

SysML Reliability Modeling of Ground Based Systems with Virtualized Architectures

Myron Hecht and Daniel Winton The Aerospace Corporation

Presented to

Ground Systems Architecture Workshop February, 2014

Organization

- Overview
- A Very Quick Introduction to SysML
- Model Description and Modeling Approach
- Example Result
- Conclusions

Overview

- Question
 - How can Reliability Modeling and Prediction be Incorporated into SysML models of Virtualized Ground Systems?
- Motivation
 - Growing use of SysML
 - Significant Potential Benefits for Tightly Integrating Dependability Analysis into System Engineering
- Method
 - Package Structure
 - Abstract Classes
 - Structural and Parametric Models
 - Model Transformation and Results

Reliability and Dependability are Important

- Required by Law
 - Public Law 111-123 "Weapons System Acquisition Reform Act of 2009," Section 102 (codified as 10 USC 4 Section 139d)
- DoD Policies
 - CJCSI 3170.01, "Operation Of The Joint Capabilities Integration And Development System," May, 2007: "Materiel Availability and Operational Availability as Key Performance Parameters (KPPs) Reliability and Ownership Costs as Key System Attributes"
 - DTM 11-03 "Reliability Analysis, Planning, Tracking, and Reporting", OUSD AT&L, March 21, 2011
- Investment in RMA Pays Off
 - See GAO 2003 and DLA reports: Predator, Global Hawk cited as showing Return on Investment of Reliability Improvement of 5:1 to 128:1

A Very Quick Introduction to SysML

1. Structure

3. Requirements

OMG SysML Tutorial (www.omgsysml.org)

2. Behavior

Parametric Analysis with SysML (top level)

Ingredients of a SysML Parametric Analysis

Model Packages

- Documentation
 - Both source documents and documentation of the model
- Abstract Classes
 - Classes contain properties and behaviors that component blocks inherit
- System
 - Component Blocks
 - Block Definition Diagrams for composition of system, subsystem, and components
 - Internal Block Diagrams for connectivity
- Constraints-Parameters
 - Constraint blocks for equations
 - Parametric diagrams for relations
- ValueTypes
 - Units in the model
- Instances
 - Separate package for each instance: Blocks and relations

Abstract Classes Package

SysML Block Definition Diagram Used as a Class Diagram

- Properties propagated to all child components
- Transverses composition
 hierarchies
- Examples
 - Reliability/Availability
 - IT Security
 - Failure Behavior
 - Capacity and response time
 - Facility requirements

System Model Block Definition Diagram

• The SysML Block Definition shows the blocks bound with directed composition arrows

Constraints and Parameters Package Constraint Blocks

- Internal Constraint Blocks
 - Use restricted syntax of SysML constraint language

- External Constraint Blocks
 Allows for more complex
 - functionality

Internal Constraint Blocks can be mixed with Externals

Parametrics Diagrams

Linking Constraints with Parameters

Instantiation of the Ground System Model

Block Definition Diagram in Instance Package

Part V Solve the Instance

Parameter Assignment for Paramagic Solution

ParaMagic(R) 17.0.2 - system	n			
Name	Qualified Name	Туре	Ca	Values
System	instance::system	System		
···· relSystem		Probability	target	?????
Computing	instance::system.co	Computing		
reiComputing		Probability	target	
	instance::system.co	Chassisi Brobability	divon	0.00
	instance::system.co	Chassis?	given	0.99
	instancesystem.co	Probability	aiven	0.99
	instance::system.co	Rack	9	0.000
relRack	,	Probability	given	0.99
🖻 🖵 network	instance::system.net	Network	-	
···· 💷 relNetwork		Probability	target	?????
🖻 🖳 firewall	instance::system.net	Firewall		
relFirewall		Probability	given	0.99
E- router	instance::system.net	Router		
	instance usystem ste	Probability	given	0.99
	instance::system.sto	Probability	target	22222
	instance::system sto	Controller	target	
	motaneerroyotermotorm	Probability	aiven	0.99
e diskArray	instance::system.sto	DiskArray	3	
····· 💷 relDiskArray	,	Probability	given	0.99

Results of Quantitative Model: Derived recovery probability requirement

Conclusions

- SysML can support quantitative analysis of ground systems with virtualized architectures
 - Methodology, Approach, and Results Demonstrated
- Benefits
 - Integration with system baseline
 - Models can be immediately evaluated for conformance with dependability, safety, and other related requirements
 - Traceability of conformance to requirements up through the TRD and into the CDD KPPs and KSAs
 - Reduce cost and schedule impacts of
 - Evaluation of change proposals
 - Demonstrating compliance with RMA requirements and
 - Architecture and design rework in the event of non-compliance

References

- Cameo Systems Modeler User Guide, Nomagic Inc., <u>www.nomagic.com</u> © 2013
- MATLAB version R2013a: <u>http://www.mathworks.com</u>
- Paramagic User's Guide, InterCAX, <u>http://www.intercax.com</u>, © 2013
- SA Friedenthal, A. Moore, R. Steiner, A Practical Guide to SysML, The MK/OMG Press, <u>www.mkp.com</u>, © 2012 <u>http://www.elsevierdirect.com/product.jsp?isbn=9780123786074</u>
- RS Peak, RM Burkhart, SA Friedenthal, MW Wilson, M Bajaj, I Kim (2007) Simulation-Based Design Using SysML—Part 1: A Parametrics Primer. INCOSE Intl. Symposium, San Diego.

All trademarks, service marks, and trade names are the property of their respective owners