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Abstract: The Ducci map is considered applied to vectors in Rn. It is shown that for

certain starting vectors of odd length, the corresponding sequence of iterates asymptotically

approaches a periodic vector, but never becomes periodic itself. On the other hand, for any

starting vectors not of this type, it is shown that the corresponding Ducci sequence becomes

eventually periodic. A simple method for determining if a given vector is of this certain type

is presented. In this way, the asymptotic behavior of all Ducci sequences of vectors in Rn, n

odd, is characterized. The map is then applied to the specific case of R3. It is shown that

in this case, the Ducci sequences of vectors of the aforementioned type approach the zero

vector only.
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1. Introduction

Consider the map f : R4 → R4 given by

f(a, b, c, d) = (|a− b|, |b− c|, |c− d|, |d− a|),

and for a fixed starting vector, form the sequence {f i(a, b, c, d)}∞i=0 in R4. It was a ques-

tion about the limiting behavior of such sequences which Ciamberlini and Marengoni [16]

attributed to E. Ducci in 1937. Since then, such sequences have most commonly come to be

known as Ducci sequences or the four-number game.

The literature devoted to this topic has become quite extensive. This seems in part to be

due to the ease with which the question can be posed, particularly in the case of vectors in

Z4. For example, by experimenting with a variety of different vectors (a, b, c, d) ∈ Z4, one will

likely find that the corresponding Ducci sequence reaches the vector (0, 0, 0, 0) in a relatively

small number of steps. The question of whether or not this must always occur has appeared

in a number of books on mathematics meant for general audiences [28, 29, 45, 46, 51], as

well as at various times in the mathematics literature [1, 24, 27, 47].

That the zero vector will indeed always be reached after a finite number of iterations

of f applied to vectors in Z4 is confirmed in [28]. And in [47], a more general question

also appears. For any integer n ≥ 2, define the map f : Zn → Zn by making the obvious

generalization to get

f(x1, x2, . . . , xn) = (|x1 − x2|, |x2 − x3|, . . . , |xn − x1|).

The question then becomes, for any starting vector (x1, x2, . . . , xn), does the corresponding

Ducci sequence contain the zero vector after only a finite number of iterations? The original

proof that this is in fact the case if and only if n is a power of 2 appeared in the seminal

paper of Ciamberlini and Marengoni [16], and was followed by a surprising variety of later

proofs using various techniques [2, 10, 12, 20, 22, 26, 40, 53].

One way in which these results have been refined has been to consider the number of

iterations needed to reach the zero vector when n is a power of 2. In [49, 53] bounds are given

for the number of such iterations, and refining this somewhat in the case of n = 4, [4, 19, 46]
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also show that for any M ∈ N, there exist integer vectors which take at least M iterations

to reach (0, 0, 0, 0). Even more specifically, [5] uses the tribonacci numbers to show how to

find a starting vector in Z4 which takes any specified number of iterations to reach the zero

vector, with [42] giving similar results. Many of these results are generalized to arbitrary

powers of 2 in [10, 12, 22].

When n is not a power of 2 and integer entries are considered, the sequence of iterates

of f , although not necessarily convergent to zero, still displays an eventual regularity. In

particular, for any integer n ≥ 2, if (x1, x2, . . . , xn) ∈ Zn, then the corresponding Ducci

sequence will eventually contain a vector which is a scalar multiple of a vector in {0, 1}n [21,

22, 23, 43]. It is clear that under application of f any such 0-1 vector can only give rise

to another 0-1 vector. Hence, the subsequent sequence of iterates must then cycle, and so

in this sense all integer Ducci sequences have tails which consist of repeating segments. Of

course, in the case that n is a power of 2 these segments contain only the zero vector. Also

in analogy with the power of 2 case, for any n ≥ 2 it has been shown that there exist initial

vectors which can take any specified number of iterations to reach one of these repeating

segments [6, 17, 18, 22, 33, 34]. Others have taken up questions related to these repeating

segments, such as their lengths [7, 10, 11, 21, 25, 36], while yet others have generalized

to consider the Ducci map over more general abelian groups [8]. Rather than restricting

attention to vectors with integer entries, in this paper we will be interested in the Ducci map

applied to vectors with real-number entries.

Perhaps somewhat surprisingly, the greatest amount of work on the Ducci map applied

to vectors with real entries has occurred for n = 4. In fact, Lotan [32] proved that the

situation here differs from the integer-entry case in that there exist vectors in R4 for which

the corresponding Ducci sequence never reaches the zero vector. In particular, by letting

q represent the positive solution to the cubic equation x3 − x2 − x − 1 = 0, the vector

(1, q, q2, q3) will correspond to a Ducci sequence which never reaches (0, 0, 0, 0). Much more

than this, [32] proved that every vector in R4, except ones which can be obtained from

(1, q, q2, q3) through the obvious transformations (translating, shifting, reflecting, and scal-

ing), will reach (0, 0, 0, 0) in a finite number of steps. Therefore, modulo these exceptional
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vectors, of which there is essentially only one, the behavior of f on R4 is the same as on Z4.

But, although the vector (1, q, q2, q3) does not reach the zero vector in a finite number of

iterations, the corresponding Ducci sequence does converge to (0, 0, 0, 0). Consequently, even

in this exceptional case, the asymptotic behavior is consistent with the behavior of all other

vectors. It is also interesting to note that this result has been, in whole or in part, proved

and reproved a number of times since [3, 12, 30, 31, 37, 38, 46]. In [48] the probabilities of

randomly choosing a vector in R4 which takes any specified number of iterations to reach the

zero vector are calculated. Further mention of some of the previous work on this problem

can be found in [14, 39].

A variety of generalizations of the Ducci map problem have also been considered. One

such example is that of a Ducci process [52]. Here, rather than the map which takes

(x1, x2, . . . , xn) to (|x1 − x2|, . . . , |xn − x1|), the function (x, y) 7→ |x − y| is replaced by

a more general map φ(x, y). Then the Ducci process is such that (x1, x2, . . . , xn) maps

to the vector (φ(x1, x2), . . . , φ(xn, x1)). Such generalized mappings were further considered

by [35, 44]. Other generalizations of the original Ducci map utilize weightings. For exam-

ple, the original mapping utilizes the weighting (1,−1), whereas one other possibility which

has recently been considered [13, 15] utilizes the weighting (−1, 2,−1) to define the map on

vectors in R3 where (x1, x2, x3) 7→ (|2x1 − x3 − x2|, |2x2 − x1 − x3|, |2x3 − x2 − x1|).

With all the work done on the topic of Ducci sequences, one is led to inquire as to their

applications. The study of Ducci sequences falls under the subject of difference equations,

which in general are of great interest and application. According to the Journal of Difference

Equations and Applications website, difference equations can have applications to “non-linear

dynamics, chaos theory, complex dynamics, mathematical biology, discrete control theory,

oscillation theory, Symmetries and integrable systems, functional equations, special func-

tions and orthogonal polynomials, numerical analysis, combinatorics, computational linear

algebra, and dynamic equations on times scales.” While currently there may not be any

direct application of Ducci sequences, it is altogether possible that one day a practical use

for them will be found.
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In addition to this, another important reason for studying Ducci sequences is out of in-

terest. The topic of Ducci sequences is a playful one, as evidenced by its being called the

“four-number game,” as mentioned above. The Ducci map is a deceptively simple function,

and through better understanding of its workings, we can better begin to understand the

limits of our own intellect. The Ducci map presents many puzzles that are interesting to

solve; we will examine a few of these in the upcoming paper.

For the present work, attention will be focused on the Ducci map f applied to vectors in

Rn, n odd. We begin by characterizing the asymptotic behavior of vectors in these spaces,

and then we proceed to completely describe end behavior in the case n = 3. We will conclude

with a description of the difficulty in generalizing some of our results for the case n = 3.

Why n = 3? Much work has been done on the R4 case, but in contrast there is very little

that has appeared which explicitly treats real-valued entries for n = 3. One exception is [50],

where the question of which such sequences result in cycles is considered. Another exception

is [41]. There, among other things, it was shown that if n is a power of 2, then any vector

v ∈ Rn will give rise to a Ducci sequence for which lim{|fn(v)|} = 0. Then, in [9], this was

further generalized to show that for any positive integer n ≥ 2 and any vector v ∈ Rn, the

sequence {fn(v)} converges to a periodic vector. In the case that n is a power of 2, [41] tells

us that this periodic vector is the trivial one, namely (0, 0, . . . , 0), whereas otherwise it will

be a vector which is a scalar multiple of an element in {0, 1}n.

Although [9] sheds some light on the behavior of the Ducci map for n = 3, it still leaves

open certain questions regarding the behavior in this case. For example, [9] constructs a

vector in R7 which corresponds to a sequence which asymptotically approaches a nontrivial

periodic vector, but which has none of its entries themselves periodic. We will show that this

behavior cannot occur for n = 3. That is, either a vector in R3 gives rise to a sequence which

is eventually periodic, or it asymptotically approaches the trivial periodic vector (0, 0, 0).

Furthermore, we apply our general result mentioned above to show which vectors in R3

exhibit each of these separate behaviors.
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2. Heterogeneous Vectors in Rn

We begin with a definition that will greatly simplify notation.

Definition 2.1. Suppose that x ∈ R, n ∈ Z+. Then (x)n represents the vector (x, x, ..., x)

in Rn.

We consider the Ducci map f defined in general on Rn. As shown in [21, 22, 23, 43], for

any vector v ∈ Zn, there exists i ∈ N such that f i(v) is a scalar multiple of a periodic vector

in {0, 1}n. Clearly this result also holds for vectors with rational entries. In fact, given

v ∈ Rn, v = (v1, v2, ..., vn), if there exist α, x ∈ R, α 6= 0, such that α(v + (x)n) ∈ Qn, then

since f(α(v + (x)n)) = |α|(|v1 − v2|, |v2 − v3|, ..., |vn − v1|) = |α|f(v), we see that any such

vector will also correspond to a Ducci sequence {f i(v)} which will eventually be periodic. Of

course, there are many vectors which do not have this property, such as (0, 1,
√

2) in R3 and

(0, 1, 2, 3,
√

2) in R5. Therefore, to analyze the behavior of f , we are motivated to examine

this latter type of vector.

Definition 2.2. We will call a vector v ∈ Rn heterogeneous if for all x, α ∈ R, α 6= 0, we

have α(v + (x)n) /∈ Qn. Furthermore, a vector’s heterogeneity is its state of being either

heterogeneous or not heterogeneous.

As it turns out, given a vector v, it is easier to determine whether or not it is heterogeneous

than the definition may make it appear. The following lemmas provide a simplified method

for determining heterogeneity.

Lemma 2.3. Let v = (v1, v2, ..., vn). Then v is heterogeneous if and only if for every scalar

k 6= 0, k(v + (−v1)n) 6∈ Qn.

Proof. The left-to-right case is clear. We proceed to prove the right-to-left case by proving

its contrapositive. Suppose that v is not heterogeneous. Then there exists real numbers x, k,

k 6= 0, such that k(v+ (x)n) ∈ Qn. That is, (kv1 + kx, kv2 + kx, ..., kvn + kx) = (q1, q2, ..., qn)

where the qi ∈ Q. So kvi − kv1 = qi − q1 ∈ Q, and k(v + (−v1)n) ∈ Qn as desired. �

It is clear from the definition that if we wish to determine the heterogeneity of a given

arbitrary starting vector (v1, v2, ..., vn), we can equivalently determine the heterogeneity of
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(0, v2 − v1, ..., vn − v1). The above result greatly simplifies determination of heterogeneity

for vectors of the latter type (since the first entry of such vectors is 0). Vectors of this form

also have several other useful results associated with them, as we shall soon see. For the

moment, we thus restrict attention to vectors of this type.

Lemma 2.4. Let v = (0, v2, ..., vn) ∈ Rn have at least one nonzero entry. Let x ∈ N be the

least natural number such that vx 6= 0. Then v is heterogeneous if and only if vi/vx 6∈ Q for

some x < i ≤ n.

Proof. We again proceed by contrapositive. For the left-to-right case, suppose that for every

x < i ≤ n, vi/vx ∈ Q. Then (1/vx)v = (0, ..., 0, 1, vx+1/vx, ..., vn/vx) ∈ Qn (where there are

x − 1 preceding zeros), and v is not heterogeneous, as desired. For the right-to-left case,

suppose that v is not heterogeneous. Then by Lemma 2.3 there exists a nonzero scalar k such

that kv = (0, ..., 0, vxk, ..., vnk) ∈ Qn. So then for any x < i ≤ n, (vik)/(vxk) = vi/vx ∈ Q,

completing the proof by contrapositive. �

Corollary 2.5. Let v = (0, v2, ..., vn) ∈ Rn have at least one nonzero entry. Then v is

heterogeneous if and only if vi/vj 6∈ Q, vj 6= 0, for some 2 ≤ i, j ≤ n.

Proof. Let x ∈ N be the least natural number such that vx 6= 0. For the left-to-right case,

suppose that v is heterogeneous. Then by Lemma 2.4, there exists an i such that vi/vx

is irrational, as desired. For the right to left case, suppose that there exist i, j such that

vi/vj, vj 6= 0, is irrational. Then vi/vx

vj/vx
is also irrational. Hence at least one of vi/vx, vj/vx is

irrational, and by Lemma 2.4 v is heterogeneous. �

We now have the tools to tackle the following theorem. As we shall see, this theorem,

coupled with the obvious fact that if v is not heterogeneous, neither is f(v), shows that the

set of heterogeneous vectors of odd length is closed under f .

Theorem 2.6. Let w = (w1, w2, ..., wn) ∈ Rn be a heterogeneous vector of odd length. Then

f(w) is also heterogeneous.

Proof. Let the smallest entry of w be wk. Then let v = (0, v2, ..., vn) = (0, wk+1−wk, ..., wn−

wk, w1 −wk, ..., wk−1 −wk) be the vector obtained upon rotating w− (wk)n to the left k− 1
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times. This rotation will not affect the entries of the subsequent images under repeated

application of f , but merely which entry is read first. Hence, we see that w and v must have

the same heterogeneity. Note that since wk is the smallest of w’s entries, all vi are positive.

It is thus sufficient to for us to show that if v is heterogeneous, then f(v) is also hetero-

geneous. As before, we proceed by a proof by contrapositive. Suppose f(v) is not heteroge-

neous. We calculate f(v)− (v2)n = (0, |v3 − v2| − v2, ..., |vn| − v2) = (0, v′2, v
′
3, ..., v

′
n) = v′.

Case 1: Each v′i is rational. We define the sequence Li, 2 ≤ i < n, as

Li =

 −1, if vi < vi+1;

1, if vi ≥ vi+1.

We see that Liv
′
i = Li(|vi+1 − vi| − v2) = vi − vi+1 − Liv2 for 2 ≤ i ≤ n− 1. Then consider

the sum

L2v
′
2 + L3v

′
3 + ...+ Ln−1v

′
n−1 + v′n

This equals

v2 − v3 − L2v2 + v3 − v4 − L3v2 + ...+ vn−1 − vn − Ln−1v1 + vn − v2.

We rearrange the above to

v2 − v3 + v3 − v4 + ...+ vn−1 − vn + vn − v2 − v2(L2 + L3 + ...+ Ln−1),

which becomes

−(L2 + L3 + ...+ Ln−1)v2.

But since each Liv
′
i (and v′i) is rational, it follows that their sum must also be rational.

Since each Li is either 1 or -1, and there are an odd number of them in the above sum, it

follows that L2+L3+...+Ln−1 is nonzero. Hence v2 is rational as well. Since v′2 = |v3−v2|−v2

is rational, it follows that v3 is rational as well. Similarly, v′3 = |v4 − v3| − v2 is rational, so

v4 must be rational. In this way, we see that each vi, 2 ≤ i ≤ n must be rational. Hence v

is not heterogeneous, and this case is complete.

Case 2: There exists a v′k that is irrational, where v′ and each v′i is defined as above. Then

consider the vector Q = (1/v′k)v. Note that Q is such that f(Q) = |1/v′k|f(v), so f(Q) is

not heterogeneous. Let Q′ = f(Q) − (v2)n/|v′k| = v′

|v′
k|

. Since Q′ is not heterogeneous, by
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Corollary 2.5, for all integers 2 ≤ x, y ≤ n the ratio of the x and yth entries of Q′ are rational

(provided the yth entry is nonzero). Since the kth entry of Q′ is rational (specifically, its

value is either 1 or -1), it follows that every entry of Q′ is rational. So we apply Case 1 to

see that Q is not heterogeneous. Hence (v′k)Q = v is not heterogeneous, as desired. �

The following result follows from inductively utilizing Theorem 2.6.

Corollary 2.7. Let w = (w1, w2, ..., wn) ∈ Rn be a heterogeneous vector of odd length. Then

for any i ∈ N, f i(w) is also heterogeneous.

We have now reached a point where these results can be combined into a cohesive whole.

Suppose we wish to analyze the asymptotic behavior of an arbitrary vector w = (w1, w2, ..., wn)

in Rn, n odd. If all of the wi are equal, then it is clear that f(w) = (0)n is the trivial periodic

vector. If not all the wi are equal, we can rotate this vector to obtain v = (v1, v2, ..., vn) with

v1 6= v2, which has the same heterogeneity as w. From here, we may consider the vector

v′ = (v − (v1)n)/(v2 − v1) = (0, 1, ..., vn

v2−v1
), which must have the same heterogeneity as v

and therefore also as w. By Lemma 2.4, v′ is heterogeneous if and only if it has at least one

irrational entry. In this manner, we can easily determine the heterogeneity of w.

After determining the heterogeneity of w, the result of the above corollary becomes very

useful in describing the asymptotic behavior of w’s corresponding Ducci sequence. If w

is not heterogeneous, the corresponding Ducci sequence will eventually contain a periodic

vector that is a scalar multiple of an element of {0, 1}n, as stated at the beginning of this

section. On the other hand, if w is heterogeneous, then by Corollary 2.7 the Ducci sequence

{f i(w)} will contain only heterogeneous vectors. Therefore, it will never contain a multiple

of a vector in {0, 1}n, all of which are clearly not heterogeneous. But since those vectors

which are in a cycle are multiples of vectors in {0, 1}n this result ultimately implies that

heterogeneous vectors cannot give rise to Ducci sequences which reach a vector which is in

a cycle. Hence by [9], we see that the corresponding Ducci sequence of such a vector will

converge asymptotically to, but never contain, a vector that is a scalar multiple of an element

of {0, 1}n.
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3. Ducci Sequences in R3

We now shift our attention to the specific case of n = 3. We will show that in this case,

all heterogeneous vectors converge to the zero vector. As mentioned previously, this stands

in contrast to n = 7, in which case [9] has provided a vector that converges to a nontrivial

periodic vector. At the end of the paper, we will explain the difficulty in generalizing our

result here to higher n.

Before we proceed, note that a rearrangement of the entries in a vector prior to application

of f will not alter the magnitudes of the entries in the image, only their relative positions

within the vector, and will also have no effect on the magnitudes of the entries in subsequent

images. Heterogeneity is similarly unaffected. Hence, we can reorder the entries of any vector

however we like without altering the properties we are studying.

We now define two functions which will allow us to shift our analysis of the Ducci mapping

f to an analysis of a mapping defined on a subset of the plane R2. Specifically, first define

g on the set of heterogeneous vectors v in R3 which have one entry zero and two positive

(necessarily distinct) entries to those points in the plane {(a, b) : a/b /∈ Q, 0 < a < b} by

g(v) = (a, b), where b is the largest of v’s elements and a is the second largest of v’s elements.

Considering the same subset of R2, next define the function

h : {(a, b) : a/b /∈ Q, 0 < a < b} → {(a, b) : a/b /∈ Q, 0 < a < b}

by

h(a, b) =

 (2a− b, a), if b < 2a;

(b− 2a, b− a), if 2a < b.

The function h is the analog of the Ducci map f restricted to heterogeneous vectors, a

statement we make more precise in the following.

Lemma 3.1. Suppose v is a heterogeneous vector in R3. Then there exist unique k,K ∈ R

such that g(f(v) − (K)3) = h(g(v − (k)3)). In particular, k equals the smallest entry of v

and K the smallest entry of f(v).

Proof. Suppose v = (a, b, c), where, without a loss of generality we assume a < b < c. As

f(v) = f(v+(j)3) for any real j, we let j = −a to obtain v+(j)3 = (0, b−a, c−a) = (0, α, β),
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where α = b− a and β = c− a, so that f(0, α, β) = f(v). Thus, our result will follow if we

can find unique k and K such that g(f(0, α, β)− (K)3) = h(g(v − (k)3)).

Calculating, we see that f(0, α, β) = (α, β − α, β). For f(0, α, β) − (K)3 to be in the

domain of g, one of its entries must be zero. As β is the greatest of the entries of f(0, α, β),

and is in fact strictly larger than α and β − α since v is heterogeneous, we have only two

cases to consider.

Case 1: If 2α > β, and therefore α > β − α, then set K = β − α, and f(0, α, β)− (K)3 =

(2α− β, 0, α). Note that α > 2α− β since this is equivalent to β > α. Also note that since

(0, α, β) is heterogeneous, so too is f(0, α, β) , and thus f(0, α, β) − (K)3 (which has one

zero and two positive entries) is in the domain of g.

Case 2: If 2α < β, and therefore α < β − α, then set K = α, and f(0, α, β) − (K)3 =

(0, β − 2α, β − α). Clearly β − α > β − 2α. The previous comment regarding the fact that

f(0, α, β)− (K)3 is in the domain of g applies here as well.

Thus we have

g(f(v)− (K)3) =

 (2α− β, α), if 2α > β

(β − 2α, β − α), if 2α < β,

and upon substituting for α and β, we find that

g(f(v)− (K)3) =

 (2b− a− c, b− a), if 2b > a+ c

(c+ a− 2b, c− b), if 2b < a+ c.

On the other hand, we have g(v − (a)3) = (b − a, c − a), and so by now calculating

h(g(v− (k)3)) for k = a, we reach the desired conclusion. The uniqueness of k and K follow

from the obvious fact that given a vector v ∈ R3, for at most one value of j can v − (j)3 be

in the domain of g. �

This lemma can be generalized via induction to apply to any iterate of f , as stated in the

following lemma. It is then on the basis of Lemma 3.2 that we are able to analyze the action

of h in order to determine the behavior of f on heterogeneous vectors.

11



Lemma 3.2. Let i ∈ N and suppose v is a heterogeneous vector in R3. Then there exist

unique real numbers k,K such that

g(f i(v)− (K)3) = hi(g(v − (k)3)).

Here k is the smallest entry of v and K is the smallest entry of f i(v).

4. Asymptotic Behavior of Heterogeneous Vectors in R3

We now focus our analysis on those points (a, b) ∈ R2 such that 0 < a < b and a/b /∈ Q.

To this end, the next lemma demonstrates that any such point with b < 2a will eventually

be shifted under iteration by h to the region where b > 2a.

Lemma 4.1. Let (a, b) be in the domain of h and such that b < 2a. Then there exists i ∈ N

such that hi(a, b) = (α, β) satisfies β > 2α.

Proof. Letting (a0, b0) = (a, b), suppose, on the contrary, that for each i ≥ 0, hi(a, b) = (ai, bi)

satisfies bi < 2ai. Then, the mapping h takes (ai, bi) to (2ai− bi, ai) for all positive i, and we

conclude, by induction, that hi(a, b) = ((i+ 1)a− ib, ia− (i− 1)b) for all i ≥ 1. This implies

that for all i ∈ N, ia− (i− 1)b < 2(i+ 1)a− 2ib, or

2ib− (i− 1)b < 2(i+ 1)a− ia.

Consequently, (i+ 1)b < (i+ 2)a, leaving b < [(i+ 2)/(i+ 1)]a, for all i ∈ N. Hence, letting

i→∞ implies b ≤ a, a contradiction. �

We now let d(a, b) denote the (shortest) distance from the point (a, b) to the line {(x, y) ∈

R2 : x = y}. The following lemma establishes two important facts regarding the effect h has

on this distance.

Lemma 4.2. Let (a, b) ∈ R2 with 0 < a < b and a/b /∈ Q. If (a, b) also satisfies b < 2a,

then d(h(a, b)) = d(a, b). If (a, b) satisfies b > 2a then d(h(a, b)) < d(a, b).

Proof. A direct calculation shows that for any point (r, s) ∈ R2 we have d(r, s) = (
√

2/2)|r−

s|. For (a, b) with b < 2a, since h(a, b) = (2a− b, a), we conclude that

d(h(a, b)) =

√
2

2
|2a− b− a| =

√
2

2
|b− a| = d(a, b).
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For (a, b) with b > 2a, we again proceed by straightforward calculations, noting that

d(h(a, b)) =

√
2

2
|b− 2a− b+ a| =

√
2

2
a.

On the other hand, d(a, b) = (
√

2/2)(b−a). Since
√

2/2a <
√

2/2(b−a) if and only if b > 2a,

the result follows. �

We are now in a position to prove the following, which completely describes the asymptotic

behavior of Ducci sequences which begin with heterogeneous vectors in R3.

Theorem 4.3. Suppose v = (a, b, c) is a heterogeneous vector with a < b < c. Then,

lim
i→∞
{hi(g(0, b− a, c− a))} = (0, 0).

Proof. As a notational convenience, let hi(g(0, b − a, c − a)) = (xi, yi) for each i ≥ 1. By

Lemma 4.1, we can form a subsequence of {(xi, yi)} consisting of those terms where yi > 2xi.

We denote this subsequence by {(pi, qi)}. Note that d(pi, qi) > d(pi+1, qi+1) for all i ≥ 1 since

d(pi, qi) > d(h(pi, qi)) for any i ∈ N. Consequently, this is a decreasing sequence which is

bounded below by zero, and therefore it follows that lim{d(pi, qi)− d(pi+1, qi+1)} = 0.

Referring back to the definition of h, one sees that for any i ≥ 0, yi > yi+1. Furthermore,

the sequence {yi} is also bounded below by zero. Hence, its limit exists, and we let lim{yi} =

c. Note that if c = 0 then we are done, since for all i ∈ N, yi > xi, and we can apply the

squeeze theorem to conclude lim{xi} = 0 as well. The remainder of the proof will verify that

in fact this must be the case.

Now, for i ∈ N given, let k be the smallest positive integer such that hk(pi, qi) = (P,Q)

satisfies Q > 2P . By definition, it must be that hk(pi, qi) = (pi+1, qi+1). If k = 1 then

d(pi, qi)− d(pi+1, qi+1) =

√
2

2
(qi − 2pi)

follows immediately from Lemma 4.2. If k > 1, since hl(pi, qi) satisfies qi < 2pi for all

1 ≤ l < k, it follows that

d(h(pi, qi)) = d(h2(pi, qi)) = · · · = d(hk(pi, qi)),

again by Lemma 4.2. Hence, the same conclusion regarding d(pi, qi) − d(pi+1, qi+1) applies

in this case as well.
13



Thus, lim{(
√

2/2)(qi − 2pi)} = 0, or equivalently, lim{qi − 2pi} = 0. We know that

lim{qi} = lim{yi} = c, so we conclude lim{pi} = c/2. But recall that h(pi, qi) = (qi −

2pi, qi−pi). Furthermore, the sequence {yi} is decreasing. So qi+1 ≤ qi−pi. Thus lim{qi+1} ≤

lim{qi} − lim{pi}, or, c ≤ c− c/2. It follows that c ≤ 0. Since c ≥ 0, we have that c = 0, as

desired. �

5. Conclusions and Future Directions

The implication of Theorem 4.3, in conjuction with Lemma 3.2, is that for a given v ∈ R3

which is heterogeneous and for any ε > 0, there exists H ∈ N such that if i ≥ H, then both

entries of g(f i(v)−(K)3) are positive and within ε of zero, whereK is the smallest (necessarily

positive) entry of f i(v). Thus, we see that each entry of f(f i(v)− (K)3) = f i+1(v) is within

ε of zero, and we conclude that lim{f i(v)} = (0, 0, 0). Our results are then summarized in

the following theorem.

Theorem 5.1. Let v ∈ Rn, n odd. If there exist α, x ∈ R, α 6= 0, such that α(v+(x)n) ∈ Qn,

then there exists k ∈ N such that fk(v) is a nontrivial periodic vector, and hence the Ducci

sequence {f i(v)} is eventually periodic.

If, on the other hand, α(v + (x)n) /∈ Qn for all α, x ∈ R, α 6= 0, then {f i(v)} contains no

periodic vectors, but approaches some periodic vector in Rn asymptotically. In the case that

n = 3, this periodic vector is the trivial periodic vector, (0, 0, 0).

Finally, we can determine which of these two categories a given vector falls under by the

method presented at the end of Section 2.

The result of Theorem 5.1 is perhaps surprising since it implies that two vectors which are

arbitrarily close can have dramatically different asymptotic behavior. This is particularly

apparent in the case n = 3, with one converging to the zero vector, and the other eventually

becoming a nontrivial cyclic vector.

In fact, this behavior for n = 3 is distinct from that exhibited by the example in R7 given

by [9] of a vector having a Ducci sequence which approaches, but never actually contains,

a nontrivial periodic vector. The existence of such a vector is not unique to R7; indeed, it

is not hard to find an example for each of R9 and R15, for instance. One is then led quite
14



naturally to the question of whether the situations in R5 and R6 agree with the result in R3

or agree with the result of [9] (note that as observed above, the R4 case has been resolved

by [32], among others. Generalizing further, as shown in [41], this problem has also been

resolved for n any power of 2). One difference that is apparent between the cases n = 5 and

n = 6 and those of R7, R9, and R15 is that in the latter cases, the relevant nontrivial periodic

vectors all had a period of length one, up to rotation. It is not hard to verify that there are

no such nontrivial periodic vectors for n = 5, and for n = 6 the only such vector (again,

up to rotation) is (0, 1, 1, 0, 1, 1), which is simply two copies of (0, 1, 1) in R3. However, one

should be careful not to draw too strong of conclusions from our observations, as the periodic

vector approached by our heterogeneous vector in R9 is actually (0, 1, 1, 0, 1, 1, 0, 1, 1) (three

copies of (0, 1, 1)).

It is worth noting that it becomes increasingly difficult to generalize the method used for

R3 to higher dimensions due to the increase in complexity of the equations. The number of

possible relative magnitudes among adjacent entries grows exponentially with vector length,

and the number of possible relative magnitudes among all entries grows factorially. Hence,

the simple piecewise-defined functions that we used above quickly grow in complexity. Fur-

thermore, matters become even murkier since the ordering of a vector v ∈ Rn’s entries does

affect the magnitudes of f(v)’s elements for n ≥ 4.

Finally, another problem that remains to be answered in future investigations is finding

a criterion for discerning which vectors of even length yield an eventually periodic Ducci

sequence. As stated in Corollary 2.7, heterogeneity is a necessary and sufficient condition

for this property on vectors of odd length. Finding an analogous criterion for vectors of even

length will lend much to our understanding of this problem.
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