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Figure 1: Our approach reduces visual clutter of projected labels by showing the user the relatedness of the labels on increasing levels of
detail. A co-occurrence based hierarchy is used to generate the levels of detail. Here, the cluster asp.net, highlighted with a green background,
and its related clusters, marked in with a slightly lighter green, are shown in increasing levels of detail. To follow the cluster more easily, we
trace it with two lines in this depiction.

ABSTRACT

Visualizing high-dimensional labeled data on a two-dimensional
plane can quickly result in visual clutter and information overload.
To address this problem, the data usually needs to be structured, so
that only parts of it are displayed at a time. We present a hierarchy-
based approach that projects labeled data on different levels of de-
tail on a two-dimensional plane, whilst keeping the user’s cognitive
load between the level changes as low as possible. The approach
consists of three steps: First, the data is hierarchically clustered;
second, the user can determine levels of detail; third, the levels
of detail are visualized one at a time on a two-dimensional plane.
Animations make transitions between the levels of detail traceable,
while the exploration on each level is supported by several interac-
tion techniques. We demonstrate the applicability and usefulness of
the approach with use cases from the patent domain and a question-
and-answer website.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—GUI; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—Clustering

∗{firstname.lastname}@vis.uni-stuttgart.de

1 INTRODUCTION

The abundance of data produced nowadays is often too much to
show all at once and its structure regarding content and relation is
often either unavailable or unknown. A common practice to label
the content is using keywords or tags that originate from predefined
metadata, a classification structure, or from extracted content. In ad-
dition, the overview of the relation between data is often simplified
by clustering the data and then showing the clusters’ relations. The
labels’ relations span a high-dimensional space that is based on the
co-occurrence of data objects’ labels. To visually analyze the labels’
coherence, the labels may be shown on a two-dimensional plane, for
example through projection. Yet, the two-dimensional visualization
of many labels leads to the problem of visual clutter. This visual
clutter combined with a possibly complex relationship measure can
cause heavy cognitive load for an analyzing user and hinders the
efficiency of the analysis. One common approach to ease this prob-
lem is to introduce a hierarchy to the labels, wherein a child node
specifies the description of its parent node.

However, the visualization of such hierarchies usually focuses on
the relationship between the parent and its children. Apart from the
intuition that siblings with the same parent are closer related to each
other than other data objects on the same hierarchy level, the child-
child relationship remains hidden in such visualization approaches.

We present an approach that aims to reduce the visual clut-
ter of two-dimensional projections of a large number of labels
through a smooth transition between overview and detail [31]. This
is achieved by hierarchizing the labels based on a similarity ma-
trix derived from the co-occurrence of the labels. Then we show
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first highly aggregated clusters and then provide more details as the
clusters are split apart. Also, our approach represents the child-child
relationship of the generated hierarchy at a given level of detail
through the projection of the relevant labels onto a two-dimensional
plane. To do so, the approach is divided into three steps:

1. A hierarchy is generated from a given similarity matrix. Here,
this matrix is based on the co-occurrence of the labels.

2. Based on the extracted hierarchy, varying levels of detail are
determined for the information shown to the user; the user can
change those levels at will.

3. The information contained in the topmost level of detail is
projected onto a two-dimensional plane, and the user can ex-
plore the shown data or increase the level of detail.

2 RELATED WORK

The following discussion of related work is divided into four parts.
First, we examine works from the field of information visualiza-
tion that use dimension reduction to visualize data spatially. Af-
terwards, we review visualization methods for hierarchical datasets
and related interaction techniques. Then, we show visualization ap-
proaches for hierarchy-based data. At last, we present recent work
in the area of word cloud visualization that are related to our work.

2.1 Dimension Reduction and Data Projection
One common approach to visualize the content in datasets, for
example document collections, is to take extracted features, such
as keywords or concepts, and compare the data based on those
features. The natural language processing community developed
many ways to extract keywords from documents [15]. The relat-
edness of such features is usually pairwise computed and there-
fore presents a high-dimensional reduction problem. Methods to
solve this problem can be projection-based, for instance, by us-
ing Principal Component Analysis (PCA) [38], Multidimensional
Scaling (MDS) [23], Least Squares Projection [27], or t-Distributed
Stochastic Neighbor Embedding (t-SNE) [35]. Van der Maaten et
al. [36] survey a number of techniques to project high-dimensional
data onto a low-dimensional space. In such approaches, data is usu-
ally visualized as data points that take up almost no space. This rep-
resentation suffers from visual clutter when the data is not clearly
separable, which is even more problematic when the data is repre-
sented with labels.

Due to the high complexity of projection techniques, other po-
tentially faster and more intuitive approaches, such as force-based
layouts [12, 13] are often used when interactive visualizations are
needed. However, Garcı́a-Fernández et al. [14] concluded in their
study that projection-based approaches are superior to force-based
layouts, when a complete and large dataset needs to be visualized.

Some approaches are based on neural networks, such as hierar-
chical self-organizing maps [22]. When this approach is used for
each created area, as proposed in [32] or [10], this approach cre-
ates a visualization seemingly based on a hierarchy. However, when
generating a visual hierarchy this way, only elements contained in
an area are mapped relative to each other. In our approach, we use
a hierarchy not only to visualize the relation between parents and
their children, but also between the siblings across the clusters.

2.2 Hierarchical Aggregation and Visualization
In case the data is already hierarchically structured, there are many
approaches to visualize such data. If the user needs to inspect the
data’s distribution across the hierarchy tree, tree visualization tech-
niques, such as dendrograms or icicle plots, are commonly used.
However, dendrograms do not provide information about the rela-
tion between the elements across multiple clusters (even when they
are at the same hierarchy level). Another prominent method to show

a hierarchy’s structure are treemaps [30]. Due to a treemap’s layout,
its ability to provide information about the relation of clusters with
different parent clusters is limited and it is almost impossible to in-
dicate possible shifts of the clusters’ similarities on different levels
of detail as tree maps assume a fixed hierarchy without considering
a possible relation between the clusters, which we want to provide.

The goal of most hierarchical visualization techniques is to show
the structure of the hierarchy. Elmqvist and Fekete [9] propose
guidelines how hierarchical data can be used to limit the amount
of shown information. We adapt some of the proposed guidelines
in our work, such as taking the most important element of a cluster
as cluster representative.

2.3 Visualization Approaches for Hierarchy-based Data

There are various approaches to provide information about more
details about hierarchy-based data. For example, Dou et al. [8] gen-
erate topic models where the users can interactively modify the cre-
ated hierarchical structure. Afterwards, the user can inspect the de-
velopment of individual or groups of topics over time. In contrast to
our approach, this attempt uses the hierarchies to aggregate topics
for the analysis of changes over time. Instead, we use hierarchies to
filter shown data and show the data’s relation spatially. Like most
hierarchical visualization approaches, they assume the availability
of a hierarchical structure and use predefined hierarchy levels to
show information. Our approach goes beyond that by enabling the
users to set the shown hierarchy levels by themselves.

Liu et al. [24] developed an approach to build hierarchies based
on topic graphs. They visualize the relations of extracted topics by
using stacked trees in combination with force-based graph layouts.
In contrast to our approach, they use hierarchies to distinguish be-
tween topics and not to set their content in a relation to other topics.
Our approach aims not only to provide relational information across
clusters, but also of their content when more information is shown.

Fried and Kobourov [11] presented a system, wherein they map
the titles of papers in the DBLP database onto a two-dimensional
landscape based on a hierarchy. The users can create a search profile
whose results are highlighted on the landscape using a heat map
visualization. They focus on temporal aspects of the data.

Wise et al. [37] proposed to show large document collections
through a galaxy metaphor, in which every document is represented
by a star. By doing so, the user gets a more intuitive understand-
ing of the relations between documents. Similarly, SPIRE [34] and
INSPIRE [39] use the same metaphor, but they combine it with
a visual analytics approach to enable users to further analyze the
data. The STREAMIT system [1] uses force-based layouts, cluster-
ing discovery techniques and topic modeling to visualize document
streams in real-time. The clustering is based on the graph layout
and does not create a hierarchy to examine the document streams
on a semantical level. An early version of the recently published
Overview system [4] projects documents onto a two-dimensional
scatterplot, whilst showing a hierarchical tree structure of the doc-
uments in another view. The system uses brushing and linking to
connect those two visualizations. However, the selected elements of
the hierarchy view are not represented in the amount of data shown
in the scatterplot.

Only a few of these landscape-based approaches support hier-
archical data, and most that do assume the hierarchy to be given.
Thom et al. [33] use hierarchical topic clustering combined with a
treemap-based visualization to show Twitter data on different levels
of detail. This level of detail can be interactively steered by the user
during an analysis run, which enables the user to see more details
about a specific topic. However, the visualization has similar draw-
backs as described in subsection 2.2. As a result, the positions of
the topics is based on the hierarchy, but the relation of the various
topics is hard to comprehend.

In addition to approaches that try to depict the global relatedness
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of data, there are approaches that show the local relatedness, de-
pending on a user-chosen subset of the data. Often such approaches
are realized through the use of focus+context techniques. One ex-
ample for the interactive exploration of locally relevant information
is the Proxilens approach by Heulot et al. [20]. Here, a lens draws
related data towards the data in the lens’s center and pushes irrele-
vant information out of the bounds of the lens.

2.4 Word Cloud Visualization
Also related to our work are word cloud visualizations that show
the most frequent words of a text as a weighted list in some specific
spatial arrangement, such as a sequential, circular, or clustered lay-
out [25]. Several variations and advancements of word clouds have
been proposed in recent years. For instance, Seifert et al. [29] de-
veloped algorithms for space-filling word clouds based on a set of
heuristics, while related layout algorithms have also been presented
in a number of other works.

Some layout strategies consider word relationships and imple-
ment spatial arrangements where strongly related words are placed
in close proximity, similar to our attempt. The layout strategies
range from simple line-by-line approaches [16] to treemap-like
layouts [21] and force-directed placements in combination with
Venn diagrams [6]. Some works even apply projection techniques,
such as the aforementioned MDS, to reflect the relatedness of
words [28]. There are also attempts to explicitly depict the relation-
ships in word clouds, either by adding links between related words
or via interactive highlighting [18]. Prefix Tag Clouds [5] make use
of prefix trees to group different word forms, whereas the Word
Cloud Explorer uses advanced NLP processing to link word forms
and to support the visual analysis of text documents via interactive
word clouds [18].

However, we are not aware of any word cloud visualization that
projects the words on multiple layers and allows for a seamless in-
teraction and exploration on and between the layers.

3 APPROACH

The main goal of our approach is to reduce visual clutter caused by
the projection of labels onto a two-dimensional plane. We do this
by introducing a hierarchy in the projection, providing a smooth
transition between overview and detail. At the same time, we aim
to preserve and indicate the relationships between labels on differ-
ent levels of detail. Those levels of detail are based on the hierarchy
generated in a preprocessing step, while the distribution of the la-
bels on each level of detail supports the users’ intuition that related
labels tend to be placed in close proximity.

As aforementioned, our approach consists of three steps, shown
below. In the following, these steps are explained in more detail.

Create co-
occurrence-

based hierarchy

Define levels of
detail for clutter

reduction

Visualize levels
of detail for

further analysis

Figure 2: Workflow of our approach

3.1 Data Preprocessing
The creation of a hierarchy through clustering is expensive regard-
ing computation time. As there is no need to recompute a dataset’s
hierarchy unless the dataset itself changes, we compute the hierar-
chy in a preprocessing step and store it for later use. This ensures a
quick and smooth entry point into the analysis, as information about
the hierarchy of the dataset can be shown right away.

Step 1: Hierarchization To create the hierarchy, we use Hi-
erarchical Agglomerative Clustering (HAC) [26], which initially
treats every data element as an individual cluster. Afterwards it iter-
atively merges the two most similar clusters based on a linkage cri-
terion. Often, HAC-based clustering approaches use single-linkage

as a linkage criterion. In single-linkage, the distance of two clusters
is defined by the distance of the two closest elements of the clusters.
However, it is unclear what merging clusters this way means on a
semantic level [17, p. 525].

Therefore, we used medoid-linkage as the linkage criterion. The
similarity of two clusters is defined by the similarity of the clusters’
medoids. A medoid is the element within a cluster with the least
total distance to all other elements within the cluster. As the calcu-
lation of a medoid includes all elements within a cluster, it is a better
way to describe a cluster’s content compared to the elements used
by single-linkage. Further, medoid linkage implicitly compensates
for a high variance within the cluster and is more robust to outliers
within the cluster [26, p. 392;398].

One drawback of using a medoid linkage is the lack of mono-
tonicity regarding the similarity of the merged clusters, as the
medoid of a merged cluster may differ from the clusters that were
merged. Therefore, a cluster’s medoid usually needs to be recom-
puted as soon as the cluster changes.

3.2 Recurring Steps of Analysis
The following steps are executed every time an analysis is per-
formed. As users may be interested in defining different levels of
detail for each run of an analysis, the visualized information is
likely to change and, hence, needs to be computed on demand.

F
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Figure 3: The labels shown on a given level of detail is similar to
a cut in the dendrogram of the hierarchy. The first nodes after the
cut represent relevant clusters for that level of detail (they are high-
lighted by a border in the figure). These clusters’ labels are then
used in the subsequent visualization step.

Step 2: Setting the Levels of Detail As our hierarchy is
generated through a hierarchical agglomerative clustering, the hi-
erarchy’s branching is binary. Thus, a given level of depth of the
hierarchy describes the amount of shown clusters at the same time.
An analysis of the hierarchy by stepping through it one level of
depth at a time can be extremely tedious as only one cluster would
split apart and therefore is not viable for our approach. To reach our
before mentioned goal, we enable the user to step through multiple
levels of depth at once. In our approach, the chosen levels of depth
are called levels of detail. A level of detail corresponds to a cut at
the level of depth within the hierarchy. Only the clusters directly
below the cut are being shown to the user. An example illustrating
the idea of this is shown in Figure 3.

Therein, the cut is at first after the cluster G and the clusters E
and F are the next clusters directly below the cut. In the second step,
the cut is below F. Cluster E remains, but cluster F, which is now
above the cut, is replaced by the clusters C and D.

Initially, we automatically set the levels of detail to represent an
increase of 20 levels of depth. This ensures that each level of detail
shows a comprehensible amount of new information. Afterwards,
the user may add, change or remove any number of levels of detail.
To support the user in this task, we show two plots that contain
information about the hierarchy (see Figure 4 for an example).

Figure 4 a shows the merged clusters’ similarity. Every point of
the plot represents the merging of two clusters. The similarity is
expressed in the y-value of the points, whereas the clustering step
is equal to the points’ x-value. A higher similarity value indicates
that the clusters are much alike, whereas a low value indicates little
overlap regarding the co-occurrence of clusters’ medoids.
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Figure 4: We initially present two plots. The fusion similarity ( a )
indicates the similarity of the clusters that have been merged over
the course of the hierarchization. The cluster error ( b ) shows
the clusters’ correctness using the Davies-Boulding index (a lower
value indicates better clusters). Also, initial cuts for the levels of
detail are proposed to the user. For demonstration purposes, we use
a reduced number of levels of detail and added small depictions
of the visualizations that result on three different levels. The same
visualizations are shown in larger size in Figure 1.

Figure 4 b gives an indication of the quality of the clustering at
a given step. As an indication measure, we use a variation of the
Davies-Bouldin index [7]. The Davies-Bouldin index is designed to
have a high value when the distance between clusters is low and the
distance within the clusters is high. We assume that the similarity
value s is normalized and calculate the distance d of two clusters Ci
and C j as di, j = 1− si, j. Since we use medoid linkage, whereas the
Davies-Bouldin index uses centroid distances, we slightly adapted
the index. Our modified Davies-Boulding index DBImod is calcu-
lated as

DBImod =
1
n
·

n−1

∑
i=0
·max

i 6= j
(

σi +σ j

dm(Ci,C j)
),

with i and j being the cluster indexes, σx representing the average
distance between the elements within cluster x and dm(Ci,C j) being
the distance between the medoids of the clusters Ci and C j.

This way, the user gets a visual insight into the clustering and
can decide whether an adjustment of the levels of detail is necessary
and useful. For instance, a sudden change of the similarity or of the
Davies-Boulding index could be a reason for an adjustment.

Step 3: Visualizing the Clusters In the third step, the
user can visually explore the hierarchy and the relationships of
the shown clusters on increasing levels of detail. At first, the la-
bels from the upmost level of detail are taken and projected onto
a two-dimensional plane, which we henceforth call landscape vi-
sualization, by using the t-SNE projection technique [35]. We use
t-SNE as it is possible to apply it with or without an initial spatial
mapping of the data. This will be further elaborated in Section 4.1.

For every level of detail, we create a separate distance matrix that
is used by t-SNE. We calculate the cost to traverse the hierarchy tree
between all shown clusters and use the results as the distances be-
tween the clusters. Once the positions of the clusters have been de-
termined, representative labels can be shown in the landscape view.
Details about the projection and positioning of the labels will be
given in Section 4.1.

We encoded several key aspects of the data and its structure into
the landscape visualization:

Representative of the cluster: Every cluster is represented by a
label. Following the recommendation of Elmqvist and Fekete [9],
we use the cluster’s element with the highest overall occurrence
frequency as the cluster label.

Font size for importance: As the font size is perceptually
prominent, we use it to indicate a cluster’s importance, similar to
word clouds. Since clusters usually consist of several elements, we
map the accumulated occurrence frequency of the elements onto

the font size. We opted to represent the clusters’ importance on the
currently shown level of detail by normalizing the accumulated fre-
quencies of all shown clusters.

Numbers of elements within a cluster: To give the users an idea
of the general distribution of the labels, we added a colored radial
background to every label. The size of the radius corresponds to the
amount of elements that are contained within the cluster. The color
scale is a linear gradient that starts with a light blue in the center
and fades out towards the outside. In case the cluster is selected or
marked to be relevant, the light blue is replaced by a dark or light
green (see Section 4.2.3).

Cluster density: When two or more clusters overlap, their colors
add up and a heat map-like visualization is created. This helps to get
a better visual impression of the clusters’ distribution. The radius of
the clusters remains constant when the users zoom in or out of the
landscape. Thus, smaller clusters are aggregated into bigger ones.

Position of the labels: As with all projection techniques, the po-
sition of the labels follows the Gestalt principle that visual closeness
correlates with similarity. More precisely, due to the way t-SNE
works, closeness correlates with the likelihood that two elements
are related to each other. We incorporated this aspect implicitly by
using the similarity as the projection measure in the second step of
our approach (see Section 3.2). In order to keep the cognitive load
low, it is important to keep the positions of the already visualized
labels as stable as possible when changing the level of detail. We
elaborate on the specific aspects of this in the following section.

4 INTERACTIVE EXPLORATION

c

d

a

e

b

Figure 5: Screenshot of our prototype showing data from the
question-and-answer website StackOverflow. The landscape view
a shows the projected level of detail’s clusters. Some clusters are
selected and highlighted with a dark green background. All selected
and related clusters are indicated by a green background color and
halos. Some clusters are not visible in the focused viewport, but the
halos indicate their position ( b ). A tooltip c shows the content
of the focused cluster jquery, including its name, description and a
word cloud with the most frequent elements contained in that clus-
ter. The selected labels are also shown and highlighted in the search
component on the right d . On the bottom e , questions are listed
that contain at least one element from every selected cluster.

As outlined in Section 2, there are different ways to interact with
two-dimensional representations of high-dimensional data. In the
following, we describe how to switch between levels of detail and
ways to interactively explore the landscape within a given level.

4.1 Switch Between Levels of Detail
To view the data on different levels of detail, the user needs to be
able to switch between the chosen levels. However, projection al-
gorithms are not designed to support the iterative projection of a
dataset with subsets of increasing levels of detail and do not make
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use of previously positioned clusters. However, it is important to
support the user’s mental map regarding the positions of the clus-
ters in order to minimize the cognitive load during the change of a
level of detail. At the same time, it is necessary to visually inform
the user about the relation of the newly available subclusters in the
context of the already visualized clusters. We achieve this by min-
imizing the movement of unchanged data as well as animating the
movement of new data points from their respective parent cluster’s
position to their final destination.

At the first level of detail, we do not have any prior data about
the previous projection step. Therefore, we apply the standard im-
plementation of t-SNE, which uses a t-student distribution of the
projected data as an initial mapping before optimizing the clusters’
positions [35]. We use several means to stabilize the subsequent
projections, which we will explain in detail in the following:

1. Initial map: Originally designed to pause and resume a pro-
jection run of t-SNE in order to show intermediate results, we use
the option to ‘resume’ a t-SNE run with a superset of the data used
in the previous projection step. We search for all clusters that split
into smaller clusters in the next level of detail. Every unchanged
cluster keeps its position and all newly generated clusters inherit
the position from the cluster they originate from. The resulting map
is used as the initial map of t-SNE, replacing the t-student distribu-
tion of the clusters that is used by default and therefore stabilizing
the clusters’ positions.

2. Perplexity: We also adapt the perplexity parameter used by
t-SNE. The perplexity can be interpreted as a factor that controls
the size of the neighborhood considered in the high-dimensional
space during the projection of a data point. Typically, this is a con-
stant value which must be adapted, if the results are not satisfying.
Van der Maaten and Hinton [35] recommend a value between five
and 50 for this parameter. Usually, this value is robust and small
differences do not heavily impact the visualization. However, in
the case of a modified initial mapping, a too high or too low per-
plexity value can lead to visual artifacts. In case the perplexity is
too high, the visualization will look like all clusters center around
one point, because every cluster tries to optimize with regard to all
other clusters. If the perplexity is too low, the clusters will not move
at all because they only consider themselves as relevant and there-
fore all newly added clusters overlap at their parent’s position. To
keep the user from following a trial and error approach to find a
proper value, we decided to dynamically approximate the perplex-
ity value depending on the number of shown clusters. Our perplex-
ity function p(x) = 6.929 · x0.252710 is designed to initially increase
fast in order to ensure that clusters in the first few levels of detail
already consider some of their neighboring clusters. The more clus-
ters are shown the lower is the increase of the perplexity compared
to the previous level of detail. The values are based on the results
we achieved with the datasets we describe in the use cases.

We compared our function to static perplexities on different lev-
els of detail. We used the Kullback-Leibler divergence as a perfor-
mance measure, since the authors of the t-SNE algorithm proposed
it as a good statistical quality measure. The results based on the
dataset of use case 2 are shown in Figure 6. It becomes clear that our
function-based perplexity performs slightly better than most static
perplexities. When we tested a static perplexity of p = 15, we no-
ticed a lot more overdraw of the labels and concluded that lower
perplexities will amplify this problem even more.

3. Scaling of target projection space: Once the clusters are pro-
jected, their positions are min-max normalized. To prevent a shift
of all clusters due to outliers, we first calculate the clusters’ geo-
metric center. Afterwards, we normalize all clusters, but we discard
the 10% of the clusters that are the farthest away from the center.
Then, we rescale the target projection space. The scaling factor is a
root function that depends on the amount of visible clusters.
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Figure 6: Comparison of our dynamic against static perplexities

4.2 Explore Cluster Relationships
In case the users want to explore a given level of detail, there are
two scenarios: either they already have an initial idea what they are
looking for, or they want to get an overview of the chosen level of
detail without any premises. In both cases, the next step is to decide
on interesting clusters to inspect. In the following, we will describe
the means we provide in order to accomplish this.

4.2.1 Search for Specific Clusters and Elements
We provide the user with a search box that provides an auto-
complete feature, suggesting every label contained within the
dataset. Once an element has been found, it can be added to the
list below the search box (Figure 5 d ). The selections made in the
search list are linked to the landscape view (Figure 5 a ). Sometimes
the searched element is not visible in the landscape view because it
is hidden within a cluster. In this case, the cluster that contains the
element will be selected. It is also possible to focus on the element
or cluster that contains the element in the center of the view.

4.2.2 Freely Explore the Landscape View
The landscape view supports zooming and panning to let the user
freely explore the visualized level of detail. As described in Sec-
tion 3.2, the size of the background color of the clusters is inde-
pendent of the visual zoom. This way, the clusters are visually ag-
gregated when the user zooms out, as the cluster backgrounds’ size
increases compared to the clusters’ labels. This helps the user to
distinguish between areas with a higher cluster density and regions
that are sparser.

When the users decide on one or more interesting clusters, they
can select them in the landscape view. The selected elements will
then be added to the aforementioned search list (Figure 5 d ).

4.2.3 Navigation Aids in the Landscape View
Once a set of clusters and/or elements is selected, the user may be
interested in other clusters related to the selected ones. However,
this information may not be available directly, as some clusters that
are related in the high-dimensional space may not be close to each
other in the low-dimensional space or vice versa. We differenti-
ate between two kinds of relatedness: global and local. The global
relatedness is depicted by the spatial arrangement of the clusters,
wherein closer clusters are more likely to be related than clusters
that are farther apart. The local relatedness is available for selected
clusters and shows which clusters are similar to those clusters. To
measure the local relatedness, we calculate the average similarity
savg between the set of selected clusters and the cluster they are
compared with by calculating

savg(Cother) =
1
n

n−1
∑

i=0

(
1
m ·

m−1
∑

j=0

1
o ·

(o−1
∑

k=0
sim(Ci, j,Cother,k)

))
,

wherein i is the index of the cluster within the cluster set, j is the
index of the compared element within the cluster and k is the index
of the element within the cluster that is compared with the set of
selected clusters.

As the locally related clusters may lie spatially apart from the
selected clusters, we implemented several measures to compensate
for this information loss.
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Halos: To support users in finding clusters that are related to
the selected clusters, we provide them with a navigation aid intro-
duced by Baudisch and Rosenholtz [2]. Therewith, the users get a
visual notion of the selected and other related clusters’ position by
drawing a circle, which is called halo in this concept, around these
clusters. In case the cluster is outside of the visible area, the halo’s
radius gets expanded, so it barely stays within the view. The cur-
vature of the Halo fragment indicates direction and distance of the
corresponding clusters. An example of the visual indication pro-
vided by halos is shown in Figure 5 b .

Color coding: To make selected, related and other clusters dis-
tinguishable, we color the backgrounds and halos of selected clus-
ters with a noticeable shade of green. Analogously, we colored the
backgrounds and halos of related clusters with a shade of light
green. The other clusters’ background is drawn in a light blue. We
decided to use color coding over approaches such as isolines or
glyphs because we want to give the user an impression of the clus-
ters’ different statuses, whilst indicating the uncertainty of the clus-
ters’ positions due to the projection’s information loss.

Darts View: Furthermore, we added the Darts View Visualiza-
tion introduced by Herr et al. [19]. By using a darts game metaphor,
users can quickly spot related clusters, as the selected clusters are
shown in the middle of the darts view and the related clusters are
arranged around them.

The Figures 5 a and 8 depict how these aspects look like in our
implementation of the concept.

4.3 Analyzing a Cluster’s Content

A B C D E

(A    B)    (C    D    E)V

V

V V

Figure 7: For each selected cluster (here indicated with a green cir-
cle), the leaf nodes are retrieved. Then, data is requested from the
dataset, which contains at least one of the leaf nodes from every
selected cluster.

Once the users found a relevant cluster, they may be interested
in further information about it. We provide several means to inspect
the content of a cluster. First, the user may request additional infor-
mation about the cluster by looking at the cluster’s tooltip. In case
only the name of the elements is available, the tooltip shows the
name of the representative label as well as a word cloud. The labels
shown in the cloud belong to the elements contained in the cluster.
They are ordered by their weight (=̂ occurrence frequency), which
is also encoded into the words’ font size. In case the elements also
contain a textual description, the description of the representative
label is shown at the top. The word cloud contains the terms that
occur most often in the descriptions of all elements. An exemplary
depiction of the tooltip is shown in Figure 5 c .

Second, the user can select one or more clusters. When doing
so, our approach retrieves individual documents which contain at
least one term from each selected cluster. A schematic demonstra-
tion of such a request is depicted in Figure 7. Here, the two high-
lighted clusters were selected. As the elements A and B are con-
tained within the first cluster, only one of them has to be contained
within the resulting document. By selecting an individual docu-
ment, further details can be retrieved.

5 USE CASES

In the following, we will illustrate the applicability and usefulness
of the approach with two scenarios using real world data.

5.1 Use Case 1: Analysis of StackOverflow
In the first use case, we assume the role of the head of a newly
founded department of a software company that used to develop
server-sided software solutions. Our new department is tasked to
supplement a client-sided solution to the software suite. The com-
pany already supplied us with some of its software developers, but
we still need to recruit a developer that is well versed with web de-
velopment. As we only possess basic knowledge of this field, we
need to take an explorative approach in order to gain knowledge,
which aspects are important. To create a list of key skills for our
recruit’s profile, we will use our approach to explore the question-
and-answer website StackOverflow’s1 tags and their relations. Since
StackOverflow contains data that comprises more than ten million
questions, we limit our inspection to tags that have been assigned
to at least 5000 questions. The similarity between the tags is based
on Jaccard coefficient [26, p. 56].

We decide to deselect the first four proposed levels of detail, be-
cause we want to see some detailed information at the top level al-
ready. We know that our company’s server-sided software returns
JSON formatted answers and we also know that JavaScript is a
common solution for web clients. Therefore, we select the clusters
containing JSON and JavaScript. To see if our interview candidates
have some background knowledge, we note some of the most often
viewed questions in StackOverflow that contain elements from the
JSON and JavaScript clusters. After selecting the clusters, the tool
marks the cluster jQuery to be relevant. Once reading the tag’s de-
scription in the tooltip and looking at its contents, we decide to add
it to our profile and select the cluster (shown in Figure 5 c ). We
write down questions such as ‘How to iterate over a JSON struc-
ture?’ for the interview of candidates for our team. At last, we freely
explore the space around our selected clusters and notice the clus-
ter d3.js. After looking at the cluster’s description, we decide to add
d3.js to our profile, as a developer with knowledge in web-based vi-
sualization may be useful in later software development stages.

By now, we have a profile that we can use to search for a soft-
ware developer that has knowledge in key technologies used in web
development, which fits our companies existing technologies.

5.2 Use Case 2: Patent Analysis

Figure 8: Depiction of the concepts related to the clusters adhe-
sive (contained in housing) and tissue. There are five concepts that
are strongly related to those clusters. One is catheter, which makes
sense, as a catheter may be used to apply the adhesive.

In the second use case, we take the point of view of an intel-
lectual property analyst at a large company that produces and sells
medical apparatuses. The company plans to develop a new product
to apply an adhesive to open tissue during a surgery and wants to
avoid conflicts with existing patents.

1 http://stackoverflow.com/
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The analyst’s task is to limit the number of patents that have to be
inspected individually to a reasonable amount. At first, the analyst
limits the number of patents by searching for a code from the Inter-
national Patent Classification (IPC), which is specific for medical
surgery and diagnosis. Also, the patents need to contain the key-
word glue or adhesive in their description. This results in a patent
set of about 300 patents, which is too much to analyze manually.
Thus, the patents are automatically processed and concepts are ex-
tracted. The similarity between concepts is calculated by measuring
the concepts’ co-occurrence within sentences and comparing them
using a cosine similarity. These concepts will then be loaded into
our prototypical implementation to limit the patents even further.

The analyst may choose to change the initially proposed levels of
detail, but in this case we assume that the expert will leave the levels
as proposed. Once the first level is projected, the analyst searches
for the clusters that contain the concepts adhesive (which is hid-
den inside the cluster housing) and tissue. By doing so, the analyst
notices that the concept catheter is marked to be relevant to the se-
lection. This becomes even clearer by switching to the darts view,
which is shown in Figure 8. As it makes sense to apply an adhesive
with a catheter, the analyst adds it to the set of selected clusters.

When looking at the resulting patents, the analyst is not satisfied
with the quality of the results. Therefore, he or she adds the cluster
containing the concept apparatus to the selected concept list and
increases the level of detail several times. By doing so, the selected
clusters get more specific as dissimilar elements split apart which
results in a more specific patent request. Hence, the results of the
leftover patents becomes better. By increasing the levels about five
more times, the clusters become more specific, as less similar clus-
ters split apart. Therefore, the analyst is left with 27 patents, which
is a reasonable amount for a manual analysis.

6 DISCUSSION

When analyzing a new dataset, the user is confronted with a chicken
and egg problem: on the one hand, the zoom levels are supposed to
help users in understanding the possible relations within the dataset
by only showing information on a very coarse level. On the other
hand, without knowledge about what levels of detail may be inter-
esting, it is very hard to decide how many levels of detail should
be shown and what information granularity they should have. We
address this dilemma by proposing the user a preset number of lev-
els of detail that can be used as a starting point for the exploration.
Also, we show the user the error index of the clustering to support
an easier manipulation of the levels. However, the shown informa-
tion is of little help when the user is interested in which clusters
are actually merged at a specific step. Even in case the user had
that knowledge, it is still impossible to infer any further knowledge
about the previous or the next cluster fusion step. Moreover, the
user only gets an abstract measure of the quality of the clustering,
which is hard to comprehend. This problem may worsen when the
binary tree of the clustering algorithm is simplified, for example,
by using Bayesian Rose Trees [3]. It is hard for a user to compre-
hend how many clusters will be shown in the next level of depth
of the tree, as every step may imply multiple aggregation steps. As
all of the mentioned aspects are important in choosing levels of de-
tail that meet the user’s needs and expectations, we will look into
possible solutions in the future. For example, instead of proposing
a constant step size within the hierarchy, it may be possible to fur-
ther analyze the hierarchy and dataset to make a more appropriate
recommendation for relevant levels of detail.

Like all dimensionality reduction approaches, our approach suf-
fers from the curse of dimensionality. The more elements are con-
tained within the matrix and the more they are related, the less will
be their measurable distance. This causes problems in the projec-
tion step, as it will not be able to distinguish which labels should
be clustered together anymore. This correlates with the problem to

pick a proper perplexity value in our approach. When the value is
too low or too high, the visualization will not be able to represent
the data’s relation anymore.

We tried to design the approach in a way that an analysis run can
be done as smoothly as possible, even as more and more clusters
are shown. As our approach is based on the original implementation
of t-SNE, the time complexity is O(n2), where n is the number of
shown clusters. This may cause a performance issue when many
labels have to be projected. We measured how the increase of one
level of detail in use case 2’s dataset takes during the actual analysis
(after preprocessing) on a computer with an Intel Core i7-4700MQ
processing unit. It took 0.5 seconds for 40 clusters and 4.0 seconds
for 480 clusters from the point of the user interaction to the point
when the labels started to move to their new positions. Such issues
can be tackled, for instance, by calculating the next level of detail
in a background thread while the user explores the actual level of
detail, by using a better performing implementation of t-SNE, or by
calculating the projection information of the visible portions of the
screen first and compute other needed information on demand. It is
important to note that the latter will implicitly impact the quality of
the visualization. Similar clusters should be projected close to each
other, even if they originate from different parent clusters. When
one of these parents is not visible, this information will be lost.

Moreover, the abundance of clusters on a high level of detail
causes an increased information loss during the projection onto a
two-dimensional space. Labels that are intuitively close to each
other may be far apart. Also, our approach to place new clusters
at the position of their parent clusters may bias the projection’s re-
sult. However, we think this is tolerable as the similarity matrix
provided to the projection contains all visible clusters and the orig-
inal t-student distribution does not use any previously gained infor-
mation. This is a general challenge and can only be slightly alle-
viated by indicating the position of the labels that are close in the
high-dimensional space. We plan to extend our approach’s variety
of navigation aids by adding more visualizations to support in-depth
analysis of the selected and related clusters.

As our visualization shows the mode of a cluster, it seems plausi-
ble to use those modes for clustering. However, we decided against
such a linkage, because it is susceptible to outliers as it does not
consider other elements in a cluster, similar to single linkage. Also,
it implies that an element often occurring in the complete dataset is
also important within a cluster, which is problematic.

Furthermore, the overlap of some clusters still poses an issue
when many very similar clusters are projected on the landscape.
Our approach tries to find a trade-off between the increasing white
space produced when scaling the target space to prevent overlap-
ping and a slight overlapping where the labels are still readable. We
decided not to use an overlap removal after the projection step, as
we wanted to keep the spatial distance of the clusters as intact as
possible. However, we think that using more features to scale the
projections target space may further help to prevent overlapping.

7 CONCLUSION

In this paper, we presented a visualization approach for the hier-
archical exploration of labeled data. It reduces the problem of vi-
sual clutter and information overload that can quickly occur in the
two-dimensional visualization of large amounts of labels. Overall,
it consists of three steps: 1) the data is hierarchically clustered, 2)
distinct levels of detail are defined, and 3) the levels of detail are
projected on a layered landscape visualization.

In contrast to related work, our approach enables the users to ex-
plore the labeled clusters in two different ways: 1) by analyzing an
individual level of detail to understand the clusters’ child-child re-
lation, and 2) by switching between different levels of detail to un-
derstand the hierarchical structure and composition of the clusters.
This allows users to choose the level of abstraction that is most use-
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ful for their analysis goals, and to explore a large amount of labeled
data. We tailored the t-SNE projection algorithm to make use of
the hierarchical structure of the data and to reuse already computed
positional information. Animations help the users to understand the
transitions between different levels of detail. Interaction techniques
support the exploration on a given level of detail and ease the iden-
tification of related clusters in the visualization.

We demonstrated the applicability and usefulness of the ap-
proach with two use cases. In the first one, we showed the explo-
ration aspect of the approach by analyzing the tag structure of the
question-and-answer website StackOverflow to extend our under-
standing about a domain. In the second use case, we applied the
approach to the field of patent analysis to support an analyst in fil-
tering a set of patents.

Key challenges for future work include the appropriate labeling
of merged clusters and the automatic detection of useful levels of
detail. Furthermore, improved methods to even better reflect the
global and local relatedness of clusters in the spatial layout need
to be examined.
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