E(c) : c == 0→ ε

3. T(~x,r,sp) : r ≥ R && random(1)> oldage[sp]
→ T(~x,R,sp)

4. T(~x,r,sp) : r ≥ R→ ε

5. T(~x,r,sp) ?E(c)→ T(~x,r + grow(sp,r,∆t),sp) ?E(c)
% T(~x+ ∆~x,r0,sp) ?E(c)

The axiom defines the initial state of the model by plac-
ing n plants of species 1 andm plants of species 2 at
random in the field. The subsequent productions are the
same as in the succession model, except for production
5. According to it, a plant that is not dominated creates a
new plant at position~x + ∆~x, where∆~x is a small ran-
dom vector. Since the new plant is in close proximity to
its parent, this propagation mechanism encourages clus-
tering in the distribution.

Figure 5 illustrates the operation of this model. At
the beginning, plants are randomly distributed. As
the ecosystem develops, the two species become spa-
tially segregated, creating large clusters of plants of each

species. For example, the Hopkins indices of species 1
at the three stages shown are equal to 1.1, 4.2, and 11,
respectively.

4 Global-to-local modeling of plant communities

4.1 The deformation-kernel method
The effect one plant in the self-thinning model (Sec-
tion 3.2) has on the probability of finding another plant
nearby is shown diagramatically in Figure 6. Within the
reference plant radiusrt, the probability of finding an-
other plant is very small; outside that radius, the proba-
bility is not affected by the reference plant.

The functionK shown in Figure 6 is an example of
a deformation kernel. If we suppose there is a field of
values that characterizes the probability of placing a new
plant at various locations, the deformation kernel cap-
tures the impact of an existing plant on this field. Var-
ious interactions between plants can be described using
deformation kernels of different shapes, as suggested in
Figure 7.

A simple plant placement algorithm can now be de-
veloped using this deformation kernel idea. We maintain
a joint probability density function[15] f(x, y), which
characterizes the probabilityf(x, y)dxdy of placing a
new plant in the areadxdy centered at point(x, y). The
plants are placed one at a time; as each is placed, its de-
formation kernel modifies the probability functionf that
will be used to determine the position of the next plant.
In this manner, a distribution of plants will eventually be
formed.

Formally, the joint density functionf defines a proba-
bility field, where the probability of a new plant growing
in the rectangle[0, xs]× [0, ys], with 0 ≤ xs ≤ xmax and
0 ≤ ys ≤ ymax, is given by the cumulative probability
distribution function

F (xs, ys) = P{xt ≤ xs, yt ≤ ys}

=
∫ xs

0

∫ ys

0

f(x, y) dx dy.

Obviously, the probability that the plant will be found in
the whole field is one, thus the density function must sat-
isfy the normalizing equation

∫ xmax

0

∫ ymax

0

f(x, y) dx dy = 1. (1)

We find the position(xt, yt) of the plant to be added by
calculating first itsy, then itsx coordinate. To this end,
given the two-dimensional density functionf(x, y), we
create themarginal distribution functionFY (ys). That

Figure 5: Three stages of ecosystem development simulated using the plant propagation model. Left: results of coarse-
level simulation, using orange circles to indicate positions of poplar trees and green circles to indicate positions of
spruce trees. Right: synthetic images obtained by placing tree models at the locations generated by the coarse-level
simulation.

distribution function describes the probability thatyt ≤
ys independently of the choice ofxt 2 :

FY (ys) = P{xt ≤ xmax, yt ≤ ys} = F (xmax, ys).

We choose theyt coordinate for the plant using thein-
verse transformation method[15]. To this end, we gen-
erate a random numberu from the uniform distribution
on [0, 1]. We then perform a binary search onFY (y) to

2There is a corresponding marginal distribution functionFX(xs),
which describes the probability thatxt ≤ xs, independent of what is
chosen foryt.

find the valueyt such thatFY (yt) = u. AsFY is mono-
tone and continuous,yt exists and is unique. This is our
plant’sy coordinate.

Once we have chosenyt, we calculate theconditional
distributionFX|Y (xs | yt), which describes the probabil-
ity thatxt ≤ xs for a given ay valueyt:

FX|Y (xs | yt) = P{xt ≤ xs | yt} =

∫ xs
0
f(x, yt) dx∫ xmax

0
f(x, yt) dx

.

We then apply the inverse transformation method to find
coordinatext, givenFX|Y (xs | yt).

x

K

rtxt+xt

Figure 6: The effect of a reference plant on the probabil-
ity of finding neighboring plants

Figure 7: Examples of deformation kernels: a) kernel that
has no effect on the neighboring plants, b) kernel that has
a promotional effect, c) kernel that has an inhibitory ef-
fect, d) kernel that has an inhibitory short-range effect
and promotional longer-range effect.

Having placed a plant of sizert at position(xt, yt),
we now deform the probability density functionf(x, y)
in order to simulate the effects of that plant on the place-
ment of nearby plants. To this end, we first multiply the
probability density functionf(x, y) by the plant’s defor-
mation kernelK(x, y),

ftemp(x, y) = f(x, y)K(x, y),

then renormalize the functionftemp(x, y) to satisfy
Equation 1. The deformation kernel typically is a func-
tion of the form

K(x, y) = κ

(√
(x− xt)2 + (y − yt)2

rt

)
,

where the functionκ(r) measures the effect a unit-sized
plant has on the formation of plants at a distancer from
it.

An obvious way to implement the above concepts is
to represent values of the probability density function
f(x, y) using ann by n array of samplesfij . To cal-
culate position of a new plant, we create a vectorR of
partial sums of the rows, where

Rk =
k∑
i=0

n−1∑
j=0

fij , k = 0, 1, . . . , n− 1.

We determine the coordinateyt of the newly placed plant
using the inverse transformation method. To this end, we
pick a random numberu from the uniform distribution
on the interval[0, Rn−1], then perform a binary search to
locateRi such thatRi ≤ u < Ri+1. We then linearly in-
terpolate between(i, Ri) and(i+1, Ri+1) to find(yt, u).

Now a vectorC of values representing the conditional
distributionFX|Y (xs | yt) is computed by interpolating
rowsi andi+ 1 of the arrayfij .

Ck = (y0 − i)
k∑
j=0

f(i+1)j + ((i+ 1)− y0)
k∑
j=0

fij ,

Given the valuesCk, k = 0, 1, . . . , n − 1, we choose a
value from the uniform random distribution on the inter-
val [0, Cn−1], and use the inverse transformation method
to findxt.

The kernel is applied by simply calculating the dis-
tanced of every sampling point(i, j) from (xt, yt), then
multiplying the valuefij of the distribution functionf at
that point byκ(drt).

If there arem plants to be placed and the functionf
is represented usingn2 valuesfij , the above algorithm
will take O(mn2) time to run, since the sumsRk must
be recalculated each time a new plant is placed. We im-
prove on this result by updating the arrayR incremen-
tally. When a kernel is applied to the distribution, the dif-
ferences betweenfij andκ(drt)fij are summed for each
(i, j) within the range of the plant, and the differences are
applied to the arrayR. Assuming that the kernel is only
applied to a small fraction of the cells in the grid, this
operation can be performed inO(n) time per plant.

The operation of the kernel method is illustrated in Fig-
ure 8. The deformation kernel is that of Figure 7d. The
initial distribution is uniform;f(x, y) = c. In the mid-
dle, a single plant has been added to the field; the density
function has been altered in the plant’s neighborhood. On
the bottom, four more plants have been added; the density
function has been modified near each of them.

Figure 9 shows point patterns generated using this al-
gorithm with different deformation kernels. The Hopkins
indices of these patterns are 0.4, 1.0, 1.2, and 2.4, con-
firming the visual observation that the kernel method is
capable of creating a range of distributions, from overdis-
persed to random and clustered.

In Figure 10 points have been replaced by simple mod-
els of daisies, created using an L-system. The overdis-
persed pattern at the top of Figure 10 looks less realistic
than the clustered pattern at the bottom, which justifies
the introduction of clustering into the model.

The distributions shown in Figure 10 have been gen-
erated after initializing the probability density function

Figure 8: An example of the deformation kernel algo-
rithm, using the kernel of Figure 7d. Left: the plant dis-
tribution. Right: the joint probability density function f .
From top to bottom: the initial state, the state after plac-
ing the first plant, and the state after placing four more
plants.

Figure 9: Some kernels and the point patterns they gener-
ate. The kernels are drawn at a larger scale than the point
patterns.

f to a constant value. If, instead, we initializef to a
user-defined field (with a paint program, for example),
we can generate spatial distributions of plants that con-
form to this field, as shown in Figure 11.

This result improves on the methodology described
in [3], which allowed for the application of a user-
specified density map, but did not make it possible to
control the degree of plant clustering.

Figure 10: Point patterns corresponding to Figures 9a
and 9c, rendered as fields of daisies.

Figure 11: Plant distributions created from the user-
defined density map, shown at the top. The Hopkins in-
dex values are H ≈ 1.2 (left) and H ≈ 1.9 (right).

Figure 12: The concept of the kernel matrix M for two
species

4.2 Extensions
The kernel-based method can be extended to include in-
formation about the plants’ sizes, as well as to model the
interaction of several species.

Size information is taken into account by placing
plants in order of size, largest first. Larger, older plants
then affect the positioning of smaller, younger plants, as
it is to be expected. The actual sizes may be drawn from
a distribution that gives few large plants, more plants of
medium size, and still more small plants.

Plants of species 1 may have a different effect on other
plants of species 1 than they do on plants of species 2.
Different kernels are thus required to capture these ef-
fects. In fact, for two species, the total of four kernels is
required: one for the effects species 1 has on itself, one
for the effects species 1 has on species 2, one for the ef-
fects species 2 has on species 1, and one for the effects
species 2 has on itself. This leads, in the general case, to
a kernel matrixM (Figure 12), which defines the effects
that each species has on itself and on each other species.

In an extension of the kernel placement method ton
species, we keep track ofn different probability density
functionsfi. As plants are placed, each probability den-
sity function is deformed by the relevant kernel; thus if a
plant of speciesj is placed, each functionfi is deformed
by kernelMi,j , wherei = 1, 2, . . . , n. This process is
illustrated in Figure 13.

A sample application of the above method is presented
in Figure 14. The modeling of trees incorporated in this
scenes was discussed in [14].

5 Conclusions

We formalized and extended the methods for defin-
ing plant distributions that had originally been proposed
in [3]. To this end, we introduced multiset L-systems, an
extension of the L-system formalism, to model groups of
plants, rather than single plants alone. We then applied
these L-systems to simulate the essence of self-thinning,
succession, and clustering of plants in an ecosystem.

We also improved the interactive techniques for gener-
ating plant distributions, making is possible to specify not
only global densities, but also levels of clustering. The

Number of Time takena

Fig.
plants

different
plants

primitives
(millions)

distribution
generationb plants rendering

4a 2688 20 34 9 sec 30 sec 8 min
b 1593 20 18 72 sec 27 sec 8 min
c 1409 20 30 2 min 30 sec 9 min
d 834 20 78 3 min 40 sec 11 min

5a 5584 24 141 2 min 30 sec 15 min
b 5526 24 147 22 min 30 sec 14 min
c 3427 24 100 44 min 30 sec 12 min

10 100 8 1.5 0.05 sec 2 sec 2 min
14 1599 36 147 0.5 sec 65 sec 11 min

a Times recorded on a 733 MHz Pentium III processor.
b For Figures 4 and 5, the times given show how long the simulation

took to reach the given frame.

Table 2: Statistics pertinent to Figures 4, 5, 10, and 14

resulting kernel deformation method can produce plant
distributions with a wide range of clustering values, from
overdispersed to random to highly clustered. We have il-
lustrated the use of this method using several models of
plant communities.

Both methods make it possible to generate plant
ecosystems at the speeds required for their practical ap-
plications to realistic image synthesis. Statistics pertinent
to the scenes included in this paper are given in Table 2.

We believe that the proposed methods can be applied
to model diverse plant ecosystems and have various prac-
tical applications, such as scene dressing for computer
animation purposes, and visual impact analysis of tree
cutting and regrowth on the landscape. The realism of
the resulting scenes can be further improved using more
accurate models of the underlying biological processes,
and more sophisticated rendering methods.

Acknowledgments

We thank Martin Fuhrer for the model of fireweed used
in Figure 4, Lars M̈undermann for the model of grass
used in Figures 10 and 11, and the referees for their
insightful comments. We acknowledge Radoslaw Kar-
wowski and Radomir M̌ech for the development of the
L-studio/cpfg plant modeling software, and Craig
Kolb for the development of therayshade ray tracer,
which we used to render the scenes. The partial support
of this research by grants from the Natural Sciences and
Engineering Research Council of Canada is also grate-
fully acknowledged.

Figure 13: Generation of a two-species distribution using the deformation kernel algorithm with the kernel matrix
shown in Figure 12. On the left, the probability density function of species 1; on the right, that of species 2. From top
to bottom: the state of the system after placing the first plant of species 1, after placing the first plant of species 2, and
after placing several plants of each species.

Figure 14: A forest model consisting of four species of trees. Left: distribution of plants. Right: realistic visualization
of the model.

References

[1] N. Chiba, K. Muraoka, A. Doi, and J. Hosokawa.
Rendering of forest scenery using 3D textures.
Journal of Visualization and Computer Animation,
8(4):191–199, 1997.

[2] M. R. T. Dale. Spatial Pattern Analysis in Plant
Ecology. Cambridge Studies in Ecology. Cam-
bridge University Press, Cambridge, UK, 1999.

[3] O. Deussen, P. Hanrahan, B. Lintermann, R. Měch,
M. Pharr, and P. Prusinkiewicz. Realistic model-
ing and rendering of plant ecosystems.Proceeding
of SIGGRAPH 98 (Orlando, Florida, July 19-24,
1998), pages 275–286, 1998.

[4] F. G. Firbank and A. R. Watkinson. A model of
interference within plant monocultures.Journal of
Theoretical Biology, 116:291–311, 1985.

[5] R. W. Floyd and L. Steinberg. An adaptive algo-
rithm for spatial greyscale.Proceedings of the So-
ciety for Information Display, 17:75–77, 1975.

[6] B. Hopkins. A new method for determining the
type of distribution of plant individuals.Annals of
Botany, XVIII:213–226, 1954.

[7] B. Lane and P. Prusinkiewicz. Randomized genera-
tion of nonuniform plant distributions.Proceedings
of Western Computer Graphics Symposium 2000,
pages 61–66, 2000.

[8] L. Legendre and P. Legendre.Numerical Ecology.
Elsevier, Amsterdam, 1983.

[9] A. Lindenmayer. Mathematical models for cellular
interaction in development, Parts I and II.Journal
of Theoretical Biology, 18:280–315, 1968.

[10] R. Měch and P. Prusinkiewicz. Visual models of
plants interacting with their environment.Proceed-
ings of SIGGRAPH 1996, pages 397–410, August
1996.

[11] P. Prusinkiewicz. Graphical applications of L-
systems. InProceedings of Graphics Interface ’86
— Vision Interface ’86, pages 247–253, 1986.

[12] P. Prusinkiewicz, R. Karwowski, R. M̌ech, and
J. Hanan. L-studio/cpfg: A software system for
modeling plants. In M. Nagl, A. Schürr, and
M. Münch, editors,Applications of graph transfor-
mation with industrial relevance, Lecture Notes in
Computer Science 1779, pages 457–464. Springer-
Verlag, Berlin, 2000.

[13] P. Prusinkiewicz and A. Lindenmayer.The Algo-
rithmic Beauty of Plants. Springer-Verlag, New
York, 1990. With J. S. Hanan, F. D. Fracchia, D.
R. Fowler, M. J. M. de Boer, and L. Mercer.

[14] P. Prusinkiewicz, L. M̈undermann, R. Karwowski,
and B. Lane. The use of positional information
in the modeling of plants. Proceeding of SIG-
GRAPH 2001 (Los Angeles, California, August 11-
17, 2001), pages 289–300, 2001.

[15] S. M. Ross. Introduction to Probability Models.
Academic Press, 1997.

[16] G. Rozenberg and K. P. Lee. Developmental sys-
tems with finite axiom sets. Part I. Systems with-
out interactions.International Journal of Computer
Mathematics, 4:43–68, 1974.

[17] G. Rozenberg, K. Ruohonen, and A. Salomaa. De-
velopmental systems with fragmentation.Interna-
tional Journal of Computer Mathematics, 5:177–
191, 1976.

	Introduction
	Previous work
	Local-to-global modeling of plant distribution
	Multiset L-systems
	Self-thinning
	Plant succession
	Plant propagation

	Global-to-local modeling of plant communities
	The deformation-kernel method
	Extensions

	Conclusions

