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Chapter 0

Notes to Our Test Reader

0.1 What We’d Like You to Do

Thanks a lot for agreeing to test read this chapter! (Sorry that we are giving you the
impersonal version of this page. Don’t worry, we do like you.) Note that we are interested
in your comments on everything, ranging from content to grammar. However, the real thing
that we are looking for is your thoughts on the style: is the narration at the right level of
formality? Are the problems interesting? Too trivial? Do you find yourself being intrigued,
or where do you find yourself being put off? How is the pace? Any parts that are too hard?
The other parts are easy enough to fix later, but the style and ideas are pretty much the
core of the book. That being said, feel free to nitpick about anything you want.

We’d appreciate if you can read in as much detail as possible, trying to work the problems
as if you were actually a student reading the text. The more detailed feedback, the better.
Also, if you could let us know about how much time you spent working on the chapter (for
our reference), that would be great.

Finally, we’d appreciate answers to the following questions, relative to other chemistry
texts you have read. If you have not read a chemistry text, just rate it against what you
think the average high school chemistry text is like. Please express your answers as real
numbers in the interval [−1, 1] (so −.204 would be acceptable, but 15 would not).

1. How interesting was −1 (completely boring)
what you read? 0 (neutral)

1 (amazingly cool)
2. How informative was −1 (there was information in this chapter?)
what you read? This includes 0 (learned a bit (or would have learned, had I not known it all))
learning how to reason chemically. 1 (wow, I learned (or would have learned) so much!)
3. How was the pace? −1 (the tortoise, hare, and slug are all dancing on the finish line)

0 (just right!)
1 (was that the Concorde you passed back there?)

4. Would you recommend this −1 (no way)
over your other text? 0 (they are pretty much equivalent, in my opinion)

1 (your textbook rocks!)
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CHAPTER 0. NOTES TO OUR TEST READER

0.2 How to Give Us Your Feedback

Any way that works for you. Our preferred method is via in-text comments (which are
cleverly concealed under the pseudonym “Notes,” for reasons unfathomable), which you can
make using Adobe Reader 7.0 or higher. (If it tells you that you don’t have permission to
comment, we made a mistake and sent you the wrong copy; just let us know.)

0.3 Style of This Book

Confused by what’s up with our style? See http://achemicalprogression.googlepages.

com.

0.4 Topics in our Problems and Solutions

0.4.1 The Problems

You’ll notice that the problems we include are usually not cut-and-dried problems with a
definite answer like “5.” Rather, they tend to be open-ended tests of qualitative reasoning.
This is because this is what chemistry really is at this level, and this book seeks to help
students build a powerful chemical intuition. That being said, please let us know if you find
that a question is too vague or have any other complaints!

All problems in a section are intended to build off of one another. The book as a whole
will have a similar structure; each chapter building off the previous ones.

0.4.2 Symbols to Denote Problems

Here are the symbols you may see at the beginning of a problem. We might add more later
if we think of any.

(To Think About) Problem is interesting but may be too difficult/ill-defined for student
to answer alone. Will provide solutions to these.

(Open-Ended Exploration) Problem has many possible results; our answer is just one
of many. Generally included to allow the student to do an amount of creative work;
perhaps designing a theory or notation.

(*) Problem is difficult, but reasonably so.

0.4.3 The Solutions

Every in-text problem has its own solution. The end of chapter problems (in the Further
Explorations section) will have solutions in the Solutions Manual (which has not yet been
written). Exercises will also be solved there. We denote the end of a solution with a small
box on the right side, as is standard with math texts.

4

http://achemicalprogression.googlepages.com
http://achemicalprogression.googlepages.com


0.5. BACKGROUND INFO FOR WHAT YOU ARE ABOUT TO READ

0.5 Background Info for What You Are About to Read

You’ll notice that the document begins with Chapter 2. That’s because we have not yet
written anything that comes before it. The following topics will be covered in Chapter 1:

1. The basic form of chemical reactions

2. Energy and its meaning

3. Meaning of matter and mass

4. Elements and compounds

5. Dimensional analysis and significant figures

The chapter you are about to read is currently planned to be Chapter 5 in our final book.
Thus it assumes a working knowledge of the previous chapters.

• Chapter 1 (“Intro to Chemistry”) will deal with dimensional analysis, fundamentals of
chemistry, and the basics of matter and energy (we haven’t written it yet).

• Chapter 2 (“Discovering the Atom”) deals with the history and general structure of
the atom, including subatomic particles (however, it does not cover electron configu-
rations).

• Chapter 3 (“Quantum Mechanics”) presents a qualitative description of quantum me-
chanics.

• Chapter 4 (“Atomic Structure”) deals with the electronic structure of the atom. Covers
ideas such as electron configuration and periodic trends.

We’ve been pretty careful to make sure that we assume no prior knowledge of chemistry
or physics. We haven’t yet decided how much math we’re going to assume.

Thanks once again, and we look forward to your honest feedback. Feel free to tear us
apart!

Greg and Will
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Chapter 2

Discovering the Atom

In chemistry, we want to understand the properties of different kinds of matter and figure
out how those properties are related to one another. Since science is a description of the real
world, we usually start by looking at reality and then using our results to build theories.
If the theories that we make are worth their salt, we can use them to make predictions,
which can then be tested against reality. The experiments we perform then often lead to the
observation of new phenomena, which starts the whole cycle over again.

So we see that theories are often layered upon one another. A new theory generally does
not spring out of nowhere; it builds upon some existing foundation (or replaces a faulty one).
Of course, there must be some lowest level foundation upon which everything else rests. In
chemistry this is the theory of the underlying structure of matter, at the microscopic, or
most small-scale, basic level. This should make sense; once we know what matter really
looks like on that level, we can build up until we reach the macroscopic world, or the one
we see around us. We will see that on all levels, the theories we develop will be powerful
enough to make predictions, allowing us to solve a wide range of problems.

In this chapter, we are going to discover some components of the underlying theory of
chemistry. We’ll see that while our intuition works well at first, as we delve deeper some
very weird things start to happen. Ultimately, we’ll need to put our intuition aside in favor
of a formal theory, which will be the subject of Chapter 3 (sorry for spoiling the plot!). In
any case, our goal for this chapter is summarized in the following “Big Question.”

The Big Question: Chapter 2

What is the underlying structure of matter, at its most basic level?

2.1 History

Problems

In our modern society, most people have at least a vague notion of how to answer Big
Question 2. Indeed, ask someone on the street, and you will probably get an answer along
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CHAPTER 2. DISCOVERING THE ATOM

the lines of “Everything is built out of atoms, which are like tiny building blocks.” This
might even seem obvious to you. But ask someone from the 1700s, and he will tell you that
the very idea of an atom is preposterous. Indeed, the theory of the atom gained popularity
only relatively recently in history, as we will see.

That being said, you might find it surprising that we have records of speculations about
the atom dating from around 600 B.C.E. in India. And furthermore, the Greeks came up
with their own ideas about atoms around 450 B.C.E.. For a quick warmup, let’s consider
the following thought experiment.

Thought Experiment 2.1.1: Zeno’s Paradox
In ancient Greece, Zeno of Alexandria published a number of paradoxes that he was unable to
resolve. One of them, relevant to our story of the atom, is posed in this thought experiment.
Imagine yourself standing in a room; there is a door in front of you. Now, try to walk out
the door. Before you can do this, note that you must first get halfway from where you
stand to the door. But before you can perform this feat, you must first get halfway to that
point. And before that, you must make it halfway to this halfway point. As you’ll see, we
can continue this argument indefinitely, and thus you must complete an infinite number of
moves before you can move in the first place! Since you can never get started, you can never
move anywhere, and all motion is an illusion.

Problem 2.1 (Solution on page 10)
(Open-Ended Exploration) The ancient Greeks could not come up with a mathematical
resolution to this paradox (although today we do have one). However, the Greeks did come
up with another resolution, one that predicted the existence of some smallest unit of distance.
Can you guess what this resolution is? (Hint: It has something to do with the atom.)

Experiment 2.1.2: Laws of Definite and Multiple Proportions
The following experiment is a combination of the work of the French chemist Joseph-Louis
Proust and the English schoolteacher John Dalton, both of whom were looking into the nature
of matter around 1800. Dalton is generally credited with discovering the first evidence that
the atom exists.
In this experiment, we consider quantitatively how elements combine. Specifically, we mea-
sure the relative masses of the elements making up various similar compounds. (In practice
we can do this by decomposing the relevant compounds and simply measuring the masses
of the resulting elements.) When we do this, we find that a given compound always has the
same ratio of masses of constituent elements, regardless of where the compound came from.
Below, we have tabulated some of our results among similar compounds.

1.
Water 8 g of oxygen for every 1 g of hydrogen.
Hydrogen peroxide 16 g of oxygen for every 1 g of hydrogen.

2.
Nitrous oxide 8 g of oxygen for every 7 g of nitrogen.
Nitric oxide 16 g of oxygen for every 7 g of nitrogen.
Dinitrogen pentoxide 20 g of oxygen for every 7 g of nitrogen

3.
Carbon monoxide 4 g of oxygen for every 3 g of carbon.
Carbon dioxide 8 g of oxygen for every 3 g of carbon.
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2.1. HISTORY

Problem 2.2 (Solution on page 10)
Proust showed that different samples of the same compound have the same ratio of con-
stituent elements, an observation he called the Law of Definite Proportions. The rest of
Experiment 2.1.2 is due to Dalton. Using his results, he came up with the Law of Multiple
Proportions, which is just a generalization of the results we have tabulated. Formally,
it states that when we have two elements that combine with each other in different mass
ratios, dividing one of these ratios by another will always yield a fraction with numerator
and denominator both small whole numbers. (You should check that this law indeed applies
to the data above.)

How does the Law of Multiple Proportions provide evidence for the existence of indivis-
ible, fundamental building blocks of matter? You may assume that these building blocks
have the following properties: they must combine with each other in fixed patterns, they
are preserved in chemical reactions, and elements are made out of only one kind of building
block with fixed mass.

Problem 2.3 (Solution on page 11)
So all substances are made of these building blocks, which are today known as atoms. In
terms of atoms, what is a compound? What is a chemical reaction?

Experiment 2.1.3: Cathode Rays
This experiment is based off the work of the British physicist J. J. Thomson in 1897. Thom-
son explored the phenomenon of cathode rays, and he was able to show the existence of a
subatomic particle, called an electron. Thus Thomson is considered to be the discoverer of
the electron.
In this experiment, we need to use an electrical field. This is just something that acts to
push or pull objects with a property called charge, which can be either positive or negative.
In chemistry we generally write charges as a whole number, without any explicit units (we’ll
look at the implicit units on charge later in this chapter). This charge is additive, so if we
have an object made out of two pieces each with a +1 charge, the net, or total, charge
of that object would be +2. An object with a net charge, or total charge, of zero is not
affected by an electric field.

A strong electric field is put between two electrodes, or metal surfaces. Some sort of
beam, which is termed a cathode ray, is then emitted from one of the electrodes towards
the other. We find that cathode rays are bent towards positive electrical charges and away
from negative electrical charges.

However, when we put a sample of the metal composing these electrodes in a weak electric
field, there is no visible effect or tendency for motion.

Problem 2.4 (Solution on page 12)
Since light is not affected by electrical forces, cathode rays must be made of particles. Could
they be atoms of the metal electrode or maybe clusters of these atoms? If not, where did
these particles come from?

Problem 2.5 (Solution on page 12)
What implications does this have for the indivisibility of atoms?

Solutions and Discussion (2.1)
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CHAPTER 2. DISCOVERING THE ATOM

Thought Experiment 2.1.1: Zeno’s Paradox

Problem 2.1
(Open-Ended Exploration) The ancient Greeks could not come up with a mathematical
resolution to this paradox (although today we do have one). However, the Greeks did come
up with another resolution, one that predicted the existence of some smallest unit of distance.
Can you guess what this resolution is? (Hint: It has something to do with the atom)

Solution
Examine the assumptions implicit in our thought experiment. If you notice, the paradox only
works if we can keep cutting distance down into smaller and smaller chunks. The Greek’s
resolution was that perhaps space cannot be infinitely divided, and there is a smallest,
fundamental unit of distance.

This resolution was thought up by another ancient Greek philosopher, named Democritus.
By extension, he predicted that all matter should be made up of indivisible units, or as
he called them, “atomos” (meaning “uncuttable” in Greek). Thus, the existence of what
we today call atoms was theoretically predicted thousands of years before there was any
experimental evidence regarding them. Although Democritus’s resolution wasn’t necessarily
true, since the paradox can be resolved mathematically, his idea still had merit. For the first
time, people began thinking about what it would mean if there were a smallest, fundamental
unit of matter.

For the next two thousand years, atomic theory sat essentially untouched. The atom
might have seemed like a cool idea, but there was not yet any experimental evidence that
it existed. But then in the 1800s, everything changed, due to the results of the following
experiment.

Experiment 2.1.2: Laws of Definite and Multiple Proportions

Problem 2.2
How does the Law of Multiple Proportions provide evidence for the existence of indivisible,
fundamental building blocks of matter? You may assume that these building blocks have the
following properties: they must combine with each other in fixed patterns, they are preserved
in chemical reactions, and elements are made out of only one kind of building block with
fixed mass.

Solution
In this problem, we want to show how an experimental result implies a theory. We can do
this by showing that the theory predicts the result, and that in the absence of the theory
the result is either unclear or false.

Consider two elements A and B that have reacted to form a compound. We notice that
the Law of Multiple Proportions is really just saying that, in a compound with a given
amount of A, we can only have certain amounts of B. In particular, these amounts should
all be related by a simple ratio of whole numbers.
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2.1. HISTORY

If we could cut matter down indefinitely, there certainly wouldn’t be an apparent reason
for this to be true. Why would nature care if we were to start off with a compound with
Mass(A)
Mass(B)

= 8
1

and then try to make one with Mass(A)
Mass(B)

= 8
√

2
1

? If there is no scale at which we
cannot keep cutting a material without its losing its identity, we would think that we could
have any of a continuum of ratios of masses of A to B, contrary to observation.

However, if matter can only be cut down until we reach an indivisible unit (characteristic
of the element we are cutting) and, just as importantly, these units must combine with others
in a regular way, the story is quite different. First of all, note that we get the Law of Definite
Proportions for free, without doing any work (incidentally, we also get conservation of mass)!
Now suppose that all units of A have a mass of a and those of B have a mass of b.

Consider some compound of A,B where Units(A)
Units(B)

= x
y
. Then we see that Mass(A)

Mass(B)
= ax

by
.

Once we have this compound, we can reasonably construct a similar compound with, say,
double the number of units of A, and hence twice the mass of A (we just stick an extra

unit of A wherever there already is one). This results in a new mass ratio of Mass(A)
Mass(B)

= 2ax
by

.
Basically, we can add ax a couple times in the numerator and by a couple times in the
denominator, ending up with something of the form (small whole number)

(small whole number)
· ax
bx

, just as the Law of
Multiple Proportions says.

However, there is certainly no way we can hope to end up with anything like a mass ratio
of
√

2ax
by

! Similarly, complicated mass ratios should be difficult, if even possible, to obtain.
Thus we have shown that the Law of Multiple Proportions implies the existence of some

fundamental units of matter. Note the similarity to Democritus’s argument here: we realized
that if we could cut matter into arbitrarily small packets, we would end up with a result
that is contrary to what we observe.

Problem 2.3
So all substances are made of these building blocks, which are today known as atoms. In
terms of atoms, what is a compound? What is a chemical reaction?

Solution
First, think about what we already know. A given compound is built out of a definite
combination of atoms, which are built up in a fixed pattern (why must the pattern be fixed?
If it weren’t, we could slice a compound into macroscopic pieces with differing ratios of
atoms.). Thus a compound is simply some arrangement of atoms, which possibly interact
with one another in some as-yet mysterious way.

Now what do we know about reactions? The atoms of a substance are themselves con-
served in chemical reactions. So after a chemical reaction, we must end up with all of the
atoms that we started with. This means that at an atomic level, the only method that we
have of altering our reacting substances is by changing the positions of atoms.

Thus we have shown that a chemical reaction is just a rearrangement of atoms in some
manner. Perhaps one reaction randomly mixes a bunch of atoms. Or maybe their linkage
with one another has changed. In any case, we now know what a chemical reaction actually
is, which gives us a great deal of predictive power.

With the discovery of the Law of Multiple Proportions, science at last had experimental
evidence that substances are composed of some sort of basic building units, or atoms. Indeed,
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CHAPTER 2. DISCOVERING THE ATOM

at this point, Dalton was sure that he had proved the existence of an indivisible, smallest
unit of matter. Unfortunately for him, he was not quite correct—while he had shown that
macroscopic matter is built of atoms, he overlooked the possibility that atoms could consist
of smaller particles still.

Box 2.1. Technical Note
As it turns out, the Law of Multiple Proportions by itself wasn’t enough to convince everyone.
In the 1900s, spectroscopy (a subject which we will explore later) provided the final evidence
that indeed matter is made out of atoms.

Experiment 2.1.3: Cathode Rays

So now we know that everything in the macroscopic world is made up of atoms, which
are packets of matter that we can use to build all the matter we see around us. At this point
in our exploration, however, we really don’t know much more about the atom. Is it truly
indivisible, as we might like to think (and its name seems to imply)? If not, what can we
break it down into? To answer these questions, we must turn to experiment.

Problem 2.4
Since light is not affected by electrical forces, cathode rays must be made of particles. Could
they be atoms of the metal electrode or maybe clusters of these atoms? If not, where did
these particles come from?

Solution
Our metal as a whole is not pushed or pulled by an electrical field. Thus it has a net charge
of zero, since anything with a charge is affected by an electrical field. Since our substance
is built out of many atoms, its net charge is just the sum of the charges on our atoms. But
these atoms are all the same kind, meaning that they all must have a net of zero charge as
well. Thus cathode rays aren’t atoms of our substance, and they also aren’t clusters of these
atoms.

However, these particles certainly didn’t appear out of nowhere, since this would violate
conservation of mass. Thus, we are forced to conclude that cathode rays must have come
from inside of the electrode’s atoms.

Problem 2.5
What implications does this have for the indivisibility of atoms?

Solution
We have realized that cathode ray particles must have come from inside the sample’s atoms.
Thus the atom is divisible after all!

As we can see from Experiment 2.1.3, contrary to the Greeks’ and Dalton’s beliefs, the
atom is itself divisible. We have already shown it contains at least two different types of
particles. Other experiments prove that there are precisely three kinds of particles in an
atom. These three types of subatomic particles, or those particles which make up atoms,
are called electrons, protons, and neutrons. Note that when we refer to an atom, unless
otherwise specified we mean one that has a net charge of 0.
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2.2. SUBATOMIC PARTICLES

2.2 Subatomic Particles

Problems

Now, you should be wondering, what are the properties of these subatomic particles? We
can think about the subatomic particles as being incredibly tiny spheres. As it turns out,
protons and neutrons can be further divided into sub-subatomic particles called quarks, but
we currently think that electrons truly cannot be cut further. Quarks are crazy little objects
that are always bound in protons and neutrons; we can never observe them on their own.
Although further details of the subdivision of protons and neutrons are fascinating, they are
not relevant to our discussion.

We explore other properties of subatomic particles in the following problems.

Problem 2.6 (Solution on page 16)
Electrically speaking, protons have a +1 charge, neutrons have charge of 0, and electrons
have a −1 charge (this is why we can write charge without units; it is impossible to have a
fractional charge on a normal particle). Note that the signs of these charges are arbitrary
and do not have physical meaning; all that matters is that protons have a charge opposite
to electrons. Given this information, what particle composes cathode rays?

Problem 2.7 (Solution on page 16)
We’ll find that we often have to deal with extremely large numbers of objects. This is
because individual atoms have such small masses relative to macroscopic objects, meaning
in any reasonably-sized sample there are huge numbers of atoms. To make things easier on
ourselves, we’ll define a new unit that just means “a lot of things.” The unit that chemists
use is called a mole, and there are 6.0221 · 1023 objects in a mole of that object, just as
there are 12 objects in a dozen and 144 objects in a gross. As a conversion factor, we write
NA = 6.0221 · 1023 mol−1 (why don’t we include a unit of “objects”?), where NA stands for
Avogadro’s Number after the chemist who first came up with the idea. Note that we can
leave off the “e” at the end of “mole” as shorthand.

An amu is defined as 1
[NA]

g, where [NA] = 6.0221 · 1023 denotes the value of Avogadro’s
number without units. Protons and neutrons have approximately equal masses close to
1.00 amu (atomic mass unit). More precisely, a proton weighs 1.0073 amu while a neutron
weighs 1.0086 amu. Electrons have a mass of 0.00054858 amu (about 1/2000 amu), making
their mass negligible for most purposes.

Find the mass, in grams, of 2.0 moles of protons. Going the other direction, if a mole of
atoms of type X weighs x g, how many amu does a single atom of type X weigh?

After you have completed this problem, you should realize why the mole and atomic mass
unit are such convenient units.

Problem 2.8 (Solution on page 17)
At the microscopic level, so far as we know there are four kinds of forces in our universe.
We have listed them in order of increasing strength, when the particles they act between are
very close.

The first, gravity acts to attract all particles with mass. It is considered a long-range
force because it falls off relatively slowly with distance, decreasing only as the second power
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CHAPTER 2. DISCOVERING THE ATOM

of distance. The more mass two objects have, the more gravitational force there is between
them. This force is thus significant between hugely massive bodies such as planets, but for
our purposes, on the atomic level it is wholly negligible.

The second, the electromagnetic force, acts between pairs of particles with some (for
our purposes) magical property called charge. As we have seen, the particles electrons and
protons have charge. Charge can be either positive or negative. Like charges repel and
opposite charges attract one another. The electromagnetic force falls off as the square of
distance, and thus is also termed a long-range force.

The third, the weak interaction, acts to attract quarks together, even those bound in
separate subatomic particles. This force is responsible for radioactivity. It falls off rapidly
with distance, making it a short-range force.

The fourth and final force in our universe is the strong interaction, which also acts
between pairs of quarks. It is extremely powerful at short ranges but falls off rapidly with
distance; it is also a short-range force. However, at very short ranges it suddenly turns
repulsive.

Given this information, find the forces that act between all possible pairs of subatomic
particles (that is, electron, neutrons, and protons).

Box 2.2. Technical Note
To be precise, we should note that the weak interaction and electromagnetic forces are really
just different aspects of the same thing. However, they are only unified at very high energies,
and so we can disregard this.

Box 2.3. Delving Deeper
For those interested, the equation for the amount of gravitational force between two particles
is

Fgrav =
Gm1m2

r2

and the equation for the amount of electrical force is

Felec =
k|q1||q2|
r2

,

where m1, q1 are the mass and charge on the first particle, m2, q2 are the mass and charge on
the second particle, r is the distance between the particles, G = 6.67 · 10−11 N·m2

kg2 , and k =

8.98 ·109 N·m2

C2 (the unit “C” stands for “coulombs”; an electron has a charge of 1.6022 ·10−19

C).
Just by looking at the values of G and k, you can imagine how much more powerful the

electromagnetic force is than the gravitational force. To make things even worse for gravity,
particles like electrons and protons have much smaller masses than charges.

Problem 2.9 (Solution on page 17)
Assume that two atoms must always be a reasonable distance away from one another, such
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2.2. SUBATOMIC PARTICLES

that short-range forces are negligible. What effect do the neutrons of an atom have on its
interaction with other atoms?

Problem 2.10 (Solution on page 18)
Since atoms themselves have an internal structure, we see that we can have many different
varieties of atoms. Furthermore, any given chunk of matter can contain a number of these
different types of atoms. But at this point, such a chunk of matter is too complex for us
to examine. We are thus motivated to examine substances composed of only single types
of atoms; from these basic building blocks we can later work our way up to more complex
compounds. (If you haven’t noticed, this theme of starting from the simple and using it to
work up to the complex is a general strategy we will see again and again in chemistry.)

Using the result of Problem 2.9, we see that we should define our basic substance, or
element, as a collection of one or more atoms, all of which have the same number of protons.
The number of protons in an element’s atoms is called that element’s atomic number and
commonly denoted by Z.

However, there is a problem here—we have already defined the term “element”! Show
that this new definition of an element is equivalent to the one that we came up with in
Chapter 0.

Problem 2.11 (Solution on page 18)
To this day, we have either observed or created 117 different elements. The ordered ar-
rangement of all these known elements is called the periodic table, which you can find on
the inside cover of this book (unless we come up with a more creative location for it). On
the modern periodic table, elements are arranged in order of increasing atomic number; the
whole number by each element’s name is that element’s atomic number.

Just as atoms can have differing numbers of protons, they can have varying numbers of
electrons. Of course, there is only one number of electron with which the atom is neutral,
or has a net charge of 0 (why?). Now, an atom with an overall net charge is called an ion.
Positively charged ions are called cations, and negatively charged ions are called anions.

A certain atom is ionized to a net charge of −1. It is then found to have a total of 36
electrons. The original atom was an atom of which element?

Box 2.4. Fun Fact
The organization of elements on periodic the table has a number of very nice characteristics.
For example, elements in the same column, or group, have similar physical and chemical
properties, a phenomenon called periodic law. This is not a coincidence, as we will see
when we explore atomic structure in Chapter 4.

Box 2.5. Notation
As you should notice on the periodic table, to each element is associated a one- to three-letter
symbol. To refer to that element in chemical equations, we write its symbol rather than its
name (this is a nice shorthand notation). In ordinary text we can write either one.
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CHAPTER 2. DISCOVERING THE ATOM

Problem 2.12 (Solution on page 18)
Not all atoms of an element have the same mass (why not?). The average mass of a given
element’s atoms as occurs in nature is the atomic mass of that element, denoted by M ,
and is the decimal number shown by that element on the periodic table. The atomic mass
on the table is expressed in amus, or equivalently, grams per mole (you should have shown
this equivalence in Problem 2.7).

How many neutrons does the average chlorine atom have? Express your answer to the
nearest tenth. (Hint: You’ll need to refer to the periodic table.)

Solutions and Discussion (2.2)

Problem 2.6
Electrically speaking, protons have a +1 charge, neutrons have charge of 0, and electrons
have a −1 charge (this is why we can write charge without units; it is impossible to have a
fractional charge on a normal particle). Note that the signs of these charges are arbitrary
and do not have physical meaning; all that matters is that protons have a charge opposite
to electrons. Given this information, what particle composes cathode rays?

Solution
Recall that cathode rays are deflected towards positive charges and away from negative
charges. Thus they are negatively charged. This means that cathode rays must be composed
of electrons.

Problem 2.7
An amu is defined as 1

[NA]
g, where [NA] = 6.0221 · 1023 is the value of Avogadro’s number

(without units). Find the mass, in grams, of 2.0 moles of protons. Going the other direction,
if a mole of atoms of type X weighs x g, how many amu does a single atom of type X weigh?

Solution
When you see a problem that involves unit conversions, you should be ready to go for your
dimensional analysis skills. That is all we do here.
Goal: Find the mass, in grams, of 2.0 moles of protons.
First, we start with our given 2.0 moles of protons. We want to end up with the mass of this
many protons, so we will have to use a factor that gives us the mass of protons, which you
should see is just 1.0 amu

proton
. In order to make everything match, we also need to get our moles

of protons into plain old protons and then amu into grams. The calculation is shown below.

2.0 mol protons · [NA] protons

mol protons
· 1.0 amu

proton
· 1 g

[NA] amu
= 2.0 g.

We could also reason through this problem qualitatively: we see that 2.0 moles of protons
has a mass of 2.0 moles worth of atomic mass units. But a gram is just a mole of atomic
mass units, and so we again arrive at a total mass of 2.0 grams.
Goal: If a mole of atoms of type X weighs x g, how many amu does a single atom of type
X weigh?
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This is again just a dimensional analysis problem. As before, we have two possible ap-
proaches. Formally, we can set up the following series of conversions (make sure you see the
reasoning behind each step):

x
g

mol
· [NA] amu

g
· 1 mol

[NA] atoms
= x

amu

atom
= x amu,

where the final equality follows from the fact that atoms are dimensionless. Alternatively,
we could again reason that a gram is a mole’s worth of amu, and so a single atom of X must
weigh x amu.

From this problem, we see that to convert from the molecular level to the macroscopic
level, we don’t have to do very much calculational work. Thus, for example, we see that
atomic masses on the periodic table really have two meanings—they represent both the mass
(in grams) of a mole of atoms and the mass (in amu) of a single atom.

Problem 2.8
Find the forces that act between all possible pairs of subatomic particles (that is, electron,
neutrons, and protons).

Solution
We know that gravity attracts any two particles with mass, and the weak and strong in-
teractions act to bind together protons and neutrons. Of course, for any practical purpose
gravity is negligible on the scale of two particles, but it still acts. The same holds for the
interactions between a proton and neutron that are relatively far apart. The electromagnetic
force acts between charged particles. Thus, we obtain the following.

Particle Force
Electrons and protons Gravity, electromagnetic force.
Neutrons and protons Gravity, weak interaction, strong interaction.

Electrons and neutrons Gravity.
Two electrons Gravity, electromagnetic force.
Two neutrons Gravity, weak interaction, strong interaction.
Two protons Gravity, electromagnetic force, weak interaction, strong interaction.

Problem 2.9
Assume that two atoms must always be a reasonable distance away from one another, such
that short-range forces are negligible. What effect do the neutrons of an atom have on its
interaction with other atoms?

Solution
Because neutrons have no charge, the only long-range force available to them is gravity. But
this exerts negligible force on other subatomic particles, so neutrons don’t have any real
bearing on an atom’s interactions with other atoms. As far as other atoms are concerned,
neutrons are just dead weight. Thus we see that the reactivity of an atom depends only on
its number of protons and electrons.
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Problem 2.10
Using the result of Problem 2.9, we see that we should define our basic substance, or element,
as a collection of one or more atoms, all of which have the same number of protons. The
number of protons in an element’s atoms is called that element’s atomic number and
commonly denoted by Z.

However, there is a problem here—we have already defined the term “element”! Show
that this new definition of an element is equivalent to the one that we came up with in
Chapter 0.

Solution
Recall that in Chapter 0 we defined an element as a substance that cannot be broken down
further by chemical means. Consider something that is an element according to our new
definition. If we try to break it down, all the atoms in our product must still have the same
atomic number as the original element. Thus we can only decompose an element into the
same element, and our new definition implies the old one.

Now if we have something that is an an element according to our old definition, it cannot
be broken down by chemical means. All of its atoms must therefore have an identical chemical
reactivity. But as we have seen, this means that they have the same number of protons. This
completes the problem.

Problem 2.12
How many neutrons does the average chlorine atom have? Express your answer to the nearest
tenth. (Hint: You’ll need to refer to the periodic table.)

Solution
First of all, how can two atoms of the same element have different masses? This occurs when
the two atoms have differing numbers of neutrons. Ah ha! So now we have qualitatively
found the connection between mass and number of neutrons. This qualitative knowledge
should guide our quantitative approach.

According to the periodic table, the average chlorine atom weighs 35.45 amu, while every
chlorine atom has (exactly) 17 protons, by definition. We start with more significant figures
than we strictly need because it is easier to drop significant figures later than pick them
up. Thus the average chlorine atom has a mass of (35.45 amu − 17 protons · 1.007 amu

proton
−

17 electrons ·0.0005486 amu
electron

) = 18.32 amu due to neutrons. (Note that if we had neglected
the mass of electrons here, we would have been off in the hundredth’s spot. Since we
already have more significant figures than we need, ignoring the electrons would not make a
difference. In general, we can just leave out the mass of electrons in such calculations.)

We complete the problem with some dimensional analysis: 18.32 amu · 1 neutron
1.009 amu

=
18.16 neutrons. (You should check to make sure that we kept the proper number of sig-
nificant figures.) Rounding to the nearest tenth, we our final answer is 18.2 neutrons. Notice
that we don’t need to have an integral result here, since we are just looking at the average
number of neutrons in chlorine. However, if we had wanted the number of neutrons in one
particular atom, then our result would have to be an integer.
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Problem 2.11
A certain atom is ionized to a net charge of −1. It is then found to have a total of 36
electrons. The original atom was an atom of which element?

Solution
Since the atom has a net charge of −1, it has one too many electrons. So when it was
neutral, it had 35 electrons. Thus it must also have 35 protons, meaning this atom has
Z = 35. Looking on the periodic table, we see that our mystery element is bromine.

Box 2.6. Notation
To denote a specific ion, the standard notation is just to write the symbol of the atom it
comes from with a superscript of charge. Usually we write the size of the charge followed
by the sign in superscripts, so for example as 2+ rather than your usual +2. The same
applies to ions made from different types of atoms “bonded” together, which we’ll explore
in Chapter 5. So for example, we can write the sulfur anion with a −2 charge as S 2 – , or the
nitrate ion with −1 charge as NO –

3 . In this problem, the relevant ion was thus Br – .

Box 2.7. Historical Note
In the 1860s, chemists knew about the existence of elements but not about atomic number.
The Russian chemist Dmitri Mendeleev found that when he arranged the known elements
in a table in order of atomic mass, the columns contained elements of similar chemical and
physical properties. This was a very shocking result, and no one really knew why it should
be true.

However, there were some discrepancies on his table. In order to rectify them, Mendeleev
left some spaces on his table. He thus predicted the existence of other elements that had
not yet been observed. Thus, even before the periodic table was well understood, it was a
useful theoretical tool.

There was also a problem with some elements that seemed to be in the wrong order.
There was nothing that Mendeleev could do in this case, given what was known at the time.
But with the discovery of atomic number and the subsequent ordering of elements according
to this number, the anomalies in the table have all been worked out.

Exercises for Section 2.2

Exercise 2.2.1
Recall that NA = 6.0221 · 1023 mol−1. This is a pretty huge number, so gigantic that it’s
hard to even think about. So let’s try to get a better handle on it. Suppose that we took 1.
mole of lemurs and packed them into a sphere. What would the radius of this sphere be, in
kilometers? Suppose that a lemur has a volume of 1. liter.
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Exercise 2.2.2
What non-negligible forces act between two neutral atoms?

Exercise 2.2.3

(a) How many moles of Na atoms are in 15.5 g of sodium?

(b) How many carbon atoms are there in 10.0 g of carbon?

(c) How much does a single gold atom weigh, in grams?

2.3 Snapshot of the Atom

Problems

Since atoms are made out of smaller particles, they must have some internal structure.
Just what is that structure? The modern picture of the atom has its origin based in experi-
ment, and so we must delve into reality to answer this question.

Experiment 2.3.1: Gold Foil
This experiment, commonly attributed to Ernest Rutherford, was performed by his students
Hans Geiger and Ernest Marsden in 1908. Also, although it is usually called the “gold foil”
experiment, it was originally performed with platinum foil.
Radon gas is radioactive and emits alpha (α) particles (a topic which we will explore in depth
in Chapter ??). These particles are massive (meaning they have mass, not that the mass
is large) and have a +2 charge. When they are ejected from this element, they have a very
large kinetic energy. We place a cylindrical screen around a thin piece of gold foil—only a
few atoms thick—and cut a small hole in the screen, as shown below. The screen is covered
with a zinc sulfide coating, which produces scintillations, or flashes of light, where the
alpha particles hit it. We can then record the location of these scintillations.

Initial path of α particles

Scintillation screen

We now place a sample of radon in front of the hole. In this way, alpha particles first hit
the gold foil and then are detected by the cylindrical screen.

When we perform this experiment, we observe that most alpha particles continue through
the foil undisturbed and strike the screen directly behind the foil. However, a small number
of them are knocked far askew—some even richochet back towards the source!
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Problem 2.13 (Solution on page 21)
When the results of the gold foil experiment were first obtained, they was very surprising.
As Ernest Rutherford said, “It was almost as incredible as if you had fired a 15-inch shell
at a piece of tissue paper and it had come back and hit you.” What information does this
experiment tell us about the structure of the gold atoms? (Hint: Are the subatomic particles
distributed uniformly throughout the atom?)

Problem 2.14 (Solution on page 22)
As we traverse the periodic table from top to bottom, more and more protons are added to
the relevant elements. What do you expect will happen to the ratio of neutrons to protons
in the relevant elements? Looking at the periodic table, is your prediction consistent with
fact? (Hint: Elements need to have stable nuclei that will not fly apart.)

Problem 2.15 (Solution on page 22)
Looking back on our results from Problem 2.13, notice that our picture of the atom is still
missing one crucial ingredient. In particular, we haven’t yet figured out where the electrons
are located. Is it possible that they are located in the same place as the neutrons and
protons?

Solutions and Discussion (2.3)

Experiment 2.3.1: Gold Foil

Problem 2.13
When the results of the gold foil experiment were first obtained, they was very surprising.
As Ernest Rutherford said, “It was almost as incredible as if you had fired a 15-inch shell
at a piece of tissue paper and it had come back and hit you.” What information does this
experiment tell us about the structure of the gold atoms? (Hint: Are the subatomic particles
distributed uniformly throughout the atom?)

Solution
Immediately, we can tell that the structure of the gold foil is far from homogeneous, that
is, the same no matter where you look. Since most of the alpha particles continue through
unimpeded, we know that most of the gold foil (and hence the gold atoms) is empty space
with a very small net electric field.

However, since the alpha particles were deflected with low probability, there must be
some small region of highly concentrated charge. What is the sign of this charge? Well,
some of these particles were knocked back towards the emitter. Thus this region repels the
positively charged α particles, and the charge of this region is positive.

Putting this together, we can see that the protons of an atom must all be crammed in
some small volume, but the electrons are not found there. The neutrons should also be found
in this volume, bound to the protons via the strong interaction. If they were not located
there, then there would be no force holding the neutrons in an atom, since neutrons are not
affected by the electromagnetic force.
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When Rutherford first performed the above experiment, he had hypothesized that the
subatomic particles were distributed evenly throughout the substance. However, as we have
seen this is impossible, and we can only make sense of the results of the gold foil experiment
if we assume that the protons and neutrons of a given atom are all concentrated in a small
volume. This region is called the nucleus (from the Latin word meaning “nut”) of the atom.
Thus, protons and neutrons are collectively dubbed nucleons.

Problem 2.14
As we traverse the periodic table from top to bottom, more and more protons are added to
the relevant elements. What do you expect will happen to the ratio of neutrons to protons
in the relevant elements? Looking at the periodic table, is your prediction consistent with
fact? (Hint: Elements need to have stable nuclei that will not fly apart.)

Solution
Let’s think about the forces holding the nucleus together. The nucleus exists as a delicate
balance between opposing forces: a repulsion due to all proton-proton pairs interacting
via the electromagnetic force and an attraction among all proton-proton, proton-neutron,
and neutron-neutron pairs due to the strong nuclear interaction. Recall that although the
strong interaction is much more powerful than the electromagnetic force at close ranges,
its strength rapidly falls off with distance. Hence, the attractive force due to the strong
interaction between two nucleons is weak when they are on opposite ends of the nucleus,
although the electromagnetic force operates quite well at this distance.

Suppose we take a nucleus with n protons and add a new one. Well, protons can effectively
only attract one another by the strong interaction if they are adjacent in the nucleus, and
for larger values of n a smaller and smaller proportion of protons are in contact with one
another. However, they all repulse each other strongly by the electromagnetic force. Thus
the repulsion among protons stacks up more quickly than does any added attraction.

Since neutrons only provide attractions, for higher values of n we will need more and
more neturons per proton in order to keep things stable. Looking at the periodic table, we
see that our prediction generally holds true in reality.

Problem 2.15
Looking back on our results from Problem 2.13, notice that our picture of the atom is still
missing one crucial ingredient. In particular, we haven’t yet figured out where the electrons
are located. Is it possible that they are located in the same place as the neutrons and
protons?

Solution
At first glance, we might think that the electrons should be found in the nucleus, since they
are attracted to it by the electromagnetic force. However, from the gold foil experiment we
know that the nucleus is a region of intense positive charge. Furthermore, recall that we saw
in Experiment 2.1.3 it is easy to strip electrons from an atom. Thus, we have to conclude
that electrons are not found in the nucleus.

However, they are attracted to the nucleus. What stops them from plummeting down
into it? The only possibility is that the electrons must orbit the nucleus in some fashion, in
a way analogous to planets orbiting the sun (although, as we’ll see in Chapter 4, the details
of these orbits are quite different from those of the planets’ !).
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At last, we have gained enough of an understanding of the atom to define it formally
in terms of subatomic particles. An atom is an object with a stable nucleus composed of
protons and neutrons, around which orbit electrons. In most contexts, atoms are taken to
be neutral, as distinct from an ion, although this is not always the case. In this book, when
the distinction is important we will be sure to point it out.

Box 2.8. Historical Note
The idea that electrons must orbit the nucleus was first formalized by Niels Bohr in 1913,
when he came up with the aptly named Bohr model of the atom. According to Bohr,
electrons move in circular orbits of fixed radius around the nucleus. However, it didn’t take
long for people to find that this model gave good predictions only for single-electron systems,
such as H. Thus, a new picture of these orbits was necessary.

The modern picture of electronic structure, which agrees completely with all experiments
tried to this day, is built on top of yet another theory. This later theory is called quantum
mechanics (indeed, quantum’s success as a theory is due in large part to this agreement).
Probably unsurprisingly, the atomic model derived from quantum mechanics is called the
quantum mechanical model of the atom.

We’ll take a brief interlude here, and then delve into quantum mechanics in the following
chapter.

Exercises for Section 2.3

Exercise 2.3.1
From our discussion in this section, we might think that we can add neutrons to nuclei with
impunity. However, at very short ranges, the strong interaction suddenly turns repulsive
(that is, it likes to keep nucleons at a fixed distance from one another, not too close and not
too far). Given this information, is it possible to put too many neutrons in a nucleus? Why
might a nucleus with too many neutrons be more stable if it split apart? (Hint: Maximizing
attractions is equivalent to minimizing energy (why?).)

2.4 Further Explorations

Problem 2.16
Due to Dr. Doug Osheroff
Suppose that all the electrons in your body suddenly changed their masses to ten times their
current amount. What would happen to the volume of your body? (Hint: Think about the
Bohr model of the atom.)

Problem 2.17
Recall Albert Einstein’s famous equation E = mc2, where E is energy, m is mass, and
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c = 2.99 · 108 m
s

is the speed of light. Qualitatively, this equation states that mass is just
another form of energy.

The masses of protons and neutrons we cited in the chapter are only accurate when the
neutrons and protons are free, that is, when they are not bound in a nucleus. Should the
mass of a bound nucleon be more or less than that of a free nucleon of the same type?

Problem 2.18
In the Middle Ages, a number of people, known as alchemists, tried to achieve transmu-
tation, or the changing of one element into another. In particular, they wanted to convert
common substances, such as tin or lead, to gold. What does atomic theory say about the
possibility of accomplishing transmutation by means of chemical reactions? (Hint: In a
chemical reaction, can a nucleus be altered?)

Problem 2.19
We saw in Experiment 2.1.2 that all substances are ultimately made up of atoms. The
modern conception of an atom was first put forth as a theory by Dalton as his atomic
hypothesis. This hypothesis had four parts:

1. All atoms of a given element are identical.

2. Atoms of different elements have different masses.

3. A compound is a specific combination of different types of atoms.

4. In chemical reactions atoms change their arrangements without being created or de-
stroyed.

Since Dalton’s day we have come to better understand what is actually going on at the
atomic level. Which parts of Dalton’s hypothesis are true? Which are not?

Problem 2.20
The electromagnetic and gravitational forces both decrease at the same rate, as the square
of the distance between the relevant particles. Among electrons or protons, the force due
to the electromagnetic force is thus always much larger than that due to gravity. Why then
are the motions of the planets around the sun controlled by gravity rather than its stronger
cousin, the electromagnetic force?

Problem 2.21
The radius of a nucleon is around 1 fm (femtometer, 1 · 10−15 meters), and the volume of a
nucleus is roughly proportional to the number of nucleons. The radius of a hydrogen atom

is given by the Bohr radius of a0 = .53
◦
A (angstrom, 10−10 meters) (other atoms typically

have radii within an order of magnitude or two of this). Find the percentage of space in a
hydrogen atom that is occupied by the nucleus.

Problem 2.22
The density of iron at room temperature is 7.86 g · cm−3, while its atomic radius is 140 pm
(picometer, 1 · 10−12 meters). Assuming that iron atoms do not overlap with one another
(which is not true but will give us a decent approximation) find what percent of the volume
of iron is “empty space” (that is, not taken up by atoms).
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Chapter 3

Quantum Mechanics

Around the turn of the 1900s, physicists thought they understood the workings of the world.
The physics set down in Newton’s day seemed to have the potential to predict everything;
the only task left was to work out the remaining consequences of Newton’s laws. However, a
number of experiments yielded results that were completely inconsistent with both intuition
and Newtonian mechanics. Some of these experiments dealt with very large systems, on the
scale of galaxies; these experiments prompted Einstein to develop his theories of special and
general relativity. (While the details of these experiments are interesting, they are outside
of our current exploration.)

On the other hand, some experiments dealt with the behavior of very small systems, on
the scale of atoms or smaller. As we will see, these experiments showed that the world of the
very small is not bound by Newton’s laws. A new set of rules, called quantum mechanics,
had to be developed to describe this world. With the development of these modern theories,
Newtonian mechanics became known as classical mechanics.

Throughout this chapter, we will be trying to answer the following Big Question, as we
make the transition from classical mechanics to modern quantum physics.

The Big Question: Chapter 3

What are the laws that govern very small systems?

3.1 Classical Mechanics: Particles and Waves

Problems

In order to talk about the inconsistencies in small systems, first we need to understand
the two kinds of objects that classical mechanics deals with: particles and waves. A particle
is just some solid piece of matter. It is located at some definite location in space. On the
other hand, a wave is an oscillation in a medium. Examples include ocean waves (water
oscillating up and down) and sound (air oscillating back and forth). Waves have the shape
of the sine function’s graph.
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Problem 3.1 (Solution on page 26)
The distance between crests of a wave (points of maximum height) is called that wave’s
wavelength, commonly denoted λ (the Greek letter lambda), and the number of cycles
that pass a given point in a given period of time is called that wave’s frequency, denoted ν
(the Greek letter nu—don’t confuse it with v!). Find the velocity of a wave with wavelength
λ and frequency ν.

Problem 3.2 (Solution on page 26)
You should already be familiar with what happens when two particles collide (think about
two pool balls). But what happens when two waves collide with one another? In particular,
consider two overlapping waves, and say that for each (planar) position x, the height of one
wave alone would be H1(x) and the height of the other wave alone would be H2(x). What
is the height of the superposed, or combined, wave at x?

Solutions and Discussion (3.1)

Problem 3.1
The distance between crests of a wave (points of maximum height) is called that wave’s
wavelength, commonly denoted λ (the Greek letter lambda), and the number of cycles
that pass a given point in a given period of time is called that wave’s frequency, denoted ν
(the Greek letter nu—don’t confuse it with v!). Find the velocity of a wave with wavelength
λ and frequency ν.

Solution
Suppose for the moment that ν is in hertz, which you should recall from Chapter 0 is just
cycles per second. Every second, for each cycle that passes a given point, the wave travels a
distance of λ. Hence the total distance traveled is just λ(ν · 1 second). Thus the velocity of

the wave is v = distance
time

= λ(ν·1 second)
1 second

, or simply

v = λν.

You should verify that dimensional analysis shows that this expression is reasonable
(what is the dimension of a cycle?).

Problem 3.2
You should already be familiar with what happens when two particles collide (think about
two pool balls). But what happens when two waves collide with one another? In particular,
consider two overlapping waves, and say that for each (planar) position x, the height of one
wave alone would be H1(x) and the height of the other wave alone would be H2(x). What
is the height of the superposed, or combined, wave at x?

Solution
In order to get a better conceptual handle on this problem, let’s translate into a more concrete
example. Think about simultaneously dropping two pebbles in a pond, a few centimeters
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apart. They will each generate waves traveling outwards from where they land. What
happens when the two waves reach each other? First let’s make things simpler. Consider a
plane that cuts through the two waves in a natural way, giving us a cross-section of the two
waves. Then we can draw a picture like that shown below:

We can draw the following picture, where black represents places where the waves are at
their maximum and white represents where they are at their minimum.

For the moment, let’s pretend the right wave is not present, so the left wave is alone.
Then at each position x, the height of our medium is just H1(x). Now add on the second
wave. What will happen? Well, we can think about a wave as something that takes a fluid
from a certain height and disturbs it according to it’s height function. Thus, at each position
x we raise up an additional H2(x) (this includes “raising up” a negative distance). Thus we
see that the height of the resulting wave at x should be H1(x) +H2(x).

Alternatively, we could have approached this problem by drawing a simpler, one-dimensional
diagram. We can just pay attention to the cross section of the waves and think about what
happens when these cross sections overlap. For example, we draw the following, where the
dotted lines are where the relevant wave would be without the other’s interfering:

Looking back, perhaps such a diagram is simpler than our original two-dimensional plot.
However, making this new one requires us to have some intuition about how overlapping
waves combine, which is precisely what we need to figure out. In any case, we see as a
general rule how helpful it is to be flexible in switching between different modes of thought
(here, between one, two, and three dimensions).

We see that overlapping waves fundamentally affect one another, an effect called inter-
ference. This property of waves will become very important to us later in the chapter.

Exercises for Section 3.1
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Exercise 3.1.1
Find the frequency of a wave with wavelength 2.51 m and speed 20.0 m

s
.

Exercise 3.1.2
The maximum height of a wave is called its amplitude. Consider two waves, one of ampli-
tude x and the other of amplitude y. What is the maximum possible amplitude of the wave
resulting from these waves overlapping? What is the minimal possible amplitude?

Exercise 3.1.3
The places where a wave is at its maximum height are called peaks (a synonym for “crests”),
and those where it is at its minimum are called troughs. When two waves overlap such
that their peaks coincide, there is said to be constructive interference. If they overlap
such that the peaks of one wave occur where the other wave has troughs, there is said to
be destructive interference. Which type of interference results in a net wave of larger
amplitude?

Exercise 3.1.4
In the first diagram of this section, reproduced below, where do the peaks occur? Where do
the troughs occur?

3.2 Light

Problems

Now for most objects we observe in the world around us, it seems relatively easy to say
whether they are particles or waves. A baseball clearly behaves like a particle (being made
up of many sub-particles), while sound is a wave. But what about light? Is it a particle or
a wave?

In 1864 the Scottish physicist James Clerk Maxwell theoretically derived that light is
a wave consisting of oscillating electric and magnetic fields, traveling at a speed of c =
2.99 · 108 m

s
(he did not arrive at this exact number, due to the experimental data available

to him at the time). Thus light is sometimes called electromagnetic radiation. In a sense,
since light does not travel on any physical medium—electromagnetic fields are conceptual
rather than physical objects—it is pure energy: pretty cool, huh? At the time of Maxwell’s
discovery, it seemed that the story of light was complete, but we’ll see shortly that there is
much more to be said.
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Box 3.1. Fun Fact
The letter c (the same c from Einstein’s famous equation E = mc2) is short for celeritas,
which is Latin for “swiftness.”

Box 3.2. Kinds of Light
Light is commonly characterized by specifying its wavelength. The various other regions of
the electromagnetic spectrum are given their own names. Note that the regions are not
very well-defined, as the division of the spectrum is really just a human way of organization
and has no physical significance. All types of light are generated in outer space, although
on earth we usually only encounter low-energy electromagnetic waves (we’ll explore why in
the upcoming text)—this is quite fortunate, or else life as we know it would have no chance
of survival. We have ordered the following in order of decreasing energy. (XYZ: may add a
graphic at some point.)

Gamma ray These rays are emitted only from very high energy processes, such as the
nuclear fusion reaction that generates the sun’s light. Thankfully, these rays are blocked
by the Earth’s atmosphere, as they are very damaging to living tissue. Gamma rays
can also accompany the radioactive decay of certain elements. They are usually defined
as having λ < 0.01 nm.

X-ray These should be familiar to you as being used to see through objects that are opaque
in the visible region, ranging from luggage to human beings. These are somewhat
damaging to living tissue and are blocked by the Earth’s atmosphere. They have
wavelength between 0.01 nm and 20 nm.

Ultraviolet Most ultraviolet light is blocked by our atmosphere. However, a certain amount
of it still gets through. Ultraviolet light can damage living tissue; it is responsible for
sunburns. The wavelength of this electromagnetic radiation is generally taken to be
from 20 nm to 400 nm.

Visible The light that we see. It ranges from a wavelength of about 400 nm (violet) to 700
nm (red). White light is made up of all colors of visible light. Lucky for us, visible
light is not at all harmful to living tissue.

Infrared We feel these rays as heat. Night-vision goggles use infrared radiation to build a
picture of the world. This radiation is too low in energy to be harmful to tissue. Its
wavelength ranges from 700 nm to 1 mm.

Microwave As you might have guessed from the name, these rays are used in microwave
ovens. Water absorbs light in this region, making microwaves a good way to give energy
to your food (thus heating it up). These waves are also too low in energy to directly
damage living tissue; their wavelengths are between 1 mm and 1 m.
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Radio Very low energy radiation that is commonly used to transmit information. A ra-
dio, unsurprisingly, receives radio waves. These waves are not harmful, and have any
wavelength longer than 1 m.

Thought Experiment 3.2.1: Ultraviolet Catastrophe
This thought experiment was first pointed out in 1905 by two independent groups of physicists.
The first consisted of Einstein and the second was composed of Lord Rayleigh and Sir James
Jeans.
Consider the phenomenon of black body radiation. A black body is just an object that
radiates light at all frequencies but does not prefer any one particular frequency over another.
Think about a stovetop—when it is warm, it radiates light in the infrared region, and when
it is very hot it glows red. The fact that a black body does not prefer any frequency does
not mean that it emits in all regions equally; rather, a black body emits many wavelengths
but one maximally, with the maximum wavelength depending only on temperature.

Now, here’s where the cool part comes in. Classical physics can be used to derive a law
called the Rayleigh-Jeans Law, which shows that at a given temperature, the intensity of
light emitted from a black body is inversely proportional to λ4. So as λ → 0, the intensity
of emitted light goes to infinity. In all, we find that a black body should be emitting enough
light in the ultraviolet, X-ray, and gamma regions to completely destroy all life in the vicinity,
an effect called the ultraviolet catastrophe. The Rayleigh-Jeans Law agreed well with
experiment at high wavelengths but differed sharply at low wavelengths. (XYZ: might put
in a graph)

Problem 3.3 (Solution on page 33)
(To Think About) Light of a given frequency is emitted from a black body by atoms oscil-
lating at that same frequency (since atoms have charged particles in them, this oscillation
makes oscillating electrical and magnetic fields). The Rayleigh-Jeans Law is derived by look-
ing at the oscillation of atoms and assuming that, at a given frequency, these oscillations
can have any amount of energy. Can you think of a clean way to modify our theory to avoid
the ultraviolet catastrophe?

Experiment 3.2.2: Photoelectric Effect
In 1887, the German physicist and mathematician Heinrich Rudolf Hertz (you guessed it,
the man for whom the hertz is named) observed this effect experimentally. However, the
theory behind the effect remained a mystery until Albert Einstein published an explanation
in the year 1905.
When high frequency light is shined on a sample of metal, electrons are ejected from its
surface. When we try this experiment with a number of different types of metals and different
frequencies of light, we find that electrons are ejected precisely when the frequency of light
is above a certain threshold value, characteristic of the specific metal under consideration.
Also, the kinetic energy of the ejected electron varies linearly with the frequency of the
incident light. Finally, electrons are ejected immediately, regardless of the intensity, or
brightness, of the incident light. This phenomenon as a whole is called the photoelectric
effect.
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Problem 3.4 (Solution on page 34)
According to this experiment, which has a higher energy: light with a high frequency or light
with a low frequency? How did you derive this?

Problem 3.5 (Solution on page 34)
Albert Einstein noticed that the photoelectric effect could be explained if you assumed that
light consisted of discrete particles, which he called photons. Qualitatively, how does this
assumption explain the photoelectric effect?

Problem 3.6 (Solution on page 34)
(*) Suppose that all the energy of a photon absorbed by the metal first goes towards ejecting
an electron and then increasing the electron’s kinetic energy (that is, none is dissipated as
heat). Suppose also that as ν → 0, the energy of a photon goes to 0. Finally, let the
minimum amount of energy required to eject an electron from the metal be Φ, also known as
the work function of that metal. Quantitatively, how should the energy of a photon vary
with frequency?

Experiment 3.2.3: Double-Slit Experiment
This experiment is based off of one performed in 1801 by the English scientist Thomas Young.
The results of this experiment are quite surprising, so hold onto your seat!
We take an opaque barrier and cut two narrow vertical slits in it. Behind the barrier we place
a photosensitive screen. We cover the right slit and shine a beam of light at the barrier. The
distribution of light on the back screen is as you might expect and is shown below. (Note
we have represented an open slit as an unfilled box and a closed slit as a filled box.)

Light Source

Light Distribution on Photosensitive Screen

Slits

Next, we cover the left slit and obtain the following distribution of light on the back
screen.

Light Source

Light Distribution on Photosensitive Screen

Such a distribution is called a probability distribution since it gives the probability
of finding intensity of light in any given position.
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Problem 3.7 (Solution on page 35)
Let the probability distribution of light in the first case be P1(x) and in the second case be
P2(x), where x is some arbitrary position parameter. If light were composed of particles,
what should the function for the probability distribution of light be when both slits are
uncovered? What should the distribution diagram look like?

Problem 3.8 (Solution on page 36)
How does your answer to the previous exercise change if light were a wave? Note that you
will only be able to answer this question qualitatively.

Problem 3.9 (Solution on page 37)
When we uncover both slits, we obtain the following distribution of light on the back screen.
Do the results of this experiment lend credence to light’s being a wave or a particle?

Light Source

Light Distribution on Photosensitive Screen

Problem 3.10 (Solution on page 37)
Of course, there is one issue here: maybe the pattern obtained only looks like it does be-
cause the photons hit one another after going through the slits. We can also perform this
experiment with single photons of light. That is, rather than sending a full beam of light
through the slits, we send one photon at a time. When we do this, over many trials the same
pattern is obtained on the back screen. Does this seem to imply a photon is a particle or a
wave?

Problem 3.11 (Solution on page 37)
(To Think About) However, we know that photons have some properties of particles. We
can try to be clever and place photon detectors at one or both of the slits. In this way, we
can see which slit the photon went through (or see if it somehow went through both!). When
we perform this experiment with single photons, the detectors worked fine. We found that
each photon went through only one slit, but the interference pattern vanished to be replaced
by the distribution of light shown.

Light Source

Light Distribution on Photosensitive Screen

Electron Detectors
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Take a moment to think about what is going on here. How could simply observing a
system affect the probability distribution on the back screen?

Solutions and Discussion (3.2)

Historically, just when everyone thought they understood light, people found that there
was a problem with their ideas. This was shown by the following thought experiment.

Thought Experiment 3.2.1: Ultraviolet Catastrophe

Problem 3.3
(To Think About) Light of a given frequency is emitted from a black body by atoms oscil-
lating at that same frequency (since atoms have charged particles in them, this oscillation
makes oscillating electrical and magnetic fields). The Rayleigh-Jeans Law is derived by look-
ing at the oscillation of atoms and assuming that, at a given frequency, these oscillations
can have any amount of energy. Can you think of a clean way to modify our theory to avoid
the ultraviolet catastrophe?

Solution
Since the Rayleigh-Jeans Law gives inaccurate predictions, there must be a flaw in its deriva-
tion or the theory behind its derivation. If we instead assume that at a given frequency, the
energy of oscillation of atoms is limited to a set of values, then the Raleigh-Jeans Law is
no longer valid. Now the question becomes, in what way should the oscillation of atoms be
limited?

Well, first of all we could assume that there is only some allowable interval of energy for
this oscillation. However, in this case there is no real apparent reason that this should be
true, and what happens when we try to add some energy to an atom at the upper end of this
interval? So we must do the next best thing and assume that there are discrete possibilities
for this energy. That is, from any given energy oscillation we can’t change by an arbitrarily
small amount, destroying our continuum of different oscillatory energies. Note that since
there is no arbitrary upper bound for energy of an atom, we don’t run into the issues we did
previously.

For what reason could the possible oscillations of an atom at a given wavelength be
discrete? Well, note that if this is true, then light energy of a given frequency must be
transfered in discrete packets rather than being able to be cut into arbitrarily small pieces.
So we can justify our assumption if light cannot be infinitely divided.

The ultraviolet catastrophe essentially is just a modern-day version of Zeno’s paradoxes.
Just like Zeno ran into problems (so he thought, anyway) when he tried cutting distance
arbitrarily small pieces, it shows that if we could cut energy into arbitrarily small packets,
then we would have (actual) problems. These packets of light are called quanta (singular
quantum). The word “quantum” is Latin for “how much,” and the fact that energy is
quantized is extremely relevant to our exploration of chemistry.
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Box 3.3. Historical Note
Interestingly enough, the idea that light must come in discrete packets did not originate with
the ultraviolet catastrophe. Indeed, although you’ll commonly see otherwise, the ultraviolet
catastrophe was historically not a motivation for quantum mechanics! In 1900, in order to
get his theory of thermodynamics to work, Max Planck had to assume that light is emitted
in quanta (he coined this term). On the other hand, the ultraviolet catastrophe wasn’t
published until 1905, and even then it did not make any real ripples. It is only now, in
retrospect, that we see the true signficance of this result.

Experiment 3.2.2: Photoelectric Effect

When it was proposed, Planck’s idea was revolutionary, but there was not yet enough
evidence to support it. The needed evidence came from another source, which we explore in
this experiment.

Problem 3.4
According to this experiment, which has a higher energy: light with a high frequency or light
with a low frequency? How did you derive this?

Solution
Since the kinetic energy of the ejected electrons increases with the frequency of light, and
their kinetic energy must come from this light, light with a high frequency must have higher
energy. Note that this fact is consistent with our claim in Box 3.2.

Problem 3.5
Albert Einstein noticed that the photoelectric effect could be explained if you assumed that
light consisted of discrete particles, which he called photons. Qualitatively, how does this
assumption explain the photoelectric effect?

Solution
Under Einstein’s assumption, a beam of light consists of a bunch of particles. When one of
these photons strikes an electron, what should happen? Well, just like one pool ball striking
another, the electron should be knocked out of the atom, provided the photon had enough
energy. Since this collision depends only on a single photon hitting a single electron, we see
that the electron should be ejected immediately independent of the light’s intensity.

Interestingly enough, in this picture of light, the intensity of light is proportional to the
number of photons present.

Note that Einstein’s photons are just quanta of light! So indeed the photoelectric effect
provides evidence for Planck’s quanta.

Problem 3.6
(*) Suppose that all the energy of a photon absorbed by the metal first goes towards ejecting
an electron and then increasing the electron’s kinetic energy (that is, none is dissipated as
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heat). Suppose also that as ν → 0, the energy of a photon goes to 0. Finally, let the
minimum amount of energy required to eject an electron from the metal be Φ, also known as
the work function of that metal. Quantitatively, how should the energy of a photon vary
with frequency?

Solution
We know that the energy of an ejected photon varies linearly with ν, the frequency of the
incident light. We can thus write that

Eejected electron = hν + C,

where h and C are some arbitrary constants. Also, we know that, by conservation of energy,

Eejected electron + Φ = Ephoton.

Through substitution, we have

Ephoton = hν + C + Φ.

But ν is the only variable on the right side of this equation, and as ν → 0, Ephoton → C + Φ.
But we were given that as ν → 0, Ephoton → 0. Hence C = −Φ and we have

Ephoton = hν.

This relation is completely general; it works for all types of light. The constant h is called
Planck’s constant and has a value of 6.6261 · 10−34 J · s.

From Experiment 3.2.2, we see that light has properties of a particle! But we had said
before that light was a wave. If this is not confusing, you are missing something. Perhaps
Maxwell was wrong after all, and the fact that his theory worked was due to pure chance?
Let’s try another experiment and see if it can help us straighten things out.

Box 3.4. Quote
In the words of the Nobel Prize-winning physicist Richard Feynman, “If you think you
understand quantum mechanics, you don’t understand quantum mechanics.”

Experiment 3.2.3: Double-Slit Experiment

Problem 3.7
Let the probability distribution of light in the first case be P1(x) and in the second case be
P2(x), where x is some arbitrary position parameter. If light were composed of particles,
what should the function for the probability distribution of light be when both slits are
uncovered? What should the distribution diagram look like?
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Solution
Suppose that light is a particle. When we have both slits uncovered and shoot a particle
of light at the slits, it must go through the left or the right slit. It does each of these with
1
2

probability. Afterwards, its probability distribution on the back screen is just P1(x) or
P2(x), depending on which slit it went through. Thus, the total function for the probability
distribution of light when both slits are uncovered should be

1

2
P1(x) +

1

2
P2(x).

To draw the appropriate diagram, we just have to take the two given diagram and su-
perimpose them (why?). We thus obtain the following.

Light Source

Light Distribution on Photosensitive Screen

Problem 3.8
How does your answer to the previous exercise change if light were a wave? Note that you
will only be able to answer this question qualitatively.

Solution
If light is a wave, then everything is changed. A wave does not have to go through one slit
or the other; it can go through both at the same time! We can sketch the following diagram.
Here, the black lines are where the wave is at a peak and the white lines are where it is in a
trough. The blue dots are where the waves interfere destructively (a height of zero) and the
black dots are where they interfere constructively.

Light Source
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This gives us a rough picture of our probability distribution. Note we obtain alternating
regions of high amplitude and zero amplitude. Thus, our probability distribution should
consist of alternating regions of high probability and low probability.

Problem 3.9
When we uncover both slits, we obtain the following distribution of light on the back screen.
Do the results of this experiment lend credence to light’s being a wave or a particle?

Light Source

Light Distribution on Photosensitive Screen

Solution
Since the results line up with what we expect from a wave and contradict the behavior of a
particle, we see that this experiment implies light is a wave.

Problem 3.10
Of course, there is one issue here: maybe the pattern obtained only looks like it does be-
cause the photons hit one another after going through the slits. We can also perform this
experiment with single photons of light. That is, rather than sending a full beam of light
through the slits, we send one photon at a time. When we do this, over many trials the same
pattern is obtained on the back screen. Does this seem to imply a photon is a particle or a
wave?

Solution
We saw in our experiment that photons are able to self-interfere. However, if a photon
just went through one slit, then no interference pattern would be obtained. Thus we must
conclude that a single photon must go through both slits, and hence photons are waves.

Problem 3.11
(To Think About) However, we know that photons have some properties of particles. We
can try to be clever and place photon detectors at one or both of the slits. In this way, we
can see which slit the photon went through (or see if it somehow went through both!). When
we perform this experiment with single photons, the detectors worked fine. We found that
each photon went through only one slit, but the interference pattern vanished to be replaced
by the distribution of light shown.

Electron Detectors

Light Source

Light Distribution on Photosensitive Screen
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Take a moment to think about what is going on here. How could simply observing a
system affect the probability distribution on the back screen?

Solution
Consider what we already know. The probability distribution was characteristic of a wave
when we did not know which slit the photon went through, and it was characteristic of a
particle when we did. The only difference in experimental setup between these two cases was
that we detected the photon as it when through the slits. Thus the very act of measuring
altered the system.

This should make sense on some level to you. To measure a system, we have to interact
with it somehow. Thus in addition to getting information from the system, we must pass
information to it. No matter how careful we try to be in interacting with a system, it will
thus always “know” that we are measuring it. This gives it the opportunity to respond in
some way.

In sum, light is indeed both a particle and a wave! Its wave nature dominates when we
are not observing it. However, when we try to determine where light is, it behaves like a
particle. So our observation fundamentally changed the system, an idea that we will explore
in more depth later.

Exercises for Section 3.2

Exercise 3.2.1
We said in Box 3.2 that types of light are commonly characterized by specifying their wave-
lengths. Is there any reason they couldn’t instead be characterized by specifying their fre-
quencies?

Exercise 3.2.2
Night-vision goggles work by sensing infrared light and electronically representing it as visi-
ble. Why couldn’t night-vision goggles instead be designed to use ultraviolet light?

Exercise 3.2.3
How much more energy does a photon of violet light (wavelength 400 nm) have than a photon
of red light (wavelength 700 nm)? Express your answer in J.

Exercise 3.2.4
A certain atom is vibrating at a frequency of 1.5 · 1015 Hz. Find the minimal energy it can
be vibrating with.

3.3 Wave-Particle Duality

Problems
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The results of the double-slit experiment are extraordinarily important. They are com-
pletely counterintuitive, and are classically impossible. This should lead us to be suspicious
of a lot of what we think we know at this point. For example, we said that electrons are
particles. But how do we know they are not also waves?

Experiment 3.3.1: Electron Double Slit
The double slit experiment was first performed with something other than light in 1961, when
researcher Claus Jönsson performed it with electrons. (However, it was not done with single
electrons until 1974.)
We can repeat Experiment 3.2.3 with single electrons instead of photons. The same inter-
ference pattern is obtained. Again, when we place detectors at the slits, the interference
pattern vanishes.

Problem 3.12 (Solution on page 40)
Well, what does this mean for our idea that electrons are just particles?

Problem 3.13 (Solution on page 40)
As you might suspect, these experiments show that we need to rethink our naive notions
of the world. First of all, we need to formulate new principles. The first principle we need
is that of wave-particle duality. Wave-particle duality is the idea that there is no such
thing as what we classically think of as a “particle” or a “wave”, but rather all matter (as
well as light) has characteristics of both. Now, if this is true, then matter should have a
wavelength.

The momentum of a particle, usually denoted p, is defined as mv (where m is the
particle’s mass and v is its velocity). Find a relation between the momentum and wavelength
λ of a photon. (Note you will need to use Einstein’s equation E = mc2 that relates the mass
and energy of any object.) By extension, we will suppose that this same relation holds for
all matter.

Problem 3.14 (Solution on page 40)
When we look at the world around us, it certainly doesn’t look like objects have a wavelength.
Why is this? What is, for example, the wavelength in meters of a 5.00 g object traveling at
2.00 m/s?

Problem 3.15 (Solution on page 41)
According to the relation we derived in Problem 3.13, as v → 0 at fixed mass, λ→∞. Why
don’t we see a wavelength for objects that are at rest? (XYZ: this problem may be moved
to a later chapter)

Problem 3.16 (Solution on page 41)
(To Think About) Wave-particle duality allows us to understand a great deal of the double-
slit experiment, but not all of it. One issue that the double-slit experiment raises is that of
the meaning of position. What ramifications does Experiment 3.3.1 have for talking about
the position of an electron, as long as we are not detecting it?

Solutions and Discussion (3.3)

39



CHAPTER 3. QUANTUM MECHANICS

Experiment 3.3.1: Electron Double Slit

Problem 3.12
Well, what does this mean for our idea that electrons are just particles?

Solution
It completely annihilates that idea. We already know that these experimental results can be
obtained only by objects with wave-like properties.

Box 3.5. Historical Note
Historically, this experiment was not the first to show that electrons are wavelike. In 1929,
two independent groups performed a different sort of diffraction experiment, verifying the
De Broglie hypothesis (and incidentally garnering a Nobel prize).

Problem 3.13
The momentum of a particle, usually denoted p, is defined as mv (where m is the particle’s
mass and v is its velocity). Find a relation between the momentum and wavelength λ of a
photon. (Note you will need to use Einstein’s equation E = mc2 that relates the mass and
energy of any object.) By extension, we will suppose that this same relation holds for all
matter.

Solution
Consider a photon of wavelength λ and frequency ν. We know that E = hν. Since we
derived in Problem 3.1 that c = λν, we see that ν = c

λ
. Also, we can obtain the following:

E = mc2 = hν

=
hc

λ
,

which after rearrangement yields λ = h
mc

= h
p
, where p = mc is the momentum of our photon.

Generalizing, we see that for any particle,

λ =
h

p
=

h

mv
.

This equation is known as the De Broglie relation and was first put forth by the French
physicist Louis De Broglie in 1924.

Problem 3.14
When we look at the world around us, it certainly doesn’t look like objects have a wavelength.
Why is this? What is, for example, the wavelength in meters of a 5.00 g object traveling at
2.00 m/s?
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Solution
The wavelength of an object is given by the De Broglie relation. We just need to plug and
play. Make sure to keep track of units!

λ =
h

m · v

=
6.63 · 10−34 J · s
5.00 g · 2.00 m

s

=
6.63 · 10−34

5.00 · 2.00
J · s · s

m
· g−1

= 6.63 · 10−35 J · s2

m · g
·

1 kg·m2

s2

1 J
· 1000 g

kg

= 6.63 · 10−32 m.

Thus the wavelength of such an object is incredibly tiny, much too tiny for us to detect.
Indeed, it should be clear that any macroscopic object we see moving at a reasonable speed
will thus also have an undetectably small wavelength. The objects around us look like they
have no wavelength because that wavelength is incredibly small.

Problem 3.15
According to the relation we derived in Problem 3.13, as v → 0 at fixed mass, λ→∞. Why
don’t we see a wavelength for objects that are at rest?

Solution
Well, if an object were ever perfectly at rest, then by our relation, we would indeed have an
infinite wavelength. At this point you should be suspicious: we certainly don’t ever observe
things with infinite wavelength. So there must be something wrong with our theory. First of
all, we might be tempted to reject the De Broglie hypothesis, but there are no real grounds
for doing so. Are we operating under any hidden assumptions?

Examining the exercise for a second time, you should see that we first need to obtain an
object perfectly at rest (or at least with an incredibly small velocity). Do such objects exist?
Well, let’s suppose we have such an object. Now think about its atoms—they must all also
be perfectly still. But this will happen only at 0 K, which is an impossible temperature to
obtain. Thus we do not see wavelengths for objects at rest because objects are never really
still; their atoms are always vibrating back and forth.

Problem 3.16
(To Think About) Wave-particle duality allows us to understand a great deal of the double-
slit experiment, but not all of it. One issue that the double-slit experiment raises is that of
the meaning of position. What ramifications does Experiment 3.3.1 have for talking about
the position of an electron, as long as we are not detecting it?

Solution
When we were not detecting the electron, it was able to go through both slits at once. Thus
we see that it does not have a well-defined position at a single point in space. It makes no

41



CHAPTER 3. QUANTUM MECHANICS

sense to talk about “the” position of an electron, since it is present over a spread of space,
just like any wave.

Of course, when we observe the electron, we always see it at a single point in space. Thus
when we detect an electron we can force it to choose one point in space to be located in.
(We will explore the details of this “choice” in the Section 3.4.)

On the whole, we have shown that objects behave like waves when we are not looking at
them and particles when we are.

Exercises for Section 3.3

Exercise 3.3.1
Find the mass in grams of a particle with velocity 63.2 m

s
and wavelength 3.50 · 10−35 m.

Exercise 3.3.2
The average atom of neon gas at 300.K has a velocity of 609 m

s
. Find the De Broglie

wavelength of this average atom. Is the magnitude of this wavelength consistent with our
claim that for common objects the De Broglie wavelength is too small to be seen in the
macroscopic world?

3.4 Wave functions and Superposition

Problems

We can think of any wave as just something that has a value (which we can think of as
its height) at each point in space. For example, with ocean waves, our space is only two
dimensional, and the wave height is how physically high the water rises above the relevant
point. On the other hand, for sound waves, our space is three dimensional, and this height
is how intense the sound is at a given point. An electron wave is like a sound wave in that
it has a value at every point in three-dimensional space.

The function giving this value is called a wave function, which we usually denote by Ψ
(the Greek letter psi). A wave function can be either positive, negative, or zero. However,
when we observe an electron (perhaps by using a detector), we force it to be in only one well-
defined spot. The wave function is also useful here; according to the Born interpretation
of quantum mechanics the probability of an electron’s being observed at a point in space is
proportional to Ψ2 at that point.

Box 3.6. Technical Note
Our description of the Born interpretation is not completely accurate, because the probability
of being found at any one point is actually 0. Really, the Born interpretation is that the
probability of an electron’s being found in a small volume of space is proportional to the
value of Ψ2 over that volume. To do this quantitatively, one needs to turn to calculus.
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Problem 3.17 (Solution on page 44)
The points where Ψ passes through 0 are called nodes of the wave function (that is, points
where Ψ = 0 and changes sign). What is the significance of these points?

Problem 3.18 (Solution on page 44)
Suppose that x and y are two points in space such that Ψ(x) = −Ψ(y). What can we say
about the probability of observing an electron at x as opposed to y?

Problem 3.19 (Solution on page 45)
The principle that allows us to understand an electron’s wave function is called superpo-
sition. In general, this principle lets us keep track of what’s going on in a system when it
is not being observed. Superposition is the idea that when a quantum system is not under
observation, its wave function is the sum of the wave functions of all possible things that the
system could be doing when we look at it. As a consequence, when a system has multiple
possible things it can do, it does them all! So when we shoot an electron at the slits in
Experiment 3.3.1, the overall wave function of the electron is given by the sum of the wave
function of the electron while going through the left-hand slit and the wave function of the
electron going through the right hand slit, giving rise to the observed interference. Super-
position is closely related to wave-particle duality and gives us a more precise description of
what is happening.

When a system in superposition is observed (maybe by taking some measurement), the
system randomly chooses one of the possible states, and all of the others vanish. Indeed,
in a sense they have never existed, although they may have affected the system through
interference. This process is called the reduction of quantum states. Although the result
is random in that it cannot be predicted ahead of time, not all states are equally likely to be
chosen; they are weighted by their respective probabilities, as determined by their respective
wave functions.

Previously, we saw empirically that an electron does not have a well-defined position, so
long as it is not under observation. How does superposition theoretically give us this same
result?

Problem 3.20 (Solution on page 45)
Since quantum mechanics states that the universe is, at the quantum level, random, does
that mean that we can never predict anything with certainty? (Hint: What happens when
we consider systems with lots and lots of random elements?)

Problem 3.21 (Solution on page 45)
How does superposition explain why our interference pattern vanished after placing photon
detectors at the slits in Experiment 3.2.3?

Problem 3.22 (Solution on page 46)
When we measure some variable of a system, the variable goes from some indefinite super-
position of values to a measurable result. However, we usually just measure an approximate
value for a variable, meaning that the superposition is just squashed rather than being com-
pletely gone. Now if we want to measure more than one variable at a time, we can run into
trouble. We can show that every observable variable of a system has a counterpart variable,
called its complement, that becomes more indistinct as it becomes more definite. So as one
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variable is measured to greater and greater certainty, its complement less and less known,
or has a greater uncertainty.

This law is known as the Heisenberg Uncertainty Principle, and can be expressed
quantitatively as

∆v∆v′ ≥ h

4π
,

where h is Planck’s constant (which we saw earlier), ∆v is the uncertainty on variable v, and
∆v′ is the uncertainty on its complement v′. (More precisely, these deltas are the standard
deviations—a concept from statistics—on the relevant quantities.)

(a) Suppose that we know a variable v completely. Then what must be the uncertainty on
its complement v′?

(b) The complement of position is momentum. Explain this fact in terms of the De Broglie
relation and wave-particle duality.

Thought Experiment 3.4.1: Schrödinger’s Cat
Erwin Schrödinger, the inventor of the quantum wave function, published this thought ex-
periment in 1935 in an attempt to point out the absurdity of quantum mechanics. However,
at this date scientists are completely comfortable with the result of this experiment. In any
case, don’t try this at home, kids!
Consider building an apparatus consisting of a vial of cyanide (a poison) and a radioactive
element (one with an unstable nucleus) such that if the element decays (that is, its nucleus
splits apart), the vial of cyanide is broken. Each minute, the compound decays with proba-
bility 50%. Now place the apparatus, along with a live cat, into a sealed box. If the vial is
broken, the cat will die.

Problem 3.23 (Solution on page 47)
The cat is undeniably a macroscopic object. The decay of a radioactive element is undeniably
quantum, and so it is affected by superposition. While the box is closed, do the statements
“the cat is alive” or “the cat is dead” have any meaning? What about when the box is
opened and we observe the system?

Solutions and Discussion (3.4)

Problem 3.17
The points where Ψ passes through 0 are called nodes of the wave function (that is, points
where Ψ = 0 and changes sign). What is the significance of these points?

Solution
At a node, Ψ2 = 0, and so there is a probability of 0 that the electron will be found there.
Hence nodes are places where it is impossible for the electron to be located.
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Problem 3.18
Suppose that x and y are two points in space such that Ψ(x) = −Ψ(y). What can we say
about the probability of observing an electron at x as opposed to y?

Solution
The probability of observing an electron at a given point is proportional to Ψ2 at that point.
Since Ψ(x)2 = Ψ(y)2, the probability of finding an electron at x is the same as finding it at
y.

Problem 3.19
Previously, we saw empirically that an electron does not have a well-defined position, so long
as it is not under observation. How does superposition theoretically give us this same result?

Solution
Consider a quantum system consisting of an electron not under observation. There are many
possible states that it could be in; in particular, it could be located in a number of different
locations. By superposition, we know that the electron actually exists at all of these locations
at once, and thus does not have a single well-defined position.

Box 3.7. Technical Note
Now, there are a few issues with superposition, as we’ve outlined it, the main one of which
is the measurement problem. In particular, just what defines an observation? What gives
an observer the power to force a quantum system to adopt a single state? However, these
issues are more philosophical than chemical in nature and so we do not explore them. For
our purposes, an observation is just a measurement we take of a system.

Problem 3.20
Since quantum mechanics states that the universe is, at the quantum level, random, does
that mean that we can never predict anything with certainty? (Hint: What happens when
we consider systems with lots and lots of random elements?)

Solution
Although we cannot predict the outcome of a single event with certainty, we can find the
probability of each possible outcome. Thus, as we repeat that same event more and more
times, the set of outcomes will align precisely with the probabilities, since that is precisely
what it means to be a probability.

Hence we can predict average outcomes with very good certainty. So for example think
about a system of just one electron with known wave function. We can’t be certain what
the electron will be doing for any given observation. But if we instead take a macroscopic
system of trillions and quadrillions of electrons, we can be very certain about what is going
on.

Problem 3.21
How does superposition explain why our interference pattern vanished after placing photon
detectors at the slits in Experiment 3.2.3?
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Solution
Before we placed the photon detectors, the only observation in the system was when the
photon struck the photosensitive plate. Hence before this observation, the photons were in
a superposition of states and were able to go through both slits, since there was a nonzero
probability of going through one or the other.

However, after adding the photon detectors, we collapsed the superposition of states at
the slits. This meant that the photon could only go through one slit or the other, but not
both. Once through whichever slit it chose, the photon was again in a superposition, but it
had already missed its opportunity to self-interfere.

Box 3.8. Quote
Well superposition is all well and good to explain how things happen, but just what exactly is
happening with superposition? In the words of physicist Allen Adams, “Superposition means
that we don’t know what. . . is going on.” As with much of quantum mechanics, superposition
is something that gives the right results and makes sense mathematically, although we really
don’t know the philosophical why behind it.

Problem 3.22

(a) Suppose that we know a variable v completely. Then what must be the uncertainty on
its complement v′?

(b) The complement of position is momentum. Explain this fact in terms of the De Broglie
relation and wave-particle duality.

Solution
Goal: Suppose that we know a variable v completely. Then what must be the uncertainty on
its complement v′?
If we know v completely, then there is no uncertainty to its value. Thus ∆v = 0. But if this
is true, it seems that automatically ∆v ·∆v′ = 0, which is not larger than h

4π
. So is this a

problem? Actually, it would be, if we hadn’t let a hidden assumption get the better of us.
Note that ∆v′ doesn’t have to be a finite number. If we have an infinite uncertainty on v′ (that
is, we have absolutely no idea what its value could be; it is completely in superposition), then
our problem vanishes. (In this case, the left hand side of Heisenberg’s Uncertainty Principle
becomes 0 ·∞, which is indeterminate in value.) So, by process of elimination we must have
that ∆v′ is infinite.
Goal: The complement of position is momentum. Explain this fact in terms of the De Broglie
relation and wave-particle duality.
Recall that the De Broglie relation gives us a relation between the momentum and wavelength
of a particle. So as we measure momentum with more and more precision, we are also
measuring wavelength with more and more precision. This means we are forcing our particle
to behave more wavelike. But position is completely meaningless for a wave, and the net
effect is that measuring momentum forces position to become more indefinite. Reversing this
logic, we see that measuring position forces momentum to become more uncertain. Hence
indeed position and momentum are complements.
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Box 3.9. Fun Fact
You will sometimes see the Heisenberg Uncertainty Principle stated as the idea that as we
measure a system, our instruments inevitably tamper with it and so we can never measure
it precisely. This interpretation is mainly a historical artifact. It took quite some time for
the idea of superposition to be widely adopted. Today we know that the fact that we cannot
know a variable and its complement is not because of our measurement skills but rather
because these quantities are in a superposition and are not well-defined.

We know at this point that superposition affects the quantum world. But does it have
any ramifications for the macroscopic one? As we saw with the wavelength of macroscopic
objects, it is entirely conceivable that the effects of superposition have no real effect on the
scale of which we live.

Thought Experiment 3.4.1: Schrödinger’s Cat

Problem 3.23
The cat is undeniably a macroscopic object. The decay of a radioactive element is undeniably
quantum, and so it is affected by superposition. While the box is closed, do the statements
“the cat is alive” or “the cat is dead” have any meaning? What about when the box is
opened and we observe the system?

Solution
At any given time, the element has a nonzero probability of being in a decayed state and a
nonzero probability of not having decayed. Thus while it is not under observation, it is in a
superposition of having decayed and not decayed.

Thus everything that the element’s decay affects must be in a superposition as well. In
particular, for the state where the element has not decayed, the vial is unbroken, while for
the state where it has, the vial has broken. Thus the vial is in a superposition as well.
Applying the same reasoning, we see that the cat is also in a superposition of states. Hence,
without observing the system the cat is neither dead nor alive; rather, it is in a superposition
of the states corresponding to each. It makes no sense to ask the question “Is the cat dead
or alive?” because the state of the cat is a mixture of both!

Once the box is opened and the system is observed, the quantum states are reduced. This
means that the element chooses whether or not it is decayed, according to the appropriate
probability. This then determines whether or not the vial is broken and whether or not the
cat is dead. So we do not see the superposition; instead, we see the cat as either dead or
alive, as is normal in our experience.

Thus indeed macroscopic objects can be in superposition.

Exercises for Section 3.4
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Exercise 3.4.1
(To Think About) Albert Einstein never accepted quantum mechanics at face value. This
is encapsulated in his famous quote, “God does not play dice with the universe.” Take a
moment to think about the consequences of quantum mechanics. Do you have any thoughts
on the philosophical issues quantum implies?

Exercise 3.4.2
Find the minimal uncertainty in the position of an atom of helium if its velocity has uncer-
tainty of 10.0 m

s
.

Exercise 3.4.3
It is entirely possible that suddenly all the atoms in book will suddenly be located a meter
in the air above you. Why don’t we observe this happening? Are there any circumstances
under which this actually does happen, whether or not you notice it? (Hint: Think about
superposition.)

Exercise 3.4.4
Using superposition, explain how spontaneous transitions can occur in systems between
observations. For example, if we look away from an unstable nucleus, the next time we look
it could have decayed.

3.5 Further Explorations

Problem 3.24
Consider placing a particle inside of a box with thin, strong walls. Now scrunch the walls
tighter and tighter, constricting the space available for the particle. If we have a device for
measuring momentum inside of the box as well, then it looks like we can defeat the uncer-
tainty principle, since we already know position and can measure momentum simultaneously!
Where is the flaw in our plan?

Problem 3.25
What should be the effect of continuously observing a certain unstable quantum system?
(Hint: For example, suppose we keep an unstable nucleus under observation. Will it be able
to decay?)

Problem 3.26
In this problem we assume that all atoms we consider are atoms of a black body.

(a) A vibrating atom must have at least enough energy to emit one photon of the appro-
priate frequency. Find the minimum amount of energy, in joules per mole, an atom
needs to have in order to vibrate at a frequency of ν.

(b) We know that the possible energies of a vibrating atom are quantized, but we don’t
know any details of this quantization. Let’s try to find the second minimal amount of
energy needed to vibrate at a frequency of ν. If we emit a photon from this vibration,
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how much energy must be left? Therefore, how much energy do we need to have in
the first place?

(c) Generalize your answer to (b) to find all possible energies of an atom vibrating with
frequency ν.

Problem 3.27
(To Think About) Throughout the previous two chapters, we’ve seen that quantization is
a common theme in the real world. Matter is quantized; it can only be traded in discrete
packets (that is, atoms). Energy is quantized; we cannot divide a photon. Although we
didn’t discuss it, distance is also sort of quantized—on a very small scale (called the Planck
scale), our concept of physics breaks down. As an interesting question to ponder, what
would the consequences be of time’s being quantized?

49



CHAPTER 3. QUANTUM MECHANICS

50



Chapter 4

Atomic Structure

We spent the previous two chapters building a picture of world at a very microscopic level,
operating largely through experimentation. At this point we have essentially asked enough
of the world and are ready to start building up our theory. In this chapter, we will look at
how the atom is put together. Particularly, we will be looking at how electrons are organized
around the nucleus. In a nutshell, we will be trying to answer the following question.

The Big Question: Chapter 4

What is the structure of the atom, and how does this structure de-

termine an atom’s properties?

4.1 Atomic Orbitals

Problems

Problem 4.1 (Solution on page 53)
In the Bohr model of the atom (which we mentioned in Chapter 2), electrons moved around
the nucleus in circular orbits of fixed radius. What fatal holes does quantum mechanics poke
in the Bohr model of the atom?

Problem 4.2 (Solution on page 53)
By our results from Problem 4.1, we need to modify Bohr’s model to obey quantum mechan-
ics. Instead of orbits, we’ll say that our electrons are found in orbitals, or atomic orbitals,
which are three-dimensional regions of space where the electrons that occupy them are very
likely to be found (by convention, the cutoff for “very likely” is generally taken to be 90%).
How does quantum mechanics predict that there should only be discrete levels of wave func-
tions that will fit around a nucleus, rather than a continuous spectrum?
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Box 4.1. Background Information
The electrons in a given orbital are described by the same wave function, which we can thus
think about as the wave function of the orbital. (It is possible to actually compute this
function and do calculations with it. We will not concern ourselves with such calculations,
however. While these calculations are interesting in their own right, we can build our picture
of the atom just as well qualitatively.)

Our qualitative description of a given orbital depends on four quantum numbers to
completely specify the type of orbital and the state of the electron occupying it, if any.
These numbers specify the various properties of the orbital by grouping them into categories
of shared characteristics. We can think about orbitals as existing whether or not there is
actually an electron in them, just as a bucket can exist whether or not it is filled with water.

Problem 4.3 (Solution on page 53)
The first category that orbitals are grouped according to is energy level, or shell (this
term comes from the fact that these levels are discretely layered upon one another), and
is given by the principle quantum number n. By the “energy of an orbital,” we really
mean the electrical potential energy, with respect to the nucleus, of an electron within that
orbital. Orbitals in the same shell have energies that are close to one another. So while
different orbitals in a certain energy level can have different energies, they tend to be closer
to in energy to one another than to an orbital in any other energy level.

The allowed values of n are the positive integers 1, 2, 3, . . .. Energy level n = 1 has the
lowest energy orbitals (so that means an electron in these orbitals would have the lowest
potential energy), n = 2 is higher, and so forth.

Suppose that orbital A has n = 1 and orbital B is in the third energy level. All else
being equal, which of these two orbitals takes up a larger volume? How do you know this?

Problem 4.4 (Solution on page 54)
Within the nth energy level are a number of different possible orbital shapes, or possible
subshells. Each orbital shape is assigned a number l = 0, 1, . . . , n− 1, where l is called the
angular quantum number. The angular momentum of an electron, or its tendency to
be thrown away from the nucleus, is specified by this number (just think about an electron
as a ball on a string being spun around your head). Two orbitals with the same value of l
but different n have the same overall shape, although they have different volumes.

The number l also equals the number of angular nodes (often just called nodes) or
surfaces through the nucleus where the orbital’s wave function changes sign (i.e. passes
through 0).

How many differently-shaped orbitals are there in the nth energy level?

Problem 4.5 (Solution on page 55)
The third quantum number specifies the spatial orientation of an orbital. While l specifies
the overall shape of an orbital, the third quantum number specifies the specific orbital we
are talking about. It is given the symbol ml (read “m sub l”) and is called the magnetic
quantum number. The possible values of ml are −l,−(l − 1), . . . , 0, . . . , l − 1, l.

How many orbitals are there in the nth energy level?
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Problem 4.6 (Solution on page 55)
The fourth and final quantum number describes not an aspect of an orbital but rather a
property of an electron in that orbital. Electrons have a property called spin; we can think
of electrons as little billiard balls “spinning” on their axes in either the counterclockwise or
clockwise direction, which gives rise to two possibilities for spin. (Note that electrons don’t
really spin on their axis—spin is in reality some mysterious quantum mechanical property—
but pretending otherwise gives us a convenient visualization.) Our fourth number, the spin
quantum number, has a value of ms = −1

2
,+1

2
(read “m sub s”) and determines the spin

of the relevant electron.
Is it possible to have an electron with the following (ordered) set of quantum numbers:

(n, l,ml,ms) = (4, 6,−3, 3
2
)?

Solutions and Discussion (4.1)

Problem 4.1
In the Bohr model of the atom (which we mentioned in Chapter 2), electrons moved around
the nucleus in circular orbits of fixed radius. What fatal holes does quantum mechanics poke
in the Bohr model of the atom?

Solution
In Bohr’s model of the atom, electrons move in definite orbits around the nucleus, just as
planets move around the sun. However, quantum mechanics implies that electrons cannot
be pinned to such a limited range of positions, especially with a fixed momentum. Rather,
we need more uncertainty in the orbit, both in terms of position and momentum, in order
for the Heisenberg Uncertainty Principle to be satisfied.

Problem 4.2
By our results from Problem 4.1, we need to modify Bohr’s model to obey quantum mechan-
ics. Instead of orbits, we’ll say that our electrons are found in orbitals, or atomic orbitals,
which are three-dimensional regions of space where the electrons that occupy them are very
likely to be found (by convention, the cutoff for “very likely” is generally taken to be 90%).
How does quantum mechanics predict that there should only be discrete levels of wave func-
tions that will fit around a nucleus, rather than a continuous spectrum?

Solution
From quantum mechanics, we know that energy is quantized. It comes in small indivisible
packets. Since an electron has a certain potential energy depending on its orbital’s position
relative to the nucleus, it follows that there must be discrete allowable wave functions.

Note also that if an electron is to, in some sense, orbit a nucleus, if we travel in a circle
around the nucleus, the value of the wave function must be the same when we finish as it was
when we started. This constraint is binding. Just like an organ pipe can only have certain
notes played on it, a nucleus can only have certain wave functions fit around it.
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Problem 4.3
Suppose that orbital A has n = 1 and orbital B is in the third energy level. All else being
equal, which of these two orbitals takes up a larger volume? How do you know this?

Solution
Orbital B has n = 3, and thus is higher in energy than Orbital A. An orbital has a high
energy when an electron in it is at a high potential energy. Since electrons are attracted
to the nucleus, potential energy must increase with distance from the nucleus (since if we
let the electron go, it would fall towards the nucleus and could do work). Thus we see that
B must keep the electron farther from the nucleus and hence takes up more volume than
orbital A does.

Problem 4.4
How many differently-shaped orbitals are there in the nth energy level?

Solution
The shape of an orbital is determined by the angular quantum number l. We know that
l = 0, 1, . . . , n− 1. Hence there is a total of (n− 1)− 0 + 1 = n differently shaped orbitals
(or equivalently, subshells).

Box 4.2. Types of Orbitals
The simplest orbital shape has l = 0. Such orbitals are called s-orbitals. They are spher-
ically shaped and have no nodes passing through the nucleus. They are unique in both of
these aspects; all other orbitals have nodal surfaces passing through the nucleus. Below we
have included a picture of an s orbital. (Our convention is that blue represents a positive
value of the wave function and orange a negative value.)

Next comes l = 1, the p-orbitals. These are shaped like dumbbells and have a nodal
plane passing through the nucleus. The p-orbitals in a given energy level are all perpendicular
to one another, as shown below. Note how having a nodal plane through the nucleus affects
the shape of a p orbital. (XYZ: will try to get a better diagram at some point.)
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Also, orbitals with l = 2 are called d-orbitals and have complicated shapes, which we
will explore later. d-orbitals have two nodal surfaces passing through the nucleus. Last
among the orbitals we will talk about are those with l = 3, or f-orbitals, which are very
complicated and have equally complicated nodal surfaces. In principle, it is possible to have
higher l values, and such orbitals would be labeled g, h, i, . . ., but such orbitals would be too
high in energy and never arise in practice. On the whole, the two orbital types s and p are
the ones we will be seeing the most of.

Now, you’re probably wondering what the letters denoting the various orbitals mean.
Really, in modern times they are just convention. They were originally chosen to describe the
spectral lines associated with each orbital type—sharp, principal, diffuse, and fundamental.
(We’ll explore spectral lines in the Further Explorations section of this chapter.)

Below is a summary of the information we have presented about the various values of
angular momentum.

Types of Orbitals
l Type of Shape Number per Nodes through

orbital energy level nucleus
l = 0 s Spherical 1 None
l = 1 p Dumbbell-like: mutually 3 1 (a plane)

perpendicular
l = 2 d Ugly—will talk about later 5 2
l = 3 f Very ugly 7 3
l ≥ 4 g, h, i, . . . Ditto—and never used anyway 2l + 1 l

Problem 4.5
How many orbitals are there in the nth energy level?

Solution
For each value of l, we know that ml ranges from −l to l. Thus there are l− (−l)+1 = 2l+1
orbitals. But l ranges from 0 to n − 1. So the total number of orbitals in the nth energy
level is

(2 · 0 + 1) + (2 · 1 + 1) + . . .+ (2 · (n− 1) + 1) = 1 + 3 + . . . 2n− 1

= n2.

Problem 4.6
Is it possible to have an electron with the following (ordered) set of quantum numbers:
(n, l,ml,ms) = (4, 6,−3, 3

2
)?

Solution
It is certainly true that n can equal 4. But then l ≤ n− 1, so l = 6 is not allowed. Thus an
electron cannot have this ordered quadruple of quantum numbers.

Furthermore, an electron cannot have spin 3
2
; the only allowed spins are ±1

2
.
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Box 4.3. Notation
We can represent an orbital and its electrons in several ways. First of all, we can simply
list the relevant relevant quantum numbers as we did in the previous problem (that is,
(n, l,ml,ms)).

However, a much more common notation is as follows (indeed, this one is going to be
assumed as basic knowledge for, well, basically the rest of your life, so you should get
comfortable with it). First, to specify an orbital as a whole, we first writing the value of n
and then the letter corresponding to l. If we like, we can then tack on a superscript of the
number of electrons in that orbital. So for example, a p orbital with n = 2 could be written
2p. Alternatively, an orbital in the third energy level with l = 2 and containing one electron
could be denoted as 3d1.

There is also a schematical representation of orbitals. Here, we can write orbitals as
horizontal lines and their electrons as vertical arrows, where arrows pointing up have ms =
+1

2
and arrows pointing down have ms = −1

2
; we have drawn an example below.

Filled 2p orbitals

In summary, the first three quantum numbers specify properties of an orbital while the
fourth specifies the spin of an electron it contains. When doing quantitative calculations,
this organization of data is helpful. When doing things qualitatively, this organization of
data becomes crucial . Using this model, we gain the power to predict an immense range of
phenomena.

Exercises for Section 4.1

Exercise 4.1.1
What is the lowest energy level that contains f orbitals?

Exercise 4.1.2
Use quantum mechanics to explain why electrons do not simply fall into the nucleus and
stay there.

4.2 Orbital Filling

Problems
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Problem 4.7 (Solution on page 58)
In quantum mechanics, the Pauli Exclusion Principle states that no two electrons can
be in exactly the same state. What does this imply about two electrons in the same atom
having the same set of quantum numbers?

Problem 4.8 (Solution on page 59)
What is the maximum number of electrons that can occupy a given orbital?

Problem 4.9 (Solution on page 59)
Electrons with spins of the same sign are said to have parallel spins, and electrons with
spins of opposite sign are said to have antiparallel spins. Given two electrons occupying
the same orbital, what can we say about their spins: should they be parallel or antiparallel?

Problem 4.10 (Solution on page 59)
Consider an atom (not necessarily neutral) with n electrons. The building-up principle,
or the Aufbau Principle, states that we can find the lowest-energy state of this atom
inductively: take the lowest-energy state of the same atom with n − 1 electrons, and then
put the remaining electron in the least-energy orbital available. (This rule has only a few
exceptions, which we will explore later.) Said another way, electrons enter the orbitals of
lowest energy first and then work their way up.

Now, orbitals with the same energy are said to be degenerate. In this problem we
explore the case where the orbital with least energy is degenerate, meaning there is more
than one orbital with this same energy.

The 2p orbitals of a given atom are degenerate. (To distinguish the individual orbitals
we will arbitrarily label them 2px, 2py, 2pz, as is convention). Now consider filling an atom’s
orbitals using the building-up principle. Suppose that our first electron to enter the 2p
orbitals entered the 2px orbital. The next electron then seems to have a choice: it can enter
the 2px orbital or one of the (equivalent) 2py or 2pz orbitals. Which option will the electron
choose?

Problem 4.11 (Solution on page 59)
In the previous problem, there is a subtle energetic effect in action that you probably did
not take into account. Electrons with parallel spins have a slightly lower total energy than
electrons with antiparallel spins. Does this effect reinforce your answer to Problem 4.10 or
counteract it?

Problem 4.12 (Solution on page 60)
An electron is said to be paired if it shares its orbital with a second electron. If it is the only
electron in its orbital, it is said to be unpaired. Given two unpaired electrons in the same
atom, what can we say regarding whether their spins are parallel or antiparallel? (Note the
distinction between this problem and Problem 4.9.)

Problem 4.13 (Solution on page 60)
We are still missing one key piece of information. Namely, we know we need to fill orbitals
in order of their energies, but what is the ordering of energies among orbitals? There is no
really straightforward way to derive this qualitatively, but the overall energy of an orbital is
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determined by n+ l; the lower this value the lower the orbital’s energy. If two orbitals have
the same value of n+ l, the one with the smaller n is lower in energy, as you might expect.

Find the highest-energy occupied subshell of an atom (not necessarily neutral) with 17
electrons. Does your answer depend on the identity of the atom?

Box 4.4. Notation
There is a standard notation for representing electron configurations. It is of the form

1s22s22p63s23p63d104s2 . . . ,

where we group together electrons into subshells. Here, the superscripts represent the number
of electrons in each subshell. Sometimes subshells that are not completely filled are written in
expanded form to emphasize where the various electrons are; for example, 1s22s22p2

x2p
1
y2p

1
z.

In writing electron configurations, why do we write the 3d orbital before the 4s if the 3d
is higher in energy? While this statement is true for an empty 3d orbital, once it contains
electrons its energy is lowered. This same statement holds true for higher nd and (n + 1)s
orbitals. This is a somewhat confusing statement, but blame quantum mechanics, not us!

Problem 4.14 (Solution on page 61)
A certain ion has charge −2 and electron configuration of 1s22s22p63s23p6. Write the formula
of this ion.

Solutions and Discussion (4.2)

So now we know how to specify orbitals and the electrons they contain. But given an
element with a certain number of electrons, how do we know which orbitals are occupied
and how many electrons are in each? Or equivalently, how can we find the states of all the
electrons in an given atom? The formal term for the list of occupied orbitals in an atom,
together with how many electrons are in each, is the electron configuration of that atom.

We can solve this problem in general if the atom is in its ground state, or has the
lowest potential energy possible, and exists as individual atoms (generally meaning that the
element must be in the gas phase), since right now that is all our picture of orbitals can
handle. If, however, our atom is not in its ground state, there are many possible electron
configurations and more information is needed. Also, starting in Chapter 5, we will explore
what happens when atoms group together.

Now before going on, why is it important to know the electron configuration of an atom?
Remember that electrons control the reactivity of an atom. So if we know what the electrons
of a certain atom are doing, then we can figure out what the atom as a whole will do.

Problem 4.7
In quantum mechanics, the Pauli Exclusion Principle states that no two electrons can
be in exactly the same state. What does this imply about two electrons in the same atom
having the same set of quantum numbers?
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Solution
The state of an electron in an atom is completely determined by its quantum numbers. Thus
the Pauli Exclusion Principle just means that no two electrons can have the same set of four
quantum numbers.

Problem 4.8
What is the maximum number of electrons that can occupy a given orbital?

Solution
Consider two electrons in the same orbital. Since n, l, and ml specify the orbital, we see
that these electrons must have the same value for n, l, and ml. But the state of an electron
is specified by (n, l,ml,ms), and hence for electrons in the same orbital to be in different
states, they must have different mss. There are two possible values for ms (namely +1

2
and

−1
2
), and so at most two electrons can occupy a given orbital.

Problem 4.9
Electrons with spins of the same sign are said to have parallel spins, and electrons with
spins of opposite sign are said to have antiparallel spins. Given two electrons occupying
the same orbital, what can we say about their spins: should they be parallel or antiparallel?

Solution
We derived in the previous problem that electrons in the same orbital must have different
values for ms. Thus one will have spin +1

2
and the other spin −1

2
. We conclude that electrons

in the same orbital have antiparallel spins.

Problem 4.10
The 2p orbitals of a given atom are degenerate. (To distinguish the individual orbitals we
will arbitrarily label them 2px, 2py, 2pz, as is convention). Now consider filling an atom’s
orbitals using the building-up principle. Suppose that our first electron to enter the 2p
orbitals entered the 2px orbital. The next electron then seems to have a choice: it can enter
the 2px orbital or one of the (equivalent) 2py or 2pz orbitals. Which option will the electron
choose?

Solution
By the Aufbau principle, we know that the electron will enter the orbital that gives it the
least potential energy. As far as the electron is concerned, what is the difference between
the 2px and 2py orbitals? Since their shape and distance from the nucleus is the same, these
are not factors in the electron’s decision. However, the 2px already has an electron in it, and
the 2py does not.

But as always, electrons repel each other. Thus if we put our next electron in the 2px
orbital, it will be forced into close vicinity with the electron already there, resulting in an
increase in potential energy. This does not happen with the 2py orbital. Hence, the electron
will enter a vacant orbital before entering a half-filled one. In our specific case, it will enter
one of the 2py or 2pz orbitals.
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Problem 4.11
In the previous problem, there is a subtle energetic effect in action that you probably did
not take into account. Electrons with parallel spins have a slightly lower total energy than
electrons with antiparallel spins. Does this effect reinforce your answer to Problem 4.10 or
counteract it?

Solution
We showed in the previous problem that the electron will enter one of the vacant 2py or
2pz orbitals rather than the half-filled 2px orbital, due to electromagnetic repulsion between
electrons in the same orbital. Now suppose that both electrons were in the 2px orbital. We
derived earlier that they must have antiparallel spins, which we are told results in an increase
in energy. When the electrons are in different 2p orbitals, their spins may be parallel, and
hence the system can have a lower total energy.

This effect therefore reinforces our answer; the energetics also favor having electrons in
separate degenerate orbitals.

Problem 4.12
An electron is said to be paired if it shares its orbital with a second electron. If it is the only
electron in its orbital, it is said to be unpaired. Given two unpaired electrons in the same
atom, what can we say regarding whether their spins are parallel or antiparallel? (Note the
distinction between this problem and Problem 4.9.)

Solution
We know that electrons have slightly lower energy when their spins are parallel. Two un-
paired electrons are in different orbitals, and hence their spins do not have to be antiparallel.
Thus, their spins will probably be parallel, unless there is a force acting to make their spins
antiparallel.

At this point, we have deduced Hund’s Rule, the third and final principle of orbital
filling. Hund’s Rule states that if an electron has a choice among several equal-energy
orbitals, it will enter a vacant orbital over a half-filled one. Furthermore, the spins of the
unpaired electrons in a given atom will all be parallel.

Problem 4.13
Find the highest-energy occupied subshell of an atom (not necessarily neutral) with 17
electrons. Does your answer depend on the identity of the atom?

Solution
As presented, the information about the ordering of orbital energies is not overly easy to
apply, since we need to keep track of so much data in order to use it. So let’s convert it into
a more compact graphical form. If we put orbitals into a table according to their n value in
one direction and l value in the other, the we see that the orbitals on the diagonals of the
table will have the same value of n + l. So we can construct the following diagram to give
us the ordering of orbital energies. (Each row represents an energy level and contains all of
the subshells in that level. If we draw lines from the top left corner on down as shown, the
orbitals are hit in order of their energy.)
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Hence we find that orbital energies obey the following: 1s < 2s < 2p < 3s < 3p < 4s <
3d < . . .. Note that, contrary to what you might expect, 3d is higher in energy than is 4s,
and consequently 4s is filled first.

Now, can just list out orbitals and build them up until we reach 17 electrons. So we
start with 1s22s22p6, which is ten electrons so far. We can add in the 3s2 orbital, leaving 5
electrons unaccounted for. The 3p orbitals are next to be filled, and we can fit these electrons
in them as 3p2

x3p
2
y3p

1
z (or simply 3p5). Hence the highest-energy occupied subshell is the 3p

subshell.
Note we can also solve this problem by simply reasoning about the number of electrons

in each energy level an subshell. Clearly the first energy level of this atom is filled, requiring
only 2 electrons. The second energy level is also filled, requiring 8 electrons. Now, the third
energy level requires 8 electrons before the 4s orbital starts filling, so we know that the
highest-energy occupied subshell is in the third energy level. Two electrons fit into the 3s
orbital, and the remaining 5 can be safely accommodated into the 3p orbitals.

We can also represent the ordering of orbital energies using an orbital energy diagram,
such as the one shown below.
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Potential energy PE = 0

Recall that when two objects with a force acting between them have been pulled infinitely
far apart, we usually set their potential energy as 0. Thus, the lower the energy of an orbital,
the more negative its energy. This is demonstrated by our choice of shading in the above
diagram.

Problem 4.14
A certain ion has charge −2 and electron configuration of 1s22s22p63s23p6. Write the formula
of this ion.
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Solution
There are a total of 18 electrons in this ion. Since right now our ion has a −2 charge, if we
remove two electrons, it will become neutral. Hence we are looking for an element that is
neutral with 16 electrons, or just one that has 16 protons. The element with atomic number
16 is sulfur. This means that the original ion was S 2 – .

Exercises for Section 4.2

Exercise 4.2.1
What orbital is filled right after the 4d orbital?

Exercise 4.2.2
How many electrons in a given atom can have n = 3 and l = 2?

Exercise 4.2.3
Find the formula of an ion with a charge of +1 and electron configuration of
1s22s22p63s23p63d104s24p6.

Exercise 4.2.4
Find the electron configuration of a gaseous ion with 26 electrons.

Exercise 4.2.5
Since orbitals are given by a wave function, we can think about them as probability densities
as well. These wave functions trail off continuously; there is no distance from the nucleus
beyond which the value of a given orbital’s wave function is always zero. So an electron
can be found arbitrarily far from the nucleus. Given this, why do we still always observe
electrons around their respective atoms, rather than in random distant locations?

4.3 Electron Configuration and the Periodic Table

Problems

Problem 4.15 (Solution on page 64)
Let’s consider the groups, or columns, of the periodic table. Recall that the groups were
originally established because elements in the same group have similar physical and chemical
properties. But what is the electron configuration of Li? Na? K? Rb? What about O, S,
Se, and Te? Do you notice any pattern? Does this pattern work in general? Why or why
not? (Hint: Pay attention to the highest energy level)

Problem 4.16 (Solution on page 64)
How many elements are in the first period, or row, of the periodic table? The second? The
third? In terms of orbitals, to what does the number of elements in each row correspond?

62



4.3. ELECTRON CONFIGURATION AND THE PERIODIC TABLE

Problem 4.17 (Solution on page 65)
The core electrons of an element are those below filling the energy levels below the va-
lence shell; valence electrons are those in the valence shell. (Note that the distinction
between valence and core electrons is blurred in the case of d-orbitals). Consider the core
electron configuration of Na. What element has that as its overall electron configuration? In
general, the core electron configuration of a given element will be the same as the electron
configuration of an element in what group of the periodic table?

Box 4.5. Blocks of the Table
The periodic table is separated into several blocks, each labeled according to whatever type
of subshell is being filled, or has just been filled, in the elements in that group. The groups
of the table are given numbers, starting from 1 on the left up to 18 on the right. (Note that
hydrogen, although commonly written as though in Group 1, is not considered an element of
any group.) The s-block consists of Groups 1 and 2, the d-block consists of Groups 3-12,
and the p-block consists of Groups 13-18. The main group is the union of the s and p
blocks.

Now look at the two blocks of the table that are set off by themselves. The first, from
La to Lu, is called the lanthanides (or lanthanide series), and corresponds to filling
the 4f -orbitals. The second, the actinides (or actinide series), goes from Ac to Lr and
corresponds to 5f -orbital filling. Together, the lanthinides and actinides constitute the f-
blocks of the periodic table.

We generally find metals on the left of the table and nonmetals on the right. Here is a
listing of the names of the various groups of the table:

• The elements in Group 1 are called the alkali metals

• Those in Group 2 are called the alkaline earth metals

• The members of the d-block are known as the transition metals

• The elements B, Si, Ge, As, Sb, Te, and Po are called the semimetals or metalloids,
as they have properties of both metals and nonmetals. If you look at their location on
the table, they made a kind of staircase shape, often called a stepped line.

• The Group 17 elements are called the halogens.

• The Group 18 elements are called the noble gases.

Problem 4.18 (Solution on page 66)
Most of the time ground-state electron configurations line up where we would expect, follow-
ing the building-up principle to the letter. However, there are a few exceptions. Remember
that the 3d orbital changes its relative ordering with the 4s after an electron is added. Also,
a fully-filled subshell gains a degree of stability, as does a half-filled one, albeit to a lesser ex-
tent. This secondary effect is enough to provide for a deviation in the electron configuration
of a few d-block elements.
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In the fourth period, only Cr and Cu are exceptions to the Aufbau Principle. Predict
the electron configurations of each.

Solutions and Discussion (4.3)

Problem 4.15
Let’s consider the groups, or columns, of the periodic table. Recall that the groups were
originally established because elements in the same group has similar physical and chemical
properties. But what is the electron configuration of Li? Na? K? Rb? What about O, S,
Se, and Te? Do you notice any pattern? Does this pattern work in general? Why or why
not? (Hint: Pay attention to the highest energy level)

Solution
We proceed by applying the rules for electron filling.

Element Number of Electrons Electron Configuration
Lithium 3 1s22s1

Sodium 11 1s22s22p63s1

Potassium 19 1s22s22p63s23p64s1

Rubidium 37 1s22s22p63s23p63d104s24p65s1

Note that in all cases, the electron configuration of the highest energy level is the same
(just ns1).

For O, S, Se, and Te, proceeding in the same manner, we obtain the following

Element Number of Electrons Electron Configuration
Oxygen 8 1s22s22p4

Sulfur 16 1s22s22p63s23p4

Selenium 34 1s22s22p63s23p63d104s24p4

Tellurium 52 1s22s22p63s23p63d104s24p64d105s25p4

The exact same trend is obtained: the electron configuration of the highest energy level
is identical, just ns2np4.

Thus our general trend is that all elements in a group have the same highest energy
level electron configuration. Does this hold in general? Well, since all the Group 1 elements
have the same electron configuration in their highest level, adding one electron all Group
2 elements must satisfy our trend as well. Repeating our reasoning, we see that indeed all
groups have the relevant property.

Problem 4.16
How many elements are in the first period, or row, of the periodic table? The second? The
third? In terms of orbitals, to what does the number of elements in each row correspond?
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Solution
There are 2 elements in the first period, 8 elements in the second period, and 18 in the third.
The number of elements in each row equals twice the number of orbitals in each energy level,
or simply the number of electrons in each energy level.

As you should have deduced from Problems 4.15 and 4.16, the periodic table is, at its
heart, a manifestation of electron configurations. The nth period corresponds to filling the
nth energy level, and thus all elements in a given period have the same energy level of their
valence shells, or outermost layer of electrons.

Moving down a group, all elements have the same valence configuration, although their
valence configurations belong to different energy levels. For example, the Group 17 elements
(F, Cl, Br, etc.) all have a valence configuration of ns2np5.

Problem 4.17
The core electrons of an element are those below filling the energy levels below the va-
lence shell; valence electrons are those in the valence shell. (Note that the distinction
between valence and core electrons is blurred in the case of d-orbitals). Consider the core
electron configuration of Na. What element has that as its overall electron configuration? In
general, the core electron configuration of a given element will be the same as the electron
configuration of an element in what group of the periodic table?

Solution
Sodium has 11 valence electrons. Thus its electron configuration is 1s22s22p63s1. Its va-
lence configuration is 3s1, meaning sodium’s core configuration is 1s22s22p6, which is the
configuration of Ne.

In general, if we strip away the valence shell of an element in the nth period, we move to
the end of the (n − 1)st period. Thus we will always end up in Group 18, meaning we end
up with the electron configuration of a noble gas.

Box 4.6. Notation
Most of the time, for a given element all that we care about is its valence shell, since the core
electrons tend to remain fixed (why?). Furthermore, valence electrons are responsible for
the chemical reactivity of elements, since they are the only objects that an atom is able to
mess with to try to lower its energy (besides nuclear decay, which we will discuss in Chapter
??). Thus, we need a more compact notation for our electron configurations, one where we
can compress the core electrons.

Based on Problem 4.17, we can invent a general notation that is compact enough for
our purposes, yet still clearly conveys the necessary information. Instead of writing the core
electron configuration, we can just write [Noble gas], where this “Noble gas” is the element
with the same electron configuration as the core.

Take for example Ca from the fourth row of the periodic table. It has a valence config-
uration of 4s2, and its core electrons look exactly like those of Ar. Thus we write that Ca’s
electron configuration is [Ar]4s2. Now for something like Mn, we must write [Ar]3d54s2; even
though the 3d orbitals belong to the third energy level, they are not part of Ar’s electron
configuration.
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Problem 4.18
Most of the time ground-state electron configurations line up where we would expect, follow-
ing the building-up principle to the letter. However, there are a few exceptions. Remember
that the 3d orbital changes its relative ordering with the 4s after an electron is added. Also,
a fully-filled subshell gains a degree of stability, as does a half-filled one, albeit to a lesser ex-
tent. This secondary effect is enough to provide for a deviation in the electron configuration
of a few d-block elements.

In the fourth period, only Cr and Cu are exceptions to the Aufbau Principle. Predict
the electron configurations of each.

Solution
According to the Aufbau Principle, Cr should have an electron configuration of [Ar]3d44s2.
However, we know that chromium does not follow the building-up principle to the letter. In
order to half-fill its 3d orbitals, Cr must move an electron from another orbital into the 3d.
Now, from which orbital should this electron be moved? Since we seek to minimize total
energy, it must come from the highest-energy orbital available, or the 4s orbital. Hence Cr’s
electron configuration is [Ar]3d54s1.

Similarly, we see that the electron configuration of copper must be [Ar]3d104s1.

Exercises for Section 4.3

Exercise 4.3.1
(To Think About) Based on our discussion to this point, what characteristic of an element
seems to be most important for determining its physical and chemical properties?

Exercise 4.3.2
What is the electron configuration of Se?

Exercise 4.3.3
How many unpaired electrons are there in a gas-phase chromium atom in the ground state?

Exercise 4.3.4
Why is hydrogen not considered a part of any group?

Exercise 4.3.5
Let’s examine the periodic table with a bit more specificity. Notice that the first row of
the table has two elements, which corresponds to filling the first energy level with electrons
(remember, each new element has one more electron than the previous one does). The second
row has eight electrons, which corresponds to filling the second energy level. In particular,
for the first two (Li and Be) we are putting our new electrons into the 2s orbital and for
B through Ne we put them into the 2p orbitals. Something strange happens with the third
row though. For Na and Mg we fill the 3s orbital. For Al through Ar we fill the 3p orbital.
But when do we fill the the 3d orbital?
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4.4 Some Cool Effects

Problems

Problem 4.19 (Solution on page 68)
The valence electrons in an atom are layered upon shells of core electrons. While the valence
electrons are attracted by the highly positively-charged nucleus, they are also repelled by
these inner electrons, and so they experience less of an attractive force than you might oth-
erwise expect. The valence electrons are thus effectively blocked from much of the nucleus’s
charge, and they are said to be shielded. The amount of positive charge that a valence
electrons “sees,” as measured by the magnitude of the force exerted on it, is referred to as
the effective nuclear charge and is often denoted Zeff.

In a given valence shell, as the value of l increases, does the amount of shielding increase
or decrease?

Problem 4.20 (Solution on page 68)
An electron is said to be penetrating if it can, with relatively high probability, dig through
the lower shells of electrons. In other words, a penetrating electron has a high chance of
being found near the nucleus. Order the following subshells in terms of having the most
highly penetrating electrons, assuming n is fixed: ns, np, nd, nf .

Box 4.7. Background Information
In the following problems, we’ll be working with periodic trends, or how certain properties
change as we move across or down the main group of the periodic table. Note that we are
only dealing with the main group right now. The transition metals become more tricky to
make predictions about.

Problem 4.21 (Solution on page 69)
The atomic radius of an element is what you might expect, namely the radius of an atom
of that element. Actually, it is not easy to rigorously define this quantity, since an electron in
an atom could theoretically be found arbitrarily far away from the nucleus. We can think of
the atomic radius qualitatively as the distance from the nucleus to the boundary surface of
the outermost occupied orbital (that is, the distance beyond which electron density becomes
negligible). In practice, chemists define this term empirically as half the distance between
neighboring nuclei in a sample of the element.

Predict, generally, what happens to atomic radius as we move from the left of the periodic
table to the right, excepting the noble gases. Also predict what happens to atomic radius as
we move from top to bottom.

Problem 4.22 (Solution on page 69)
The electronegativity of an atom is its ability to pull electrons towards it in compounds.
Predict (again, generally) what happens to electronegativity as we move from the left of the
periodic table to the right, excepting the noble gases. Similarly, what should happen as we
move from top to bottom?
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Problem 4.23 (Solution on page 70)
When we form an ion, we essentially either push an electron onto an atom or pull an electron
off of one. The ionization energy of a species is the amount of energy needed to pull an
electron off it. The first ionization energy is the amount of energy needed to rip only one
electron off of that species (just a more specific name for “ionization energy”). The second
ionization energy is the amount of energy needed to rip a second electron off after the first
has already been removed. By convention, the sign of ionization energy is positive if energy
is required to remove an electron.

Can an element have a negative ionization energy? Also, predict how ionization energy
varies as we move from right to left across a period. What exceptions should there be to
this general rule? (Hint: Don’t forget to take into account the special stability of a half- or
fully-filled orbital!) Predict in general what should happen to ionization energy as we move
from top to bottom along a group.

Problem 4.24 (Solution on page 71)
Many of the later-period p-block elements form two different ions, one of which is two units
lower in charge than expected for that group number. For example, the only ion that
aluminum forms is Al 3+, while its congener (fellow group member) indium forms both
In 3+ and In +. This observation is called the inert pair effect. Explain this effect using
orbitals. (Hint: Think about penetration.)

Solutions and Discussion (4.4)

Problem 4.19
In a given valence shell, as the value of l increases, does the amount of shielding increase or
decrease?

Solution
Recall that l specifies the angular momentum of an orbital, and this momentum tends to
fling the electron from the nucleus. Alternatively, we can think about the nodes present
in each type of orbital. An s electron (l = 0) has a nonzero probability of being found all
the way at the nucleus, while p (l = 1) electrons have a nodal plane that cuts through the
nucleus.

According to both ways of thinking, we see that s electrons have much less opportunity
to experience shielding than do p electrons, since they can get closer to the nucleus and
are less apt to be thrown away. Extending our reasoning further, we realize that shielding
increases with l (and thus Zeff decreases).

Problem 4.20
An electron is said to be penetrating if it can, with relatively high probability, dig through
the lower shells of electrons. In other words, a penetrating electron has a high chance of
being found near the nucleus. Order the following subshells in terms of having the most
highly penetrating electrons, assuming n is fixed: ns, np, nd, nf .
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Solution
Clearly the penetration of an electron is higher if it has a higher probability of being found
close to the nucleus. Think about nodes through the nucleus, as we did in the previous
problem. Since s electrons are the only ones without a node through the nucleus, we see
that they are most penetrating. But because the number of nodes through the nucleus
increases with l, we see that p comes next, followed by d and then f . So therefore, in terms
of penetration s > p > d > f .

Now we really get to have fun. Until now, we largely worked to build a model that
could explain the phenomena we observed. Now at long last we get to use our knowledge to
make definite predictions about the elements. This is really one of the great things about
chemistry: we get to apply our general knowledge to predict how specific substances must
behave.

Problem 4.21
Predict, generally, what happens to atomic radius as we move from the left of the periodic
table to the right, excepting the noble gases. Also predict what happens to atomic radius as
we move from top to bottom.

Solution
We proceed by applying our knowledge of atomic-level structure.

• Movement from left to right: As we move from left to right across a given period on
the periodic table, we add one more proton to the nucleus and one more electron to the
valence shell. What implications does this have for atomic radius? Let’s think about
the effective nuclear charge. Although an electron has the same charge as a proton,
it cannot block the entire charge of that proton. This is because the valence electrons
are all about the same distance away from the nucleus, and so they cannot align well
enough to act as efficient shields for one another. Since Zeff is higher, electrons will
experience a higher attractive force, which will make the atomic radius decrease.

• Movement from top to bottom: As we move from the top to bottom of a given group
on the table, we add a full shell of electrons and an appropriate number of protons.
Suddenly, the valence electrons are in a new energy level. This will increase the atomic
radius greatly, since higher energy levels are at a greater distance from the nucleus.

Box 4.8. Fun Fact
For anything besides a noble gas, empirically measuring atomic radius is pretty straightfor-
ward. However, for a noble gas, which does not form any sort of compound with itself (we’ll
see why this is in Chapter 5), we take the atomic radius to be the same as the van der
Waals radius, or half the distance between adjacent nuclei in a solidified sample of the gas.
Since these atoms are not bonded together, they are much farther apart, and the atomic
radii of noble gases are much larger than we would expect.
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Problem 4.22
The electronegativity of an atom is its ability to pull electrons towards it in compounds.
Predict (again, generally) what happens to electronegativity as we move from the left of the
periodic table to the right, excepting the noble gases. Similarly, what should happen as we
move from top to bottom?

Solution
As you might imagine, something with a high effective nuclear charge should have a high
electronegativity. But as we’ve already realized, Zeff increases as we move from left to right
across a period. What about as we go down a group? Since we add a new shell of electrons
each time, the core electrons grow better and better at shielding, which leads to a decrease
in effective nuclear charge. The most electronegative of all elements is F, followed by O, Cl,
and then N.

• Movement from left to right: Electronegativity increases.

• Movement from top to bottom: Electronegativity decreases.

Problem 4.23
Can an element have a negative ionization energy? Also, predict how ionization energy
varies as we move from right to left across a period. What exceptions should there be to
this general rule? (Hint: Don’t forget to take into account the special stability of a half- or
fully-filled orbital!) Predict in general what should happen to ionization energy as we move
from top to bottom along a group.

Solution
Consider removing an electron from an element A. We can represent this chemical process
as the equation A −→ A+ + e – . But notice that we have separated a positive and negative
charge, something that always requires energy. Hence the ionization energy of an element is
always positive (what about the second ionization energy?).

• Movement from left to right: So how do we expect ionization energies to vary across the
periodic table? As before, the value of Zeff clearly plays a role. The higher its value,
the higher the ionization energy. But there is a second, more subtle effect here as
well. Remember that filling or half-filling a subshell lends an extra degree of stability.
Thus, it should be easier than expected to remove an electron if doing so will result in
a subshell becoming completely or half filled. It should also be harder to remove an
electron from an atom that already has a half-filled or full subshell. Thus, in general
ionization energy should increase across a period, except it should decrease from Group
2 to Group 13 and Group 15 to 16.

• Movement from top to bottom: Here we don’t have to worry about orbital filling. Why
not? Since all elements in a given group have the same valence configuration, they each
gain about the same stabilization, if any, from the above effect of half- or completely-
filling orbitals, and hence there is no net effect. Since the only other relevant property
is effective nuclear charge, we see that ionization energy must decrease down a group.
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Problem 4.24
Many of the later-period p-block elements form two different ions, one of which is two units
lower in charge than expected for that group number. For example, the only ion that
aluminum forms is Al 3+, while its congener (fellow group member) indium forms both
In 3+ and In +. This observation is called the inert pair effect. Explain this effect using
orbitals. (Hint: Think about penetration.)

Solution
We are told that these ions differ in charge by two units. Thus, sometimes the relevant
elements hold some pair of electrons. You should recognize that the subshell that holds two
electrons is the s subshell. This should lead you to suspect that the inert pair effect has
something to do with the ns orbital of these late p-block elements.

Now, we know that s electrons are highly penetrating and are thus poorly shielded. This
allows them to experience more of the nucleus’s attractive force, and we see that s orbitals
with high n are relatively low in energy. So ions can sometimes form without losing the
“inert” pair of electrons in the valence s orbital.

Exercises for Section 4.4

Exercise 4.4.1
At the other end of the spectrum from ionization energy is electron affinity. The electron
affinity of a species is the amount of energy released when an electron is added to that
species. For example, the electron affinity of F is +328 kJ ·mol−1, meaning that sticking an
electron onto a mole of F atoms releases 328 kJ of energy. Said another way, the reaction

F + e− −→ F−

releases 328 kJ per mole. What can we say about the sign of the electron affinity of an anion
(if you recall from Chapter 2, this is a negatively charged ion)? What about for a cation (a
positively charged ion)?

Also, predict, generally, how electron affinity varies from left to right across a period,
as well as any exceptions to this general trend. Predict how electron affinity varies down a
group.

Exercise 4.4.2
We know that atomic radius decreases as we go down a group and increases across a group.
The magnitudes of these effects are comparable, and main group elements that are diagonal
from one another (that is, from one you can go down and to the right to get to the next) often
have similar atomic radii. A similar statement can be made for ionization energy. Hence,
diagonal elements such as Li and Mg, Be and Al often have similar chemical properties.
This idea of diagonal relationships allows us to predict similarities in reactivity between
diagonal elements. (Diagonal relationships also help account for the stepped line of the
metalloids.)

Why is there no diagonal relationship between neon and potassium?
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Exercise 4.4.3
Which pair of the following elements has the smallest difference in first ionization energies?

Be, B, Na, Al

4.5 Further Explorations

Problem 4.25
In the text of this chapter, we examined atoms only in their ground state. However, if an
electron is given the appropriate amount of energy, it is able to jump from a lower orbital to
a higher one, a process called an electron transition. At this point, the atom and electron
are both said to be in an excited state, since they have more potential energy than in the
ground state. Note that an electron in an excited state can make a spontaneous transition
to a lower energy orbital.

(a) Find which of the following transitions requires the largest input of energy. For the
latter two, we have represented orbitals in the form (n, l,ml).

1s→ 2p, 2s→ 2p, (2, 0, 0)→ (3, 1,−1), (5, 0, 0)→ (2, 1, 1)

.

(b) Suppose that an electron is excited from a 3p orbital to a 4d orbital; this excited state
then decays via the following transition pathway: 4d → 4s → 3p. Is there a net
consumption or release of energy?

Problem 4.26
We know that light is pure energy. But we also know that many substances absorb light.
When we shine light on a substance which absorbs this light, by conservation of energy, this
energy must then be transferred to the substance in some manner.

(a) Consider shining a beam of light on an element, which the element then absorbs.
Consider further the role of a single photon of this light. It is able to affect only
charged particles, since it is essentially just a fluctuation in an electromagnetic field.
Given this information, where should the energy of this photon go after it is absorbed?
(Hint: what methods of potential energy storage are available to an atom?)

(b) We shine a beam of white light, consisting of all visible wavelengths, on a sample of
an element. We can determine which wavelengths the element absorbs, or its visible
absorption spectrum, by recording the wavelengths of light that pass through the
element. Using your answer from part (a), predict the form of the absorbed regions—
should they be discrete bars or continuous areas?

(c) We can also look at the emission spectrum of an element, or the wavelengths of
light that are emitted from an excited sample of that element. Should a given element
absorb and emit at the same or different wavelengths?
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(d) The absorption and emission spectra of each element are unique to that element. Thus
these can serve as a sort of atomic “fingerprint.” Absorption and emission spectra are
the subject of the field spectrophotometry, where they are put to work providing
us with all sorts of information. But wait a minute—since all elements have the same
sets of atomic orbitals, how can they have differing spectra?

Problem 4.27
Electron spin largely determines the magnetic properties of an element or a compound. A
substance is paramagnetic if it has any unpaired electrons; otherwise, it is diamagnetic.
(There is a third type of magnetism, called ferromagnetism, but since it is an emergent
property of a substance, we will not explore it here.) A paramagnetic substance is weakly
drawn into an external magnetic field, while a diamagnetic substance is weakly repelled.
Arrange the elements N, Mg, Cl, and Cr in order of decreasing attraction into a magnetic
field.

Problem 4.28
(XYZ: based off of 2001: 47 of Chem Olympiad)
Predict which of the following metals requires the shortest wavelength of light to exhibit the
photoelectric effect and which has the lowest work function:

Na, Mg, K, Ca.

Problem 4.29
What is the most electronegative element on the periodic table? Which is the most elec-
tropositive (that is, least electronegative)?

Problem 4.30
In problem 4.21, we derived how atomic radius generally varies as we traverse the periodic
table. If we look at empirical data, we find that our predictions work pretty well in practice.
However, towards the bottom of the table we start to find some strange deviations. For
example, the atomic radius of Zr is 160 pm, while the atomic radius of its cogener (fellow
group member) Hf is 156 pm. Similarly, the atomic radius of silver is 144 pm while that of
gold is also 144 pm.

The smaller-than-expected atomic radii of the 6th period transition metals is an effect
called the lanthanide contraction.

(a) Provide an atomic-level explanation for the lanthanide contraction. Why is this effect
so called?

(b) Predict the location of a similar contraction elsewhere in the table.

(c) Do you expect this second contraction to be more or less pronounced than the lan-
thanide contraction? Why?

Problem 4.31
Which of the elements in the second period has the highest third ionization energy? Which
has the lowest?
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Problem 4.32
We saw before that l determines the number of angular nodes. However, the total number
of nodes is determined by n; there are n − 1 nodes in all subshells of a given energy shell.
Nodal surfaces that are not angular (that is, they don’t pass through the nucleus) are called
radial nodes. Find the number of radial nodes in a 6d orbital.
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Chapter 5

Making Molecules

We have spent a great deal of time in the past couple chapters building a picture of individual
atoms. In this chapter, we’ll use our knowledge of the structure of single atoms to understand
how and why atoms combine with each other to build compounds.

Throughout this entire chapter, it is important to keep in mind the main theme of atomic
behavior—atoms always seek the lowest possible energy. We have already looked at how
energy is minimized within an isolated atom. But when lots of atoms are present together,
as is normally the case, they will try to interact in a way such that their total energy is
minimized. In this chapter, we will look at how main group elements tend to combine with
one another.

The Big Question: Chapter 5

How do individual atoms combine with others?

5.1 The Octet Rule

Problems

Problem 5.1 (Solution on page 76)
Recall that atoms gain a degree of stability from having a fully-filled subshell. Having a
fully-filled energy shell gives atoms even more stability. The octet rule is an empirical rule
that states that neutral atoms tend to acquire or lose electrons in order to have a full valence
shell. It works very well for Group 1 and 2 metals and the definite nonmetals such as O and
the halogens. Note that we need only to have full s and p orbitals; the d and f orbitals are
excessively high in energy to contribute to this special stability.

How many electrons are there in the valence shell of a species after it gains or loses
electrons to satisfy the octet rule?

Problem 5.2 (Solution on page 76)
Main group elements react with others in order to fulfill the octet rule. Use the octet rule
to predict which group of the periodic table should contain very unreactive elements.
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Problem 5.3 (Solution on page 77)
In general, do main group elements on the left of the periodic table form cations (positively-
charged ions) or anions (negatively-charged ions)? How about elements on the right?

Solutions and Discussion (5.1)

In order to answer our Big Question, we start out by looking at how individual atoms
can gain stability.

Problem 5.1
Recall that atoms gain a degree of stability from having a fully-filled subshell. Having a
fully-filled energy shell gives atoms even more stability. The octet rule is an empirical rule
that states that neutral atoms tend to acquire or lose electrons in order to have a full valence
shell. It works very well for Group 1 and 2 metals and the definite nonmetals such as O and
the halogens. Note that we need only to have full s and p orbitals; the d and f orbitals are
too high in energy to contribute to this special stability.

How many electrons are there in the valence shell of a species after it gains or loses
electrons to satisfy the octet rule?

Solution
Consider an atom that fulfills the octet rule. Suppose it has full valence s and p orbitals. In
the valence shell there are one s and three p orbitals, and each orbital holds two electrons.
Thus there are a total of 8 electrons in the atom’s valence shell.

Alternatively, we could be in an atom that does not have any p valence orbitals. In this
case we have only a lone s orbital in our valence shell, leading to a total of 2 electrons.

Thus a species satisfying the octet rule has 2 electrons in its valence shell if that shell
has n = 1 and 8 electrons otherwise. (Note that the word “octet” means “group of eight”
in Latin.)

Problem 5.2
Main group elements react with others in order to fulfill the octet rule. Use the octet rule
to predict which group of the periodic table should contain very unreactive elements.

Solution
The octet rule states that main group elements want to have a full valence shell, as such an
electron configuration is very low in energy. But the elements in Group 18, called the noble
gases, already have full valence shells. Thus, we expect that the noble gases should be very
inert.

Box 5.1. Fun Fact
However, even the noble gases are not completely inert. In 1961, a Canadian chemistry
professor named Neil Bartlett realized that he had accidentally made a compound of xenon,
fluorine, and platinum some years back In 1962 he proved his hypothesis experimentally.
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Today, chemists have synthesized many other kinds of xenon compounds. Krypton and argon
have also been shown to form stable compounds with fluorine. Under extreme conditions
(of temperature and pressure), it’s possible to force neon and helium to form compounds;
however, no known compounds of these elements are stable under normal conditions.

Problem 5.3
In general, do main group elements on the left of the periodic table form cations (positively-
charged ions) or anions (negatively-charged ions)? How about elements on the right?

Solution
Main group elements want to satisfy the octet rule; in order to accomplish this they must
either lose all of their valence electrons or fill their current valence shells. Elements on the
left of the table have only a few electrons in their valence shells, making it much easier to
shuck these electrons than to fill the entire shell. Thus, elements found on the left of the
periodic table should tend to form positively-charged ions, or cations.

In contrast, elements on the right of the table already have valence shells that are almost
full, meaning it takes much less energy to fill their shells than to discard all their valence
electrons. So these elements should form negatively-charged ions, or anions.

Recall that elements on the left side of the table are metals while those on the right are
generally nonmetals. Thus we see see that metals like to be positively charged and nonmetals
like to be negatively charged. Also, notice that any atom (besides hydrogen), after gaining
or losing electrons to satisfy the octet rule, will have an electron configuration identical that
of a noble gas. So a species that has achieved its octet configuration is said to have a noble
gas configuration.

Box 5.2. What Happens with Everything Else?
The semimetals (B, Si, Ge, As, Sb, Te, Po; those on the stepped line) do not really bother
with the octet rule; if anything they tend to lose their p electrons during ion formation.
Elements to their left in the p-block, such as Ga or Sn, generally have variable valence,
or can form several types of ions. Sometimes they behave like you would expect with the
octet rule, while sometimes they lose only their p electrons (recall the inert pair effect from
Chapter 4). Note however that Al only forms Al 3+, as the octet rule predicts.

On the other hand, most transition metals like to shed their highest-energy s electrons,
so many of them have a +2 charge on their ions. Many of them also form more than one
stable ion.

At this point, we can understand the basic motivations for two elements combining with
one another. In particular, when elements combine in the right way, they can satisfy the
octet rule. In the next section, we will examine this idea in a bit more detail.
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Exercises for Section 5.1

Exercise 5.1.1
We have already seen that transition metals can form more than one ion (for example, copper
forms both Cu + and Cu 2+ ions). How many different types of ions do you expect a Group
1, Group 2, or nonmetal atom to form?

Exercise 5.1.2
Find the charge of the most stable ion formed by the alkaline earth metals (elements in
Group 2). Do the same for the halogens (elements in Group 17).

Exercise 5.1.3
Which of the following have a noble gas configuration? Which would you expect to be stable
in nature?

Al 3 – , O 2 – , P 5+, Ar

Exercise 5.1.4
When hydrogen fulfills the octet rule, it generally does this by losing its lone valence electron
rather than gaining a new one, resulting in the formation of H+. In contrast, which elements
have 2 electrons in their valence shells upon fulfilling the octet rule?

5.2 Bonding

Problems

When we have two main-group, non-noble gas elements A and B that react with one
another, there are three general cases we need to consider. We’ll examine these cases and
some of their consequences in the following sequence of problems.

Problem 5.4 (Solution on page 79)
(*) (First case) Suppose that we take element A from the left of the periodic table and
element B from the right. Using the octet rule, predict how these two elements will react
with one another. What state of matter (solid, liquid, or gas) will the product be under
normal conditions? (Hint: Ions will form. In what general way will these ions structure
themselves?)

Box 5.3. Notation
There’s a huge variety of compounds out there, and we often want to talk about this one
or that one in ordinary conversation. Thus chemists have made a whole set of naming
conventions for compounds to make communication easier. Depending on the level of detail
needed and the type of compound, different naming rules can be used. In this book, we’ll
explore the rules for different types of compounds as they come up.
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Let’s start with the most basic, general name of a compound. We can denote any com-
pound by writing the formulas of the elements making up that compound; such a name is
called that compound’s chemical formula. We write subscripts to show the number of each
type of atom in one unit of whatever compound we’re looking at, almost always expressed as
a whole number; leaving off a subscript means there’s really an implicit one. For example,
we denote magnesium fluoride as MgF2, meaning that there are two atoms of fluorine for
every (one) atom of magnesium. However, such a molecular formula often doesn’t hold all
of the information we might like to convey, as we will see for the first time in Section 5.4.

Problem 5.5 (Solution on page 80)
Determine the product of the reaction Ca(s) + Cl2(g) −→ ?. Assume that Cl2 behaves just
like two separate atoms of Cl (we’ll explore what Cl2 actually is later in this chapter).

Problem 5.6 (Solution on page 81)
The ionic radius of an element is defined as that element’s radius when it is in an ionic
solid, as measured by looking at the average distance between neighbors in the various ionic
compounds that it makes. What main-group elements (besides the noble gases) have ionic
radii larger than their atomic radii? Which ones have ionic radii smaller than their atomic
radii? (Hint: On the atomic level, the radius is determined by how far out electrons can go.
When are electrons more attracted to the nucleus? When are they driven further out?)

Problem 5.7 (Solution on page 81)
(Second case) Now consider the case where A and B both come from the left side of the
periodic table (note we are not necessarily assuming that A and B are different elements
here). Can A and B trade electrons with one another such that both satisfy the octet rule?

Problem 5.8 (Solution on page 81)
(Third case) Suppose that the orbitals of an atom stay the same regardless of whether the
atom is isolated or present with other atoms. Consider the case where A and B are both
nonmetals. Then how can A and B react with one another to satisfy the octet rule? (Hint:
Electrons can be shared between different atoms)

Problem 5.9 (Solution on page 82)
On the atomic level, describe the form in which a sample of fluorine should exist. Does your
reasoning extend to the rest of the halogens? What about to hydrogen?

Solutions and Discussion (5.2)

Problem 5.4
(*) (First case) Suppose that we take element A from the left of the periodic table and
element B from the right. Using the octet rule, predict how these two elements will react
with one another. What state of matter (solid, liquid, or gas) will the product be under
normal conditions? (Hint: Ions will form. In what general way will these ions structure
themselves?)
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Solution
We know that elements on the left side of the periodic table tend to lose electrons to form
cations. On the other hand, those on the right tend to gain electrons to form anions. Thus
we see there is an easy way for A and B to both achieve their goals: they can simply trade
electrons. Thus they will react with one another to form ions such that A will end up with
a positive charge and B will end up with a negative charge.

But what happens now? We have all these positive ions and negative ions sitting around.
There are some very strong electromagnetic forces in action here. So nature will try to find
the lowest-energy arrangement, which occurs when attractions are maximized (since doing
so releases energy). Let’s think about what this arrangement should look like. Consider
picking up a single ion of A. Since it is positively charged, a number of ions of B will jump
up and surround it. But all of these B ions are negatively charged, so around these B ions,
we’ll end up with a bunch of As. So our outermost layer now contains unshielded positive
charges, and clearly this process will repeat. Ultimately, we see that we’ll end up with some
regular 3-dimensional arrangement of ions.

But this structure will not be very flexible. In order to maintain it, the ions must be
locked into their positions. (If they were to slide past one another, then suddenly rather
than having adjacent As and Bs, we would have adjacent A-A pairs and B-B pairs, which
would require a very large input of energy.) But recall from Chapter 0 that this is precisely
the description of a solid. Thus we must end up with a solid

A solid made out of ions is called an ionic compound. As we saw, the ions in such
a solid are held together only by electrostatic attractions; this method of binding together
ions is called an ionic bond.

Box 5.4. Notation
To name an ionic compound (in words, rather than by formula), first take the name of the
cation and then the name of the anion. By convention, a main group element in cation form
keeps its name unchanged, while one in anion form has its ending changed to -ide. So for
example, the formula NaCl represents the compound sodium chloride and AlBr3 represents
aluminum bromide.

Transition metals have variable valence (that is, they form more than one type of stable
ion) and hence we need to name them more carefully. One way is to write the name followed
by its charge (as a Roman numeral) in parentheses, without spaces. For example, Fe2O3 is
named as iron(III) oxide, and CuCl is copper(I) chloride.

An older, less general naming convention you’ll sometimes see—which works only for
elements that form two different kinds of ions—is to take the Latin name of the relevant
element and stick -ous after it to denote the form of lower charge and -ic after it to denote the
form of higher charge. So under this convention, Fe 2+ becomes ferrous and Fe 3+ becomes
ferric, making FeBr2 ferrous bromide and FeBr3 ferric bromide. In order to keep things
simple and consistent, we will not use this notation further in this book.

Problem 5.5
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Determine the product of the reaction Ca(s) + Cl2(g) −→ ?. Assume that Cl2 behaves just
like two separate atoms of Cl (we’ll explore what Cl2 actually is later in this chapter).

Solution
In order to satisfy the octet rule, each atom of Ca will lose 2 electrons to form Ca 2+ while
each atom of Cl will gain 1 electron to form Cl – . Thus given one atom of Ca, we need to
have two atoms of Cl. Our final product will be CaCl2(s). (Quick question, what is the
name of this compound? Answer: Calciumchloride .)

Problem 5.6
The ionic radius of an element is defined as that element’s radius when it is in an ionic
solid, as measured by looking at the average distance between neighbors in the various ionic
compounds that it makes. What main-group elements (besides the noble gases) have ionic
radii larger than their atomic radii? Which ones have ionic radii smaller than their atomic
radii? (Hint: On the atomic level, the radius is determined by how far out electrons can go.
When are electrons more attracted to the nucleus? When are they driven further out?)

Solution
When we form an ion, our resulting species must be either positively or negatively charged.
Consider forming a cation by removing electrons, as we do in Groups 1 and 2. Then we have
decreased the electron-electron repulsions, increasing Zeff, and thus the remaining electrons
are more strongly attracted to the nucleus. On the whole, this decreases the ionic radius
relative to the atomic one.

Now if we form an ion by adding electrons, as at the right of the table, we have added
electrons to the valence shell. These repel each other and decrease the effective nuclear
charge, which allows electrons to float away from the nucleus. This results in an increase in
radius. In sum: anions are big, cations are small.

Problem 5.7
(Second case) Now consider the case where A and B both come from the left side of the
periodic table (note we are not necessarily assuming that A and B are different elements
here). Can A and B trade electrons with one another such that both satisfy the octet rule?

Solution
Both A and B need to lose electrons to satisfy the octet rule, since they are both metals.
Thus they cannot both satisfy the octet rule by reacting with one another.

We might be tempted to try pulling electrons from atoms of A and pushing 6 or 7 of
them at a time onto atoms of B, completing Bs valence shell and emptying As. However,
this process would require lots and lots of energy, which you should be able to see from the
magnitude of the charge we would be building.

We’ll see in Chapter ?? that, although A and B cannot satisfy the octet rule if both are
from the left of the periodic table, they can combine with each other in a way that lowers
their total energy. This is quite fortunate because otherwise metals would not be solids but
rather gaseous collections of individual atoms!
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Problem 5.8
(Third case) Suppose that the orbitals of an atom stay the same regardless of whether the
atom is isolated or present with other atoms. Consider the case where A and B are both
nonmetals. Then how can A and B react with one another to satisfy the octet rule? (Hint:
Electrons can be shared between different atoms)

Solution
If we try to repeat the strategy we used in Problem 5.4 and have A and B form discrete
ions, we clearly run into trouble. If one atom flat-out gains electrons, another other must
flat-out lose them.

However, what if instead of giving up electrons we just share them? Since nonmetal atoms
just need to supplement their valence shells with a few electrons, we won’t need too many
sharings in order to accomplish this. Now, of course, the question is how this sharing can
actually be accomplished. By assumption, during this sharing the original atomic orbitals
remain unchanged. But since electrons simultaneously belong to two different atoms, we see
that the relevant orbitals of the atoms must overlap with one another.

The force holding together atoms in Problem 5.8 is called a covalent bond. Usually, the
shared electrons come in pairs, one from each of the atoms they are shared between (using
reasoning about orbitals, think about why this should be true). The theory that states bonds
are formed by the overlapping of atomic orbitals is called the valence bond model, and
we will be exploring it in more detail in the upcoming text.

Discrete groups of atoms that are covalently bonded together are called molecules. Most
compounds that we deal with in everyday life are molecules. Note that different molecules
can be put together in different ways; the way in which a given molecule is put together is
called that molecule’s structure. If a molecule is very simple in that everything is bonded
to one atom, this main atom is called the central atom.

Box 5.5. Fun Fact
You might be wondering if electrons can ever be shared between three or more atoms.
Actually, they can, although this occurs only in special compounds. For example, some
compounds of boron [B, element that is found in the ores borax and ulexite] can attach
themselves to an existing covalent bond, forming a three-center two-electron bond.
(We’ll look at why this happens in Chapter ??.) However, make sure to keep in mind that
while it is rare to have a given electron pair shared among three atoms, it is common to
have a given atom bonded to multiple other atoms—for example, consider ammonia [NH3,
a toxic gas; household ammonia is actually a solution of ammonia and water], which has a
nitrogen bonded to three hydrogens.

Problem 5.9
On the atomic level, describe the form in which a sample of fluorine should exist. Does your
reasoning extend to the rest of the halogens? What about to hydrogen?
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Solution
Fluorine is found at the right of the periodic table. We thus know from Problem 5.8 that
fluorine will combine with itself, forming a covalent bond. Recall that an atom of fluorine
has seven valence electrons, meaning that it has a filled 2s orbital, two filled 2p orbitals, and
one half-filled 2p orbital. Thus, it can share (and needs to share) exactly one electron with
another fluorine atom. This can be accomplished by overlapping the half-filled 2p orbital in
each fluorine atom, meaning each atom contributes one electron to the shared pair, or bond.

In total, we expect that fluorine should have its atoms exist in pairs, where each pair is
covalently bonded together. Since our reasoning depended only on the valence configuration
of fluorine, we see that the rest of the halogens should also exist in this form. A molecule
that is made out of two atoms is called a diatomic molecule, and hence we see that the
halogens all form diatomic molecules.

Finally, note that our reasoning also extends to hydrogen. Hydrogen’s electron configura-
tion is simply 1s1, meaning that it possesses a half-filled orbital and needs only one electron
to complete its valence shell. Thus it should exist in the same form, namely as H2.

The fact that hydrogen exists as H2 is interesting because when hydrogen forms ions, it
behaves like a metal and forms H+. (Note that, since most hydrogen nuclei have no neutrons,
H+ is generally just a single, bare proton!) In general, however, hydrogen forms covalent
compounds.

Box 5.6. Notation
A molecule’s chemical formula is often written to try to indicate its structure, and so different
kinds of molecules can have their formulas written in different ways. For simple molecules,
usually (but not always) the central atom is written first. For example, in the molecule SO3,
sulfur is the central atom.

As to naming in words, here we’ll consider simple binary molecules (made out of only two
kinds of atoms). In this case, we name the compound by writing 〈Greek number prefix〉first
atom 〈number prefix〉second atom, where this number prefix (di-, tri-, tetra-, penta-, etc.)
indicates the subscript, if greater than 1, of each atom in the molecule. Also the second
atom’s ending is changed to -ide. Using this system, we can name NO2 as nitrogen dioxide
or P2O5 as diphosphorous pentoxide.

Exercises for Section 5.2

Exercise 5.2.1
In a sample of potassium chloride, which component ion (potassium or chloride) takes up
the most total volume?

Exercise 5.2.2
Predict which of the following metals has the smallest ionic radius.

Na, Mg, K, Ca.
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Exercise 5.2.3
Write the molecular formula of barium chloride. Do the same for copper(I) oxide.

Exercise 5.2.4
Predict the type of bonding (ionic, covalent, or neither) present in the following species:

NaCl, PCl3, NH3, Na, MgI2

5.3 Hybridization

Problems

(XYZ: this entire section needs more pictures. we haven’t yet found a good orbital-
drawing client; let us know if you have any suggestions)

Problem 5.10 (Solution on page 85)
Using the valence bond model, predict the shape of a methane molecule, CH4. (Hint: All
of the bonds in this molecule are covalent. What determines the alignment of atoms in a
covalent bond?)

Problem 5.11 (Solution on page 85)
Experimental studies have determined that in methane, all hydrogens are equivalent (that is,
the molecule looks the same from each hydrogen’s point of view). Geometrically, this means
that they must point towards the corner of a tetrahedron, and that the H−C−H bond angle
is about 109.5◦. Since this is contrary to the predictions of our theory, we must have made
an inaccurate assumption somewhere. What is this assumption?

Problem 5.12 (Solution on page 86)
We can refine our valence bond model by adding a more sophisticated component called
orbital hybridization. Here, we suppose that when one atom combines with another,
the valence orbitals on a given atom can first average with each other to form a number of
identical orbitals. So for example, in methane, the carbon s and three p valence orbitals
would combine to form four identical orbitals (which we call an sp3 hybrid orbital, read “s
p three”) that are 25% like an s orbital and 75% like a p orbital. (XYZ: show a picture)

How must the sp3 orbitals be oriented relative to one another? How does this hybridiza-
tion result in a net of lower energy relative to the structure we derived in Problem 5.10?

Problem 5.13 (Solution on page 86)
Now let’s consider the elemental form of something besides the halogens. Experiments
show that gaseous oxygen exists as O2. How can we describe the bonding in oxygen in
terms of the orbital hybridization model? Assume that hybridized orbitals orient themselves
symmetrically. (Hint: Not all orbitals have to be hybridized; however, orbitals hybridize
whenever they can.)
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Problem 5.14 (Solution on page 87)
In a molecule, predict whether lone pairs, or unshared pairs of electrons, are found in
hybridized or unhybridized orbitals.

Problem 5.15 (Solution on page 87)
The formal charge on an atom in a molecule is the effective net charge on that atom,
assuming that the electrons in any given bond are shared exactly evenly between the two
relevant atoms. (This assumption is an overexaggeration of covalent bonding, but it gives us
a useful framework for understanding molecules.) Find the formal charge on an atom that
has v valence electrons when neutral if it has b covalent bonds and l lone pairs.

Solutions and Discussion (5.3)

Problem 5.10
Using the valence bond model, predict the shape of a methane molecule, CH4. (Hint: All
of the bonds in this molecule are covalent. What determines the alignment of atoms in a
covalent bond?)

Solution
We know that hydrogen forms only one covalent bond, while carbon forms four. Thus, the
four hydrogens must all be bonded to the carbon atom. Hence, we can think about carbon
as the central atom in methane.

Now, recall that we showed bonds result from the overlapping of atomic orbitals. In this
case, the overlapping orbitals must be the hydrogen 1s with either the carbon 2s or one
of the carbon’s 2p orbitals. But the 2p orbitals are mutually perpendicular, so we should
expect that the hydrogens bonded to them should form a shape such as that shown below.

C H
H

H

Now, the hydrogen bonded to carbon’s 2s orbital is free to go anywhere, since this orbital
is spherical. But since the electron clouds of adjacent hydrogen atoms repel one another,
we would expect this hydrogen to be located as far away from the other three hydrogens as
possible. In particular, it should end up pointing directly away from the plane containing
the three hydrogens.

Problem 5.11
Experimental studies have determined that in methane, all hydrogens are equivalent (that is,
the molecule looks the same from each hydrogen’s point of view). Geometrically, this means
that they must point towards the corner of a tetrahedron, and that the H−C−H bond angle
is about 109.5◦. Since this is contrary to the predictions of our theory, we must have made
an inaccurate assumption somewhere. What is this assumption?
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Solution
Examining our assumptions, we see that the most questionable one is that atomic orbitals
retain their form when atoms are bonded in molecules. If we get rid of this assumption, then
our theory no longer yields the inaccurate prediction from Problem 5.10.

Problem 5.12
We can refine our valence bond model by adding a more sophisticated component called
orbital hybridization. Here, we suppose that when one atom combines with another,
the valence orbitals on a given atom can first average with each other to form a number of
identical orbitals. So for example, in methane, the carbon s and three p valence orbitals
would combine to form four identical orbitals (which we call an sp3 hybrid orbital, read “s
p three”) that are 25% like an s orbital and 75% like a p orbital.

How must the sp3 orbitals be oriented relative to one another? How does this hybridiza-
tion result in a net of lower energy relative to the structure we derived in Problem 5.10?

Solution
We know that in methane the hydrogen atoms are oriented as the vertices of a regular
tetrahedron. Since the 1s orbital of the hydrogen atoms must overlap with the relevant sp3

orbital on carbon, we see that the sp3 orbitals are also oriented towards the corners of a
regular tetrahedron.

Note that we have maximized the distance between all pairs of orbitals. Since orbitals
contain electrons, which repel each other, increasing the distance between orbitals lowers
energy. Furthermore, we have maximized the distance between adjacent atoms not bonded
to one another, whose electron clouds repel one another. On the other hand, our structure
in Problem 5.10 has the valence orbitals and adjacent atoms much more closely squashed
together, forcing the electrons to be closer together and thus raising energy.

The relative orientations of hybrid orbitals come from their symmetry. It happens that
this symmetry results in the minimal total amount of repulsion among the electrons in these
orbitals because we allow these orbitals to be as far apart as possible.

Box 5.7. Fun Fact
The study of the repulsions due to crowding of electron clouds is called sterics. The phe-
nomenon itself is hence called steric hindrance.

Problem 5.13
Now let’s consider the elemental form of something besides the halogens. Experiments
show that gaseous oxygen exists as O2. How can we describe the bonding in oxygen in
terms of the orbital hybridization model? Assume that hybridized orbitals orient themselves
symmetrically. (Hint: Not all orbitals have to be hybridized; however, orbitals hybridize
whenever they can.)
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Solution
Recall that oxygen has six valence electrons. Thus each oxygen must share two electrons
with its partner, leading to the formation of two covalent bonds between the atoms. This is
different from what we saw before; previously there was at most one bond between any two
atoms.

What happens if we try to apply the same hybridization scheme as before, and say that
oxygen is sp3 hybridized? We can certainly form one bond easily enough, but the remaining
orbitals are all oriented the wrong way to overlap and form our second bond. Thus, we
cannot be sp3 hybridized. So let’s try the next-best thing: leave one p orbital unhybridized
and combine the s and two p valence orbitals into three identical orbitals, which we’ll by
analogy call sp2 orbitals.

By symmetry, we see that the three sp2 orbitals must all lie in the same plane and point
towards the vertices of an equilateral triangle. Furthermore, the remaining unhybridized p
orbital will be perpendicular to the plane containing the sp2s. Now how can we form two
bonds with such an arrangement of orbitals? Clearly, it is easy for one of the sp2 orbitals
to overlap with one on the other atom. However, the remaining two are oriented the wrong
way to form another bond. Hence, the second bond must come from the side-by-side overlap
of unhybridized p orbitals. (XYZ: will add an image)

We saw in the previous problem that there are essentially two different ways that orbitals
can overlap to form a bond. First of all, they can overlap head-on (as the sp2 orbitals do);
such bonds are called σ bonds (the Greek letter sigma). Alternatively, parallel unhybridized
p orbitals can indirectly overlap; such a bond is termed a π bond (the Greek letter pi).
These names come about because the relevant bonds look sort of like the letters (if you
really squint).

Also, we have seen that a covalent bond can involve more than one shared pair of electrons.
Such a bond is called a multiple bond. If two pairs are shared in a given multiple bond,
we call it a double bond; if there are three shared pairs, it is a triple bond.

Problem 5.14
In a molecule, predict whether lone pairs, or unshared pairs of electrons, are found in
hybridized or unhybridized orbitals.

Solution
We saw that energy in a molecule is lowered by putting electrons into a hybridized orbital.
Electrons are found in unhybridized orbitals only when the bond geometry forces them to
do so. But lone pairs are by definition not part of any bond, and so they should be found in
hybridized orbitals.

Problem 5.15
The formal charge on an atom in a molecule is the effective net charge on that atom,
assuming that the electrons in any given bond are shared exactly evenly between the two
relevant atoms. (This assumption is an overexaggeration of covalent bonding, but it gives us
a useful framework for understanding molecules.) Find the formal charge on an atom that
has v valence electrons when neutral if it has b covalent bonds and l lone pairs.
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Solution
Each of the atom’s b bonds contains two electrons. However, these electrons are only present
at this atom half of the time, leading to a total effective charge of −b due to bonds. Each
lone pair also contains two electrons, but these electrons are always present on our relevant
atom, leading to an effective charge of −2l due to lone pairs. Finally, this atom has a charge
of +v without any valence electrons because it has a valence of v (or is neutral with v
valence electrons). Since charges are additive, the atom’s formal charge is v − b− 2l.

Problem 5.15 gives us a convenient way of calculating formal charge. In the next section,
we’ll see that there is a much quicker, less formulaic way of calculating formal charge.

Exercises for Section 5.3

Exercise 5.3.1
What percent s-character does an sp2 orbital have?

Exercise 5.3.2
Describe the hybridization of atoms in water, H2O.

Exercise 5.3.3
Experiment shows that elemental nitrogen [N2, the main component of our atmosphere]
exists in diatomic form. Describe the bonding in the nitrogen molecule. What are the
shapes of the hybridized orbitals on each nitrogen atom?

Exercise 5.3.4
Within the same multiple bond, which is stronger: a σ bond or π bond?

Exercise 5.3.5
The order of a bond is the number of shared electron pairs that form it. So for example, a
double bond has order two. What is the highest order bond that can be formed using only
s and p orbitals?

Exercise 5.3.6
Consider a certain polyatomic ion with a charge of n. What is the sum of the formal charges
on the atoms that compose this ion?

5.4 Lewis Structures

Problems

In this section, we will explore a simple notation that will allow us to easily solve a
wide range of problems. For now, we’ll be focusing mainly on its use in figuring out the
connectivities and bonding of molecules. In Chapter ??, we’ll extend it to include more
information, such as bond angles.
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Problem 5.16 (Solution on page 89)
(Open-Ended Exploration) Often, just writing a molecule as a collection of atomic symbols
doesn’t convey sufficient information about the structure of a molecule. For example, there
are multiple possible molecules that have the formula C4H10. And furthermore, even when
structures are unambiguous, writing them as strings of symbols doesn’t help us very much
in picturing a molecule. Thus, we need a better notation, one that is unambiguous and that
we can easily extract information from.

Try experimenting and see if you can come up with a new notation. It needs to clearly
specify the relevant molecule’s connectivity. Preferably, it should also help us easily visualize
the structure of a molecule. That being said, it might also be nice if the notation is easy
to generate, but that’s up to you! (Note that your notation doesn’t have to fit nicely into a
line of text.)

Problem 5.17 (Solution on page 91)
Using your notation, draw the structures of the following molecules: water [H2O, commonly
used to dissolve ionic compounds], ethane [C2H6, a colorless, odorless gas mainly used to
generate the chemical ethylene]. Include the molecules’ connectivities and draw all lone
pairs.

Problem 5.18 (Solution on page 92)
Now use your notation to find the structures of sulfur dioxide [SO2, a gas produced as a waste
product from some industrial processes and can then react in the atmosphere to become a
component of acid rain] (in accordance with our naming conventions, S is the central atom
of this molecule) and nitric acid [HNO3, a strong acid, colorless when pure, although it
can yellow with age due to the formation of nitrogen oxides] (note that all oxygens in this
molecule are connected to the nitrogen). Include connectivity, lone pairs, and formal charges,
if any.

Problem 5.19 (Solution on page 94)
If your notation is powerful enough, it should help you solve the following problem: on what
atom of the ammonium cation [NH +

4 , a weak acid that comes from reacting ammonia with
an acid] does the positive charge reside?

Problem 5.20 (Solution on page 94)
Find the formal charge on the carbon atom in cyanide [CN – , cyanide is a highly toxic anion;
the poisonous gas hydrogen cyanide—HCN—is used in gas chamber executions, and the ionic
solid potassium cyanide—KCN—is a notorious poison]. Your notation should also be of use
here.

Solutions and Discussion (5.4)

Problem 5.16
(Open-Ended Exploration) Often, just writing a molecule as a collection of atomic symbols
doesn’t convey sufficient information about the structure of a molecule. For example, there
are multiple possible molecules that have the formula C4H10. And furthermore, even when
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structures are unambiguous, writing them as strings of symbols doesn’t help us very much
in picturing a molecule. Thus, we need a better notation, one that is unambiguous and that
we can easily extract information from.

Try experimenting and see if you can come up with a new notation. It needs to clearly
specify the relevant molecule’s connectivity. Preferably, it should also help us easily visualize
the structure of a molecule. That being said, it might also be nice if the notation is easy
to generate, but that’s up to you! (Note that your notation doesn’t have to fit nicely into a
line of text.)

Solution
Let’s think about what information we want in such a notation. We need to know the
connectivity of our molecule; that is, exactly which atoms are bonded to which other
atoms. We also need to be able to indicate the order of our bonds. Finally, we should be
able to stick in unshared valence electrons and have the flexibility to add in formal charges
if we want. On the whole, we need to have something that is a two-dimensional snapshot
of a three-dimensional molecule (which is certainly better than the one-dimensional sketch
we’ve been using up until now).

To represent the various atoms in our molecule, we can just write their chemical symbols,
as before (although we should spread them out some). Perhaps the most obvious way of
representing bonds is just marking them as lines between connected atoms and having mul-
tiple lines for multiple bonds. This gives us both connectivity and bond order immediately.
Intuitively, we can then represent unshared electrons as dots. Finally, we can just write
formal charges directly above the relevant atoms, if we want to emphasize that information.

The representation we have just described is called a Lewis structure, or a Lewis dot
structure, the invention of the American chemist G. N. Lewis in 1902. As an example, we
can draw the structure of F2 as

F F

or that of oxygen as

OO

We’ll get more practice with Lewis structures in the following problems.

Compare the notation you came up with to Lewis structures. Note how Lewis’s notation
elegantly captures the desired information about the structure of a molecule. Although
they are very simple, these structures are a valuable tool for understanding a wide range of
molecules.

Box 5.8. Delving Deeper
Note that at this point in the text, we won’t need to completely specify the actual three-
dimensional structure of a molecule. With complicated molecules, however, knowing this
structure becomes key to understanding the molecule’s reactivity, as different structures often
lead to different modes of reaction (even if they have the same connectivity). When necessary,
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a Lewis structure can be drawn to emphasize the three-dimensional arrangement of atoms in a
molecule. One such way is shown in the following two pictures of chlorofluorobromomethane
(read as “chloro-fluoro-bromo-methane”), although there are other drawing styles that can
be more useful depending on context.

C

F

HCl
Br

C

F

HBr
Cl

By convention, bold bonds are coming out of the page towards you and dashed bonds
are into the page away from you. As you can check, the two molecules are actually different!
(Although the two look very similar—indeed, they are mirror images—you can’t rotate one
in space to superimpose it on the other, just as you can’t use rotations to align your left
hand with your right hand. In general, a molecule that can’t be superimposed on its mirror
image is called chiral, a subject we will explore in Chapter ??.)

Problem 5.17
Using your notation, draw the structures of the following molecules: water [H2O, commonly
used to dissolve ionic compounds], ethane [C2H6, a colorless, odorless gas mainly used to
generate the chemical ethylene]. Include the molecules’ connectivities and draw all lone
pairs.

Solution
We’ll work through this problem using Lewis structures. Note in each case that generating
the structure is not difficult, but the result is very helpful in picturing the relevant molecule.

Goal: Lewis structure of water.

Recall the formula of water is H2O. Since water is neutral, there are a total of 6 + 1 + 1 = 8
valence electrons floating around, and hence four electron pairs. We know that the hydrogens
are bonded to the oxygen using single bonds, since hydrogen can form at most one bond.
The two remaining pairs must then be lone pairs on the oxygen atom. We hence obtain the
following structure:

OH H

Goal: Lewis structure of ethane.

Looking at the periodic table, each carbon contributes four valence electrons and each hy-
drogen contributes one, so there are a total of 12 valence electrons, leading to 6 electron
pairs. Since hydrogen can form only one bond, all of the hydrogens must be directly bonded
to the carbons. Thus the carbons must also be bonded to one another; so we can write down
“C−C,” as this moiety, or part of a molecule, definitely appears in ethane. Finally, since
carbon can have at most 4 bonds, we see that there must be three hydrogens on each carbon,
and hence our completed Lewis structure is
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C

H

H

H

C

H

H

H

Note that in the previous problem, we thought about the electrons as being grouped into
pairs. While this is not always the case, generally molecules with unpaired electrons tend to
be less stable (think about why in terms of orbitals). We’ll explore this topic in more detail
in Chapter ??. Also, note that given the connectivity of the molecule, it was fairly easy to
determine where the electrons should be.

Problem 5.18
Now use your notation to find the structures of sulfur dioxide [SO2, a gas produced as a waste
product from some industrial processes and can then react in the atmosphere to become a
component of acid rain] (in accordance with our naming conventions, S is the central atom
of this molecule) and nitric acid [HNO3, a strong acid, colorless when pure, although it
can yellow with age due to the formation of nitrogen oxides] (note that all oxygens in this
molecule are connected to the nitrogen). Include connectivity, lone pairs, and formal charges,
if any.

Solution
Goal: Lewis structure of sulfur dioxide.
Both sulfur and oxygen have six valence electrons when neutral, so there are a total of 18
valence electrons on this molecule, or 9 pairs. We know that the connectivity of the sulfur
dioxide atom is “O−S−O”; thus we can start by drawing only this bare σ structure, or
arrangement of σ bonds. Now we have six electron pairs left to place. We can try to complete
the octets on the oxygens by adding the appropriate number of electron pairs, arriving at
the following

S OO

However, notice that in this structure S does not have a complete octet. But if one of the
oxygen lone pairs moves to form a double bond with sulfur, then every species satisfies the
octet rule; we have drawn this stucture below.

S OO

Thus this latter structure is more stable than the one above it, and so it is the best represen-
tation of the molecule. (Now, one interesting question is how nature chooses which oxygen
should be double bonded to the sulfur. We’ll come back to this issue in Chapter ??.)

Now, let’s check formal charges. Since each bonding pair on a given atom effectively
counts as only one electron, the doubly-bonded oxygen effectively has 6 electrons (and hence
a formal charge of 0), the singly-bonded oxygen has 7 electrons (hence formal charge of −1),
and the sulfur has 5 electrons (hence formal charge of +1). Putting this all together, our
final Lewis structure is the one drawn below.
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S
+

OO
−

Box 5.9. Tip
To determine the formal charge on a certain atom, you can just count the number of lone
electrons and bonds and subtract this quantity from the atom’s valence.

Goal: Lewis structure of nitric acid.
Again, we count electrons. We find a total of 1 + 5 + 3 · 6 = 24 valence electrons, meaning
there are 12 electron pairs. First, let’s determine the connectivity of this molecule because
there are many atoms to deal with. We know that the oxygens are all directly attached to
the nitrogen atom. So we have two choices for the hydrogen: either it can be on the nitrogen
as well, or it can be attached to one of the oxygens. At this point, we can’t definitively say
which one is correct; thus we sketch the σ structure in either case.

Possibility 1

NO

O

O H

Possibility 2

NO

O

O

H

Now we fill in valence electrons; we have 8 pairs remaining. In each possibility, we go ahead
and attempt to complete the octets for the oxygens. After all pairs are placed, we arrive at
the following diagram.

Possibility 1

NO

O

O H

Possibility 2

NO

O

O

H

In Possibility 1, we can move one of oxygen lone pairs to form a double bond with nitrogen
(we’ll see in Chapter ?? that we shouldn’t use the oxygen bonded to hydrogen). However,
in Possibility 2, N already has a complete octet and so one oxygen must remain with an
incomplete valence shell. Since from the first possibility we can build a structure in which
every species has a complete octet, we see that possibility 1 gives the correct connectivity
(or σ structure) for nitric acid. After drawing the appropriate π bond and calculating formal
charges, we obtain the final structure shown.

N
+

O

O
−

O H
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Box 5.10. Tidbit
In general, species with an O−O single bond are very unstable due to the weakness of this
bond. Such compounds are called peroxides and are quite reactive. At this level, you’ll
very rarely see a structure with an O−O single bond, so try to avoid drawing this moiety in
a Lewis structure.

From the above, you should see the usefulness of Lewis structures in determining hy-
bridization and bonding. Lewis structures also give us the ability to predict other features
of molecules, as we will see in the following problems.

Problem 5.19
If your notation is powerful enough, it should help you solve the following problem: on what
atom of the ammonium cation [NH +

4 , a weak acid that comes from reacting ammonia with
an acid] does the positive charge reside?

Solution
In the model we have developed to this point, the amount of charge localized on an atom is
that atom’s formal charge. We have seen that Lewis structures allow us to quickly determine
formal charges. Therefore, we need to construct the Lewis structure of NH +

4 .
Note that our task is quite simple, as each hydrogen can have only one bond, and they

are therefore all bonded to the nitrogen. Since nitrogen contributes 5 electrons, each of the
four hydrogens contributes 1, and we are in total short 1 electron from being neutral, we
have a total of 5 + 3 · 4− 1 = 8 electrons. Thus we obtain the following structure (you can
check that there are the proper number of electrons).

N
+

H

H

HH

There is a formal charge of +1 on the nitrogen since it has four bonds and valence of five.
Thus we expect the positive charge to be located on the nitrogen atom.

Problem 5.20
Find the formal charge on the carbon atom in cyanide [CN – , cyanide is a highly toxic anion;
the poisonous gas hydrogen cyanide—HCN—is used in gas chamber executions, and the ionic
solid potassium cyanide—KCN—is a notorious poison]. Your notation should also be of use
here.

Solution
First of all, the connectivity of this ion is clear; we must have a σ bond between C and N.
So we can write down “C−N” immediately. Now we have 4 + 5 + 1 = 10 electrons on this
anion in total (4 from carbon, 5 from nitrogen, and 1 for the extra negative charge), and
thus we have 4 remaining pairs to place. Your intuition should tell you that we’re going to
end up with a multiple bonding between C and N, since C needs 4 bonds to be neutral while
N needs three bonds and a lone pair. But let’s proceed naively. Temporarily put the lone
pairs wherever you want, such as we have shown.
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C N

But in this case, both C and N have incomplete octets. Thus they need to donate electrons
to one another. Moving electrons as appropriate, we end up with the structure shown below.
We see that carbon has a negative one formal charge since it has three bonds and a lone pair
but a valence of four.

C
−

N

Thus the negative formal charge resides on the carbon. (However, as we’ll see how to predict
later, the negative charge on this anion isn’t at all localized on the carbon. Indeed, this
charge is denser on the nitrogen than on the carbon! For now, you can take it for granted
that the assumption of equal sharing of electrons does not hold for cyanide.)

Box 5.11. Notation
In our exploration of Lewis structures, we saw that groups of atoms which are covalently
bonded together can themselves form an ion, called a polyatomic ion. Thus, we see that
we can have covalent and ionic bonding within a single compound. In this case our naming
conventions for ionic compounds still apply—the name is the cation followed by the anion.
Also, when a single polyatomic ion should have a subscript, we put it in parentheses, such as
Al(NO3)3 (aluminum nitrate). Since the names of many polyatomic ions are both common
and somewhat arbitrary, it is a good idea to learn them at some point. However, throughout
this text we will always couple the name with the structure because our focus is on learning
concepts rather than memorizing names.

Exercises for Section 5.4

Exercise 5.4.1
Find the number of bonding pairs and lone pairs on the central atom in a molecule of sulfur
dichloride [SCl2, used in organic chemistry to add sulfur to carbon compounds].

Exercise 5.4.2
Find the number of σ and π bonds in a molecule of ethene [C2H4, a gas that is used in a
huge range of applications. Although it has officially been called “ethene” since 1892, its
common name “ethylene” is still used by many chemists around the world]. As before, your
notation should be able to help you solve this problem.

5.5 Further Explorations

Problem 5.21
Between atoms A and B, we can denote a single bond as A−B, a double bond as A−−B, and
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a triple bond as A−−−B. Order the following bonds in terms of increasing length: C−C, C−−C,
C−−−C. (Hint: Think about interatomic attractions, or attractions between atoms.)

Problem 5.22
Note that in our method of drawing Lewis structures in this chapter, we just placed electrons
on arbitrary atoms and then moved them to where they needed to go. In general, a more
accurate model is to think of starting with a collection of neutral atoms and then combining
them together (this can get complicated to conceptualize in practice, because sometimes
electrons have been removed or migrate). A covalent bond is said to be coordinate if
both of its electrons came from the same atom, using the model we have just described.
Which of the following species possess a coordinate covalent bond: ammonium [NH+

4 ], sulfur
dichloride [SCl2], carbon monoxide [CO, a colorless, odorless toxic gas found in car exhaust
and cigarette smoke]?

Problem 5.23
In general, what effect does increasing the magnitude of the charge on a cation have on that
cation’s radius? What effect does increasing the magnitude of the charge on an anion have
on that anion’s radius?

Problem 5.24
Suppose that an oxygen atom in a molecule satisfies the octet rule. If it has a formal charge
of 0, how many bonds does it have? Repeat this problem with nitrogen, carbon, and the
halogens.

Problem 5.25
Consider the following two Lewis structures of methanoic acid [CO2H, found in the venom of
bee and ant stings. Its common name is formic acid]. Which one is a more stable structure?
(In the next chapter, we’ll examine which one is actually the “true” structure of methanoic
acid.)

Variant 1

CH

O
−

O
+

H

Variant 2

CH

O

O H

Problem 5.26
Which type of bond requires more energy to break: a σ or a π bond?
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