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Figure 1: Online 3D shape repositories contain shapes with both color and texture data. We consider these characteristics along with geometric
features to define a style metric between different 3D shapes. The images above show two examples of 3D scene composition created with our
style similarity metric that considers geometry, color, and texture.

ABSTRACT

The idea of style similarity metrics has been recently developed
for various media types such as 2D clip art and 3D shapes. We
explore this style metric problem and improve existing style simi-
larity metrics of 3D shapes in four novel ways. First, we consider
the color and texture of 3D shapes which are important properties
that have not been previously considered. Second, we explore the
effect of clustering a dataset of 3D models by comparing between
style metrics for individual object types and style metrics that com-
bine clusters of object types. Third, we explore the idea of user-
guided learning for this problem. Fourth, we introduce an iterative
approach that can learn a metric from a general set of 3D mod-
els. We demonstrate these contributions with various classes of 3D
shapes and with applications such as style-based similarity search
and scene composition.

Index Terms: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Geometric Algorithms

1 INTRODUCTION

Metric learning was introduced in the machine learning commu-
nity for computing distance functions [11]. The concept of metric
learning has recently been applied to various problems in computer
graphics for computing distance functions that correspond to style
similarity metrics for 2D clip art [7], infographics [18], and 3D
shapes [13, 14]. Our work is inspired by these previous works and
we focus on style similarity metrics of 3D shapes in this paper. We
start with the same overall framework of computing 3D shape fea-
tures, collecting human preferences of style data with crowdsourc-
ing, and learning a style similarity distance function between pairs
of 3D shapes. In contrast, we improve existing work with four novel
contributions.

∗e-mail: kapil.saini@hotmail.com
†e-mail:manfred.lau@gmail.com

Our first contribution is in considering the color and texture of
3D shapes in addition to their geometry within the style similarity
metric. To the best of our knowledge, the state-of-the-art previous
works [13, 14] focus only on geometric features. We compute ad-
ditional features corresponding to the color and texture of each 3D
model, and study the role of these features towards the style metric
in addition to geometric features such as curvatures, shape distri-
butions, and shape diameter functions. We hypothesize that color
and texture features would be dominant over geometric features.
We test this hypothesis by observing the relative values of the set
of learned weights that correspond to the features, and by observ-
ing the results of style-based similarity searches of 3D models with
colors and textures.

The second contribution considers learning style metrics of 3D
models by clustering them. If the 3D shapes represent multiple
object types, we can cluster them and learn style metrics in differ-
ent ways. We can have a metric for each pair of object types (e.g.
chairs → tables, forks → spoons) which we hypothesize will be
more accurate, but there will be N2 metrics if there are N object
types. We can also build clusters of object types (e.g. “furniture”
for chairs and tables, “cutlery” for forks and spoons). We will have
K2 metrics if there are K clusters, which can be much smaller if K is
much smaller than N. However, we hypothesize that these metrics
will be less accurate as they combine 3D shapes of different types.
While Liu et al. [13] compared between learning from triplets (i.e.
data generated from queries) of two object types (e.g. X → Y , and
Y → X) and all triplets, they did not explore further the clustering
of object types that we propose. Our “clustering” is intuitive as the
3D models are typically divided into high-level clusters such as cut-
lery and then more specific object types such as forks, spoons, and
knives.

The third contribution is to explore the idea of user-guided learn-
ing for the style metric problem. We experiment with learning both
generic and user-guided metrics of style similarity. The generic
metric is based on the crowdsourced style matching preferences,
while a user-guided metric is based only on one user’s style prefer-
ences. If a user is not satisfied with the search results from a crowd-
sourced metric, our interface allows the user to provide information
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(e.g. re-rank the results) and create new training data for learning a
user-guided style similarity metric. We hypothesize that this user-
guided concept can be useful for learning personalized metrics for
different users.

Our fourth contribution is to introduce an iterative approach that
can learn a metric from a general set of 3D models. The motivation
is that previous work constructs the crowdsourcing queries either
randomly which can lead to many queries that provide irrelevant
data [13], or by manually placing all 3D models into carefully-
constructed groups in order to generate useful queries [14]. We
thereby develop an approach where an initial set of queries is used
to learn a metric, which is then iteratively used to generate further
queries and metrics. We hypothesize that this iterative process can
generate useful queries without tedious manual processing.

We demonstrate the above four contributions with various
classes of 3D shapes (e.g. furniture, tableware, and cutlery) and
build tools to show the applications of style-based similarity search
and 3D scene composition. We obtain empirical results to test our
hypothesis in each case. Our results will help to improve the devel-
opment of style similarity metrics of 3D shapes.

1.1 Related Work

Style Similarity Metrics and Analysis. There has been a recent
interest in research in style-based similarity metrics of both 2D and
3D content. The idea is to compute a style-based distance function
between pairs of 2D or 3D objects. In the case of 2D content, such
distance functions have been developed for 2D clip art [7], font
selection [15], and infographics [18].

In the case of 3D content, the state-of-the-art methods for com-
puting style similarity metrics of 3D shapes [13, 14] are most
closely related to our work. Liu et al. [13] construct part-aware fea-
ture vectors for predicting style compatibility between 3D furniture
models from different object classes. Lun et al. [14] create a style-
similarity measure based on geometric elements of the 3D shapes.
Our work is different in the four contributions described above. In
particular, we give more details here on how data is collected in
previous methods that is different from our approach. While Liu
et al. [13] learn a distance metric from randomly generated crowd-
sourcing queries, Lun et al. [14] learn it from crowdsourcing queries
that are selected from groups of 3D models that are manually pre-
classified. However, if the number of 3D models is large, construct-
ing queries (i.e. in the form of triplets of 3D models) at random can
result in a large number of queries for which humans do not provide
consistent responses. Such queries do not provide useful informa-
tion for the learning process. On the other hand, Lun et al. [14] con-
structs most of the queries by first manually placing the 3D models
into meaningful groups, from which more useful queries can be
generated. However, a manual pre-processing of the 3D models
is required. In addition, these queries typically have obvious re-
sponses such that the crowdsourcing step seems unnecessary. In
this paper, we thereby take an iterative approach to learn a metric,
similar to an adaptive selection method to generate queries [21].
Our iterative approach does not generate random queries (except in
the first iteration) and does not require a manual pre-grouping of
the 3D models.

There has also been recent work on performing style analysis in
shapes. For example, Li et al. [12] perform general analysis of
curve styles in a set of shapes. However, they only address curve
styles along 2D silhouette profiles and do not consider structural or
3D shape styles.
3D Shape Retrieval. Our work is related to the area of 3D shape
retrieval [1, 5, 9] as one of our applications is in style-based search
of 3D shapes. The key difference of our work is in the “style-based”
aspect.
Personalized Content Retrieval and User-Guided Learning.
Personalized information retrieval [17] involves learning a user spe-

cific model of perceived relevance to present reordered search re-
sults. The concept of relevance feedback in 3D shape retrieval
provides an efficient way to give a user more control over the
process of retrieval and exploration of 3D shapes. For instance,
Gong et al. [8] build a user-friendly interface for 3D object retrieval
using relevance feedback, while Gao et al. [6] employ relevance
feedback to allow users to perform active exploration of large 3D
datasets. There also exists previous work in personalized image
search [19, 10]. For example, CueFlik [4] allows users to re-rank
search results for the problem of image search, and to create their
own rules which can then be used to improve the search. Our work
explores the idea of user-guided learning to learn user-guided style
metrics for 3D shapes.

Figure 2: Overview of our framework. Our novelty is in consider-
ing color/texture features (step 2), exploring the learning of metrics
with different clusters of 3D shapes (all steps), user-guided learning
(steps 4 and 5), and an iterative approach (steps 3 and 4).

1.2 Overview

Figure 2 shows an overview of our approach. We collect 3D models
from online sources (step 1). We then compute various shape de-
scriptors or features (including color/texture features) for each 3D
model (step 2). We generate queries containing triplets of 3D mod-
els and place them on Amazon Mechanical Turk to collect crowd-
sourced data regarding style preferences of the 3D shapes (step 3).
The features and collected data are then used to compute a style
similarity measure with an iterative approach (step 4). The style
metric can be used in various applications, including style-based
search of 3D models (step 5). An individual user can re-rank the
models in our interface according to their style preferences, and
this information can then be used to compute a user-guided style
metric.
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2 DATASET AND MESH FEATURES

2.1 Dataset
We collected 3D models from the following sources: 3D Ware-
house, Threeding.com, Thingiverse, Lun et al. [14], and ShapeNet
[2]. The object (Figure 3) types can be categorized into “tableware”
(teapots, sugar bowls, creamers), “cutlery” (knives, spoons, forks),
“living” room furniture (sofas, coffee tables), and “dining” room
furniture (chairs, tables).

Figure 3: Example 3D models. The rows correspond to dining room
furniture, cutlery, living room furniture, and tableware.

We collected 3D models in two ways. First, we specifically build
a set of shapes such that we can easily construct queries (Figure 4)
where the user can specify whether his/her style preferences of 3D
shapes is more dependent on geometry or color/texture. For exam-
ple, in the “living” room furniture example in Figure 4, “A” matches
with “B” more in its geometry aspects while “A” matches with “C”
more in its color/texture. Understanding whether users prefer the
geometry or color/texture aspects more is important for our anal-
ysis of style similarity. Hence we map a selected set of textures
onto a set of 3D shapes. Our choice of texture images is inspired by
commonly-used patterns in real life. For example, dining room fur-
niture mainly uses wooden shades and textures while living room
furniture uses fabric shades and textures. We have 17 models x 5
textures for each type of tableware (i.e. 17x5 teapots, 17x5 cream-
ers, 17x5 sugar bowls), 21x7 for each type of cutlery (i.e. 21x7
spoons, 21x7 forks, 21x7 knives), 18x7 for each type of living room
furniture (i.e. 18x7 sofas and 18x7 coffee tables), and 21x7 for
each type of dining room furniture (i.e. 21x7 chairs and 21x7 ta-
bles). Second, we downloaded a general set of 3D models from the
ShapeNet [2] online repository. For the “living” and “dining” cate-
gories, we have the following types and numbers of models: chairs
(37), tables (35), sofas (35), and coffee tables (27). These models
have much variety in both their geometry and color/texture.

2.2 Geometric Features
We compute shape descriptors on the dataset of 3D models to obtain
a 2728-dimensional feature vector for each 3D model (x). Before
computing features, all models are oriented in the same direction
and scaled to have similar proportions within each object type. We
use an over-complete set of features and let the learning decide the
relative importance of each feature.

We aim to capture both global and local shape properties. The
features are not new on their own. Please refer to previous
work [3, 14, 16, 20] for details of them. We compute histograms
of the following (with the number of histogram bins in brackets):
shape distribution (128), curvature (gauss, mean, max, min: 128

Figure 4: We specifically build parts of our dataset to test whether
users prefer to match the style of 3D shapes based on geometry,
color/texture, or both. We show some examples in various cate-
gories. For the “living” category, B is more similar to A than C in
geometry but is less similar in color/texture. For the “tableware” cate-
gory, C is more similar to A than B in both geometry and color/texture.
For the “cutlery” category, both B and C are different from A in their
geometry and color/texture.

each), shape diameter (128), light field descriptor (470), voxel gra-
dient (192), voxel gradient direction (128), silhouette centroid dis-
tances (192), silhouette Fourier descriptor (57), silhouette Zernike
moments (108), silhouette D2 descriptor (192), silhouette gradient
(192), silhouette gradient direction (96), and shape histogram (192).
For these geometric features, there are a total of 2587 dimensions
in the feature vector.

The first three features above are computed on a dense
uniformly-sampled version of a model’s surface, which allows for
avoiding artifacts caused by the triangulation of a shape. For the
other features above, the model is voxelized (300×300×300), and
silhouettes along the x, y, and z directions are obtained by project-
ing the voxel space onto the three axes respectively.

2.3 Color and Texture Features
We compute the following features (inspired by [7]) to capture color
and texture properties: average HSV of the top five dominant colors
(3), hue histogram (32), saturation histogram (32), value histogram
(32), and local binary patterns (42). Our feature vector has a total of
141 dimensions of these color/texture features. To maintain unifor-
mity, all texture images are resized to 512×512. A 3D shape may
have more than one texture. For example, a 3D model of a chair
may consist of a wooden texture for its seating area and a steel tex-
ture for its legs. We handle multiple textures by computing the same
features above for each texture and combining their histograms.

3 COLLECTING STYLE SIMILARITY INFORMATION

This section describes the process of collecting data from humans
about the style similarity of 3D shapes. Since it is difficult for hu-
mans to provide absolute similarity values (for example, to provide
a real number to say how stylistically similar a chair model is to a
table model), we ask humans to provide relative values. We differ-
entiate between crowdsourced data collection with many users and
user-guided data collection.

3.1 Crowdsourced Data Collection
We collect data by gathering the preferences of a large number of
humans by posting tasks on Amazon Mechanical Turk. This idea
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is similar to previous work [7, 13, 14] and we describe our process
here for completeness. The key is to collect data in the form of
triplets where we have three objects (A, B, C) and A is more similar
in style to B than C. To collect such triplets, we create queries where
a human is presented with a 3D model of one object type X and six
models of object type Y . Figure 5 shows some example queries.
The task is to identify which two of the six of type Y are more
similar in style to the model of type X . For each task, we get eight
triplets. If we let the two preferred type Y be Y1 and Y2 and the rest
be Y3 to Y6, the eight triplets are of the form (X ,Y1,Y3−Y6) and
(X ,Y2,Y3−Y6).

Figure 5: Four example HIT tasks. For each task, users were asked
to select two pairs of models out of the six that are more similar in
style compared to the others. Users were instructed to compare the
following to make their decision: number of parts and their arrange-
ment, color, texture, dimensions of parts and the overall shape, and
curviness of parts and the overall shape.

We post these tasks as HITs (Human Intelligence Tasks) on
Amazon Mechanical Turk. Each HIT contains 25 tasks and we
paid $0.15 for each HIT. We can choose the 3D models in these
tasks manually or with an iterative approach (Section 4.2). We gen-
erate tasks with various pairs of object types, as indicated in Fig-
ure 6. Each human “Turker” is initially given written instructions
and an example task with the responses (two pairs) already chosen
by us. We ask Turkers to specifically pay attention to the overall
shape, shape of parts, color, and texture before providing their pref-
erences. For the crowdsourced data collection, we had 220 users
and collected 48,000 triplets.

Figure 6: Object types in HIT tasks. Pairings of 3D model types for
which crowdsourcing queries were generated.

3.2 User-Guided Data Collection
We also investigate to see if we can learn user-guided metrics and
hence we collect data from individuals. We do not use Mechanical
Turk here as it can be difficult to require a specific Turker to work
on many HITs to collect the needed data (as many Turkers would
do just one HIT). Hence we have users who directly use our tools
in our lab to collect personalized data. We have two ways to collect
such data and we use both of them and combine the data.

First, we built a tool to allow users to specify their own prefer-
ences by interactively re-ranking search results. The idea is that if a
user is not satisfied with the results from the crowdsourced metric,
he/she can re-rank the results to generate training data which can

then be used to learn a user-guided metric. The tool (Figure 7 top)
allows a user to visualize all 3D models of an object type on the left
scrollable panel, where the models can be ranked according to their
style similarity to a selected 3D model in the current environment
on the right. A user is initially asked to perform a search with the
tool using the crowdsourced metric. The user can then re-arrange
the ranked results based on his/her preferences of how well they
match in style with a model selected in the current environment.
The user is asked to specifically place the ten closest match at the
top since we use them to generate triplets data. The user interface
consists of dragging and dropping the images of the 3D models in-
teractively with the mouse to re-order them. If there is a long list of
3D models in the scrollable panel, the user can also move the mouse
cursor over a 3D model and press a key on the keyboard to move
it to the top of the ranking. After re-arranging the models, the user
clicks a button to generate new triplets according to the ranking.
The triplets are of the form (A, B, C) where A is the selected model
in the environment, B is one of the top ten ranked models, and C is
one of the other models (not ranked as top ten). Such triplets indi-
cate that for the selected model A, the model B is more similar in
style to it than C. This process generates 10∗(n−10) triplets where
n is the number of models we have for the object type being ranked.

Second, we provide another tool (Figure 7 bottom) for the user to
generate triplets data. For this tool, the user can choose two object
types X and Y , and the system randomly chooses one model of type
X and six models of type Y . The user chooses two of the six and
the system generates eight corresponding triplets (as described in
the HIT tasks above).

For this user-guided data collection process, we had eight users
who collected data for various object types. Each user generated
just over 30,000 triplets and took about 45 minutes.

Figure 7: User-Guided Data Collection. Top: A tool for the user to
specify style preferences. Right window shows a 3D environment.
Left window shows a list of 3D models of an object type. This list
can be ranked based on the style similarity compared to the selected
model on the right. The user can interactively drag and drop these
models to re-rank them to specify their own style preferences, and
then the metric can be re-trained. Bottom: Another tool for the user
to generate as many additional triplets as he/she wishes. It uses a
format that is similar to the HIT tasks.

Chairs Tables Sofas Coffee tables

Spoons Forks

Knives

Creamers

Teapots Sugarbowls
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4 LEARNING SIMILARITY METRIC

In this section, we describe our framework for learning a style sim-
ilarity metric with the feature vector and similarity data described
in Sections 2 and 3. The framework is based on metric learning and
is inspired by previous methods [7, 18]. Our work takes an iterative
approach to compute a style metric.

4.1 Style Metric Computation
We use a metric learning approach to compute a distance between
two 3D models based on their style similarity. Let x and y be the
feature vectors for two 3D models, and we wish to compute the
distance between them:

dW(x,y) =
√

(x−y)T W(x−y) (1)

The learning formulation and solution to solve for W is the same
as in previous approaches [7, 18], and hence we do not repeat the
details here but refer the reader to the previous works.

4.2 Iterative Approach
We take an iterative approach to learn a metric and the idea is
to gradually build a better W matrix. We take the steps in Al-
gorithm 1 for each pair of object types X and Y , with xi and
yi denoting the feature vectors of Xi and Yi respectively. The
random pick f rom(X) function returns a random shape from ob-
ject type X , and the function learn matrix using triplets(S) returns
the weight matrix using the set of triplets S and the corresponding
feature vectors.

Algorithm 1 Iterative learning algorithm
1: procedure ITERATIVE–LEARN
2: W0 = identity matrix or random matrix
3: for p=1:N
4: S =∅
5: for q=1:M
6: Xi = random pick f rom(X)
7: Yi = argminY dWp−1

(xi,y)
8: Y j = random pick f rom(Y \Yi)
9: S = S∪{(Xi,Yi,Y j)}

10: Wp = learn matrix using triplets(S)
11: end procedure

We post HITs on Amazon Mechanical Turk to collect data and
learn the weight matrix in each iteration of Algorithm 1. We can
either stop the iterative process after a fixed number of iterations
or until the accuracy starts to decrease. We compute the prediction
accuracy of a metric learned with a set of triplets by performing
five-fold cross validation on them.

The reliability of Turkers was an issue when collecting crowd-
sourced data. For each HIT, we have 5 tasks out of 25 as control
questions to check the quality of the responses. We only accept a
HIT if 80% or more of the control questions match with our re-
sponses. This is similar to the idea of control questions in previous
work [7], and these control questions have clear answers that are
meant to check if Turkers are realistically attempting the questions
or just randomly selecting answers. In each iteration, we keep re-
posting the rejected HITs (which can be done by new Turkers) until
we get the desired number of HITs.

We noticed that the HIT rejection rate tends to be high in the
initial iterations (as high as 60% in some cases). This is because
the initial iterations produce essentially “random” triplets (i.e. Yi
and Y j being random due to the initial W). Hence it was difficult
for Turkers to provide good responses without paying proper atten-
tion and many of them gave responses that seem random. As we
progress towards more iterations, the learned W matrix becomes
more effective and the triplets become less “random.”

5 RESULTS AND APPLICATIONS

We present the results towards each of our four contributions. We
use the applications of style similarity based 3D model search and
3D scene composition to demonstrate our work.

5.1 Color and Texture Features
We learn the weight matrices for various object categories with the
iterative approach. We experimented with both diagonal and full
matrices and empirically observe no significant differences. Hence
we choose to learn diagonal matrices and plot the log of the diago-
nal values (Figure 8) which correspond to the relative importance of
the feature values. The plots show that color-related features con-
sistently dominate over the geometry features, and this is true across
the four categories. The other pattern we observe in these plots is
that there is consistency in the 2700+ feature values again across the
four categories, which shows that our method is robust. These re-
sults are observed for our data collection which includes 3D shapes
we manually textured and general 3D shapes downloaded from on-
line datasets.

Figure 8: Log plots of the learned weights for (from top left) “din-
ing”, “living”, “tableware”, and “cutlery” categories. The weights cor-
respond to features in the feature vector, in the order described in
Section 2. There are 13 geometric features (blue bar on bottom of
each plot) and 5 color/texture features (red bar).

Figure 9 shows the results of style similarity based search with
our style metric. The top five search results for each query 3D
model show that while both geometry and color/texture are im-
portant, color/texture is considered first when attempting to match
style before geometry is considered. This is true across the differ-
ent types of shapes that are shown, which again include 3D shapes
we manually textured and general 3D shapes downloaded online.
In the second row (right column) of Figure 9, the red sofa happens
to match well with the query model as their curvatures are similar.
In Figure 1, we use our style similarity metric with our search tool
to compose 3D scenes. As the 3D models that are preferred by the
crowdsourced metric are placed at the top of the search results, it is
easier to find models that match in style with a selected shape.

Hence we have empirical evidence to support our hypothesis that
color/texture features dominate over geometry features, in the plots
of weights and in the style based search results.

5.2 Clustering of Object Types
Table 1 shows the accuracy results for different pairings of object
types and clusters. We do not take the iterative approach here to en-
sure that the randomness does not affect the results. We instead cre-
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Figure 9: Style similarity based sample search results with our crowdsourced metric. There are two columns of results. First model in each
column is the query model which is followed by top five models that best match in style with the query.

ated HITs manually to cover the range of 3D models in each object
type. We took 5 HITs with acceptable responses (after control ques-
tions) for each pair of object types, and generated a total of 6040
triplets. For the clustering into groups, the idea is that chairs/tables
can be a “furniture” cluster and forks/spoons can be a “cutlery”
cluster. Since the models in our dataset have already been labeled
(e.g. as chairs, forks), we manually cluster them into higher-level
categories (e.g. chairs/tables is “furniture”). We combine the col-
lected triplets from the separate types to create the triplets data for
the clusters.

Chairs Tables Forks Spoons
Chairs - 66.73 34.52 50.44
Tables 73.29 - 41.67 47.52
Forks 64.25 51.19 - 80.19

Spoons 38.87 61.17 61.38 -

Chairs and Tables Forks and Spoons
Chairs 66.73 42.24
Tables 73.29 42.99
Forks 61.94 80.19

Spoons 50.16 61.38

Chairs and Tables Forks and Spoons
Chairs and Tables 73.15 42.65
Forks and Spoons 51.83 72.21

Chairs, Tables, Forks and Spoons
Chairs, Tables, Forks, and Spoons 56.84

Table 1: Cross-validation percentages for different pairings of object
types and clusters. We learn metrics for X → Y, where X (and Y) is
the type or cluster in each row (and column).

Observing the results from Table 1, we see that the percentages
for some object types (e.g. chairs and tables) are comparable to the
results with the iterative approach (shown below). We intentionally
compared across different object types here (e.g. forks → tables)
and hence some pairings give low percentages as it may be difficult
to compare between some object types. This does not affect what
we aim to show: the tradeoff between learning metrics for specific
object types versus clusters of object types.

We observe that the percentages of the clustered pairings are
somewhat averaged from the percentages of the separated pairings.
We hypothesized that the clustered metrics would be less accurate,
as they may be mixing object types that are quite different. How-
ever, our empirical results show no clear consensus of whether the
metrics from specific object pairings or clustered pairings is better.

Chairs and Tables Forks and Spoons
Chairs and Tables 72.30 40.68
Forks and Spoons 52.12 71.10

Chairs, Tables, Forks and Spoons
Chairs, Tables, Forks, and Spoons 56.36

Table 2: We randomly take half of the original triplets (compared
to Table 1) in each of these five cases and re-calculate the cross-
validation percentages.

Since we combine the triplets data to learn a style metric dur-
ing this “clustering” process, we also tested whether the number of
triplets would have been a variable that affects the percentages (i.e.
more triplets data may lead to a higher percentage). Table 2 shows
the results where we randomly take half of the triplets in each case
and re-calculate the percentage. These results show that the number
of triplets does not affect the percentage.
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Figure 10: Comparison between crowdsourced (first row in each
case) and user-guided (second row in each case) results for “din-
ing”, “living”, and “cutlery” categories. Each row first shows the query
model and then the top five ranked models from style similarity based
search.

5.3 User-Guided Style Similarity Metrics
Figure 10 shows that the user-guided results are interestingly some-
what different from the crowdsourced results. For example, the
color and shape of the legs of the furniture pieces are different be-
tween the two results. For the “cutlery” example, the crowdsourced
results mainly match with the color/texture features, while the user-
guided results include a spoon that has very similar geometry (i.e.
round-shaped handle) but different color/texture. The individual
user in this case was attentive to the geometry of the cutlery in ad-
dition to their color/texture. These results demonstrate that we can
learn a style metric for individual users that is different from the
crowdsourced metric, providing evidence for our hypothesis that
the user-guided concept can be beneficial in some cases. However,
since the overall color and shape preferences among different peo-
ple are still mostly consistent, the differences in the user-guided
metrics may only be subtle.

5.4 Iterative Learning Approach
For each category of shapes, we started with posting randomly gen-
erated triplets. We collected the same number of triplets for each
iteration, and we have between 1600 and 2000 of triplets for each
of our four object categories (in each iteration). The accuracies
achieved with the metric learned on such triplets in each iteration
are shown in Figure 11. As the first iteration represents the non-
iterative method since it is the same as randomly generating triplets
as done in previous work, we can compare between the percentages
for the non-iterative method and the iterative method (our last iter-
ation). The percentages increased from 69% to 87% for “dining”,
from 65% to 85% for “living”, from 57% to 82% for “cutlery”,
and from 49% to 86% for “tableware”. These results support our
hypothesis that the iterative process can generate useful HITs, and
can avoid having to randomly generate triplets [13] or to manually
group the 3D models in advance [14]. We found that stopping after
a fixed number of three iterations worked well, and this was consis-
tent across the four object categories.

Figure 11: Cross-validation percentages for the iterative learning
for “dining” (chairs→tables), “living” (sofas→coffee tables), “cutlery”
(spoons→forks), and “tableware” (teapots→sugar bowls). First bar
(blue) in each category shows the accuracy of the metric learned on
randomly generated triplets.

6 DISCUSSION, LIMITATIONS, AND FUTURE WORK

Crowdsourcing and learning approaches have recently been suc-
cessfully applied to various computer graphics problems. In par-
ticular, this approach has been applied to compute a style similarity
metric for 3D models. In this paper, we further explore this problem
and provide four new contributions.

In addition to the color and texture features, other properties such
as construction material (e.g. glass or metal) and how textures are
mapped to 3D shapes (not just the texture image) can be taken into
consideration in future work when computing features.

Our “color/texture“ contribution may be slightly biased to our
dataset as the models were semi-manually textured. Since the vari-
ability in textures in large online datasets is different, valuable in-
sights might be obtained in potential future work with datasets con-
taining more variation in color, texture, and geometry.

The results from our clustering experiments are different from
the results presented in Liu et al. [13] although they do not clus-
ter the object types as we do. In their “all triplets” scenario where
triplets of different pairs of object types are combined, their results
show a better percentage accuracy compared to when the triplets of
different objects types are separately trained to form metrics. In the
case where we combined the four object types in our experiments,
our results show a similar percentage accuracy compared to metrics
computed with separate object types. Future work can further in-
vestigate the reason for this discrepancy. A larger number of object
types may give more insightful results.

One limitation to the current learning method is that the distance
function is a simple Euclidean distance metric. Hence the learned
style metrics are limited in their expressive power, and more com-
plex non-linear functions can allow the metrics to better represent
human preferences.
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