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What these lectures are about

In these lectures | present a very condensed version
of some material which form the second part of a
M2 course | gave in Lyon.
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What these lectures are about

In these lectures | present a very condensed version
of some material which form the second part of a
M2 course | gave in Lyon.

Textbooks

The Surprising
. Mathematics of
This course was roughly based on Chapters 1 and 2 Longest Increasing
of Dan Romik’s beautiful book The surprising Subsequences
mathematics of longest increasing subsequences

(available online).

Dan Romik
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What these lectures are about

In these lectures | present a very condensed version
of some material which form the second part of a
M2 course | gave in Lyon.

This course was roughly based on Chapters 1 and 2
of Dan Romik's beautiful book The surprising
mathematics of longest increasing subsequences
(available online).

In the second part (Chapter 2) | somewhat diverged
from the book by following my own favorite
approach (developed mostly by Okounkov), based
on fermions and saddle point computations for
asymptotics.
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What these lectures are about

In these lectures | present a very condensed version
of some material which form the second part of a
M2 course | gave in Lyon.

Textbooks

The Surprising

. Mathematics of
This course was roughly based on Chapters 1 and 2 Longest Increasing

of Dan Romik’s beautiful book The surprising Subsequences
mathematics of longest increasing subsequences DeROml
(available online).

In the second part (Chapter 2) | somewhat diverged
from the book by following my own favorite
approach (developed mostly by Okounkov), based
on fermions and saddle point computations for
asymptotics.

This is the material | would like to present here: fermions because of
physics, saddle point computations because, well, we are in Aléal!
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Integer partitions and Young diagrams/tableaux

An (integer) partition A is a finite nonincreasing sequence of positive
integers called parts:

A1 > A > > A > 0.

Its size is |A| := > A\; and its length is £(\) := ¢ (by convention A\, = 0 for
n>{).
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Integer partitions and Young diagrams/tableaux

An (integer) partition A is a finite nonincreasing sequence of positive
integers called parts:

A1 > A > > A > 0.

Its size is |A| := > A\; and its length is £(\) := ¢ (by convention A\, = 0 for
n > (). It may be represented by a Young diagram, e.g. for A = (4,2,2,1):
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Integer partitions and Young diagrams/tableaux
An (integer) partition A is a finite nonincreasing sequence of positive
integers called parts:

A1 > A > > A > 0.

Its size is |A| := > A\; and its length is £(\) := ¢ (by convention A\, = 0 for
n > ). It may be represented by a Young diagram, e.g. for A = (4,2,2,1):

8
419
3
1

A standard Young tableau (SYT) of shape A is a filling of the Young
diagram of X\ by the integers 1,...,|)| that is increasing along rows and
columns. We denote by d\ the number of SYTs of shape A.
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Plancherel measure

The Plancherel measure on partitions of size n is the probability measure
such that

A ifakn
Prob(A\) =< '

0  otherwise.

Here A F nis a shorthand symbol to say that X is partition of size n.
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Plancherel measure

The Plancherel measure on partitions of size n is the probability measure
such that

a2 .
Prob(\) = { o AT
0  otherwise.

Here A F nis a shorthand symbol to say that X is partition of size n.
It is a probability measure because of the “well-known” identity

_ 2
nl=> di
AFn

which has (at least) two classical proofs:
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Plancherel measure

The Plancherel measure on partitions of size n is the probability measure
such that

2
Prob(\)= ¢ AT
0  otherwise.

Here A F nis a shorthand symbol to say that X is partition of size n.
It is a probability measure because of the “well-known” identity

nt=> di
A-n
which has (at least) two classical proofs:

@ representation theory: n! is the dimension of the regular

representation of the symmetric group S,,, and d) is the dimension of
its irreducible representation indexed by A,
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Plancherel measure

The Plancherel measure on partitions of size n is the probability measure
such that
B ifakn
Prob(A\) =< "
0  otherwise.
Here A F nis a shorthand symbol to say that X is partition of size n.

It is a probability measure because of the “well-known” identity

nt=> di

AFn

which has (at least) two classical proofs:

@ representation theory: n! is the dimension of the regular
representation of the symmetric group S,,, and d) is the dimension of
its irreducible representation indexed by A,

@ bijection: the Robinson-Schensted correspondence is a bijection

between S, and the set of triples (X, P, Q), where A+ nand P, Q are
two SYTs of shape \.
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Connection with Longest Increasing Subsequences

A property of the Robinson-Schensted correspondence is that if
o~ (A, P, Q), then the first part of \ satisfies

A1 = L(o)

where L(o) is the length of a Longest Increasing Subsequence (LIS) of o
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Connection with Longest Increasing Subsequences

A property of the Robinson-Schensted correspondence is that if
o~ (A, P, Q), then the first part of \ satisfies

A1 = L(o)
where L(o) is the length of a Longest Increasing Subsequence (LIS) of o.

Example: for o = (3,1,6,7,2,5,4), we have L(o) = 3.
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Connection with Longest Increasing Subsequences

A property of the Robinson-Schensted correspondence is that if
o~ (A, P, Q), then the first part of \ satisfies

A1 = L(o)
where L(o) is the length of a Longest Increasing Subsequence (LIS) of o.
Example: for 0 = (3,1,6,7,2,5,4), we have L(o) = 3.

There is a more general statement (Greene's theorem) but we will not
discuss it here.
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Connection with Longest Increasing Subsequences

A property of the Robinson-Schensted correspondence is that if
o~ (A, P, Q), then the first part of \ satisfies

A1 = L(o)
where L(o) is the length of a Longest Increasing Subsequence (LIS) of o.
Example: for 0 = (3,1,6,7,2,5,4), we have L(o) = 3.

There is a more general statement (Greene's theorem) but we will not
discuss it here.

The Longest Increasing Subsequence problem consists in understanding
the asymptotic behaviour as n — oo of L, := L(o,) = /\(1"), where o,
denotes a uniform random permutation in S,, and A" the random
partition to which it maps via the RS correspondence, and whose law is
the Plancherel measure.
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Some partial history of the LIS problem

@ The problem was formulated by Ulam (1961) who suggested
investigating it using Monte Carlo simulations and observed that L,
should be of order \/n.
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Some partial history of the LIS problem

@ The problem was formulated by Ulam (1961) who suggested
investigating it using Monte Carlo simulations and observed that L,
should be of order /n.

@ It was then popularized by Hammersley (1972) who introduced a nice
graphical method (closely related with the RSK correspondence) and
proved that L,/+/n converges in probability to a constant ¢ € [7/2, €].
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Some partial history of the LIS problem

@ The problem was formulated by Ulam (1961) who suggested
investigating it using Monte Carlo simulations and observed that L,
should be of order /n.

@ It was then popularized by Hammersley (1972) who introduced a nice
graphical method (closely related with the RSK correspondence) and
proved that L,/+/n converges in probability to a constant ¢ € [7/2, €].

@ Vershik-Kerov and Logan-Shepp (1977) proved independently that
c = 2, as a consequence of a more general limit shape theorem for the
Plancherel measure on partitions. (See Chapter 1 of Romik’s book.)
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Limit shape

A Plancherel random partition of size 10000 (courtesy of D. Betea)
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Some partial history of the LIS problem

@ The problem was formulated by Ulam (1961) who suggested
investigating it using Monte Carlo simulations and observed that L,
should be of order /n.

@ It was then popularized by Hammersley (1972) who introduced a nice
graphical method (closely related with the RSK correspondence) and
proved that L,/+/n converges in probability to a constant ¢ € [7/2, €].

@ Vershik-Kerov and Logan-Shepp (1977) proved independently that
c = 2, as a consequence of a more general limit shape theorem for the
Plancherel measure on partitions. (See Chapter 1 of Romik’s book.)
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Some partial history of the LIS problem

@ The problem was formulated by Ulam (1961) who suggested
investigating it using Monte Carlo simulations and observed that L,
should be of order /n.

@ It was then popularized by Hammersley (1972) who introduced a nice
graphical method (closely related with the RSK correspondence) and
proved that L,/+/n converges in probability to a constant ¢ € [7/2, €].

@ Vershik-Kerov and Logan-Shepp (1977) proved independently that
c = 2, as a consequence of a more general limit shape theorem for the
Plancherel measure on partitions. (See Chapter 1 of Romik’s book.)

@ Baik-Deift-Johansson (1999) proved the most precise result

P (L”_2ﬁ <

where Fgyg is the Tracy-Widom GUE distribution. (See Chapter 2.)
The unusual exponent n'/® was previously conjectured by
Odlyzko-Rains and Kim based on numerical evidence and bounds.
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Topics of the lectures

We will discuss some properties of the Plancherel measure.

@ We will show that the poissonized Plancherel measure (to be defined)
is closely related with a determinantal point process (DPP) called the
discrete Bessel process. Plan:

» Some general theory of DPPs
» Connection with Plancherel measure via fermions

@ We will then investigate asymptotics, in the following regimes:

» Bulk limits: the VKLS limit shape and the discrete sine process
» Edge limit: the Airy process and the Baik-Deift-Johansson theorem
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Topics of the lectures

We will discuss some properties of the Plancherel measure.

@ We will show that the poissonized Plancherel measure (to be defined)
is closely related with a determinantal point process (DPP) called the
discrete Bessel process. Plan:

» Some general theory of DPPs
» Connection with Plancherel measure via fermions

@ We will then investigate asymptotics, in the following regimes:

» Bulk limits: the VKLS limit shape and the discrete sine process
» Edge limit: the Airy process and the Baik-Deift-Johansson theorem

These results were obtained indepently in two papers by Borodin,
Okounkov and Olshanski (2000) and by Johansson (2001). But we use a
different approach developed later by Okounkov et al., which may be
generalized to Schur measures and Schur processes. We concentrate on
the Plancherel measure for simplicity.

Jérémie Bouttier (CEA/ENS de Lyon) [Around the Plancherel measure on partitions 20 March 2019 10 / 28



Poissonized Plancherel measure

The poissonized Plancherel measure of parameter 6 is the measure

2
Prob(\) = gl

(A2
It is a mixture of the Plancherel measures of fixed size, where the size is a
Poisson random variable of parameter 6.

We denote by A\?) a random partition distributed according to the

poissonized Plancherel measure, A(") denoting a Plancherel random
partition of size n.
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Partitions and particle configurations

To a partition )\, here (4,2,1), we associate a set S(\) C Z' := Z + 1 by

1 3 5

S(A):{Al—i,)\Q—E,)G—E,}

Here S(\) = {4.3, 53,51, 52, .. .}. Elements of S()) (“particles’ o)

correspond to the down-steps of the blue curve.
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Main result of today

Theorem [Borodin-Okounkov-Olshanski 2000, Johansson 2001]

The particle configuration 5()\<9>) associated with the poissonized

Plancherel measure is a determinantal point process in the sense that, for
any distinct points {uy,...,u,} C Z', we have

P({ul,...,un}CS()\<9))): det  Jo(ui, uy).

1<ij<n
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Main result of today

Theorem [Borodin-Okounkov-Olshanski 2000, Johansson 2001]

The particle configuration 5()\<9>) associated with the poissonized

Plancherel measure is a determinantal point process in the sense that, for
any distinct points {uy,...,u,} C Z', we have

P({ul,...,un}CS()\<9))): det  Jo(ui, uy).

1<ij<n

The correlation kernel Jg is the discrete Bessel kernel

Jo(s:t) = Y Jere(2V0)Jere(2V0), s tel

LeZL

where J, is the Bessel function of order n.
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Main result of today

Theorem [Borodin-Okounkov-Olshanski 2000, Johansson 2001]

The particle configuration 5()\<‘9>) associated with the poissonized
Plancherel measure is a determinantal point process in the sense that, for
any distinct points {uy,...,u,} C Z', we have

P({ul,...,un}CS()\<0))): det  Jo(ui, uy).

1<ij<n

The correlation kernel Jg is the discrete Bessel kernel

Jo(s:t) = Y Jere(2V0)Jere(2V0), s tel

LeZl

where J, is the Bessel function of order n.

By the general theory of DPPs, knowing Jy gives all the information on
the point process.
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Tomorrow

Asymptotics of Jgy, using saddle point computations. Again this is different

from the original techniques of BOO/J, our approach follows Okounkov
and Reshetikhin and are robust (“universality”).
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A refresher on fermions

A fermionic configuration is a subset S C Z' :== Z + % that contains
finitely many positive elements, and whose complement contains finitely
many negative elements. We denote by S the (countable) set of fermionic
configurations.
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A refresher on fermions

A fermionic configuration is a subset S C Z' := Z + % that contains
finitely many positive elements, and whose complement contains finitely

many negative elements. We denote by S the (countable) set of fermionic
configurations.

Partitions are embedded into fermionic configurations by the mapping
1 3 5
)\HS()\) = {)\]_ - 5,)\2 - 5,)\3 - 5,}
It is not a bijection but the mapping (), ¢) — S()\) + ¢, with c € Z, is.

Jérémie Bouttier (CEA/ENS de Lyon) [Around the Plancherel measure on partitions 21 March 2019 16 / 28



A refresher on fermions

A fermionic configuration is a subset S C Z' := Z + 3 that contains
finitely many positive elements, and whose complement contains finitely
many negative elements. We denote by S the (countable) set of fermionic
configurations.

Partitions are embedded into fermionic configurations by the mapping

1 3 5
)\HS()\) = {)\1—5,)\2—5,)\3—5,...}

It is not a bijection but the mapping (), ¢) — S()\) + ¢, with c € Z, is.
The fermionic Fock space F consists of columns vectors indexed by S.
The standard basis is denoted by (vs)ses and the dual basis (of row

vectors) by (v&)ses. Operators on F are naively viewed as matrices with
rows and columns indexed by S.
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A refresher on fermions

A fermionic configuration is a subset S C Z' := Z + 3 that contains
finitely many positive elements, and whose complement contains finitely
many negative elements. We denote by S the (countable) set of fermionic
configurations.

Partitions are embedded into fermionic configurations by the mapping

1 3 5
)\HS()\) = {)\1—5,)\2—5,)\3—5,...}

It is not a bijection but the mapping (), ¢) — S()\) + ¢, with c € Z, is.

The fermionic Fock space F consists of columns vectors indexed by S.
The standard basis is denoted by (vs)ses and the dual basis (of row
vectors) by (v&)ses. Operators on F are naively viewed as matrices with
rows and columns indexed by S.

We use the shorthand notation v := vs(y) for partitions and vy := vz,
corresponds to the (nonzero!) vacuum vector.
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A refresher on fermions
We defined the fermionic creation/annihilation operators through their
action on the standard basis:

v 0 ifkes,
Vg = ,
kVs (_1)#(sz>k)\,5u{k} if k¢S,

" 0 if k¢ S,
Vg = ’
K7 (—1)#(Snz>k)V5\{k} if kesS.
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A refresher on fermions

We defined the fermionic creation/annihilation operators through their
action on the standard basis:

v 0 ifkes,
Vg = ,
kVs (_1)#(sz>k)\,5u{k} if k¢S,

. 0 if k¢S,

Vs = )

k7 (—1)#(Snz>k)V5\{k} if kesS.

These operators satisfy the canonical anticommutation relations (CAR)

Yo + Yoo =0
Yy + Yy =0
iy + Yibk = Ok
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A refresher on fermions

We defined the fermionic creation/annihilation operators through their
action on the standard basis:

v 0 if ke,

Vg = ,

kVs (_1)#(sz>k)\,5u{k} if k¢S,
« 0 if k¢S,

Ypvs = {(—1)#(502/>k)v5\{k} fkes.

These operators satisfy the canonical anticommutation relations (CAR)

Ve + Yok =0
Yy + v =0
Yy + Yk = Ok e
The diagonal operator Ny := 1,1} “measures” whether there is a particle

at position k.
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A refresher on fermions
We defined the “box" creation/annihilation operators by

Q= ki, = bt

keZ! kez!
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A refresher on fermions

We defined the “box" creation/annihilation operators by

Q= ki, = bt

keZ! kez!

In terms of partitions their action read

* % *
via' = Z Vs avy = Z Vy
WX WA
where * means “adding a box".
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A refresher on fermions

We defined the “box" creation/annihilation operators by

Q= ki, = bt

keZ! kez!

In terms of partitions their action read

* ok * _
via' = Z Vs avy = Z Vy
B WA
where * means “adding a box".

By iterating we get

) =) dawi,  a’vy=) dw
AFn AFn
or, equivalently,

. dyx dh xIAl
e = N gy g
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A refresher on fermions

Final result of yesterday
The correlation function p(U) of the poissonized Plancherel measure admit
the fermionic expression (with 6 = x?)

v exa* Nu e Nu,, eXy
p(U) =P ({U1,...,u,,} C 5()\(9>)) _ " 1eX2 0

where we recall that N, = 1,9} “indicates” if there is a particle at u.
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A refresher on fermions
Final result of yesterday

The correlation function p(U) of the poissonized Plancherel measure admit
the fermionic expression (with 6 = x?)

vy € Ny -+ Ny, vy

p(U) =P ({ul, coylp} C 5()\<9>)) =

where we recall that N, = 1,9} “indicates” if there is a particle at u.

It remains to identify the rhs as a determinant with Bessel kernel entries.
There are two main steps, which both exploit the CAR algebra structure:
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A refresher on fermions
Final result of yesterday

The correlation function p(U) of the poissonized Plancherel measure admit
the fermionic expression (with 6 = x?)

vy € Ny -+ Ny, vy

p(U) =P ({ul, coylp} C 5()\<9>)) =

where we recall that N, = 1,9} “indicates” if there is a particle at u.

It remains to identify the rhs as a determinant with Bessel kernel entries.
There are two main steps, which both exploit the CAR algebra structure:
@ eliminate the a's to rewrite

p(U) = Vithu 0 Yu, i vp, With Py o= > Jp(2x) s

LeZ
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A refresher on fermions
Final result of yesterday

The correlation function p(U) of the poissonized Plancherel measure admit
the fermionic expression (with 6 = x?)

vy € Ny -+ Ny, vy

p(U) =P ({ul, coylp} C 5()\<9>)) =

where we recall that N, = 1,9} “indicates” if there is a particle at u.

It remains to identify the rhs as a determinant with Bessel kernel entries.
There are two main steps, which both exploit the CAR algebra structure:
@ eliminate the a's to rewrite

p(U) = Vithu 0 Yu, i vp, With Py o= > Jp(2x) s
LeZ
@ apply Wick's lemma to get

U)= det vi, o vy= det Jo(us,u;).
p(U) 1§iJ§nv®wu’¢UJV® 1<ti<n 9(”:7“])
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Eliminating the a's
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Eliminating the a's

From the CAR we deduce the commutation relations

[CK*, ¢k] = ka—l) [ka’ a] = _wk—i-l

and their duals.
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Eliminating the a's

From the CAR we deduce the commutation relations

[a*v 77/)/(] = ¢k—17 [¢k7 O[] = _wk—i-l

and their duals. Equivalently, in terms of ¢(z) := Y, oy ¥k Z¥,

[0*, 0(2)] = 2e(2),  [¥(2),0] = —z79(2).
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Eliminating the a's

From the CAR we deduce the commutation relations

[a*v l/)k] = ¢k—17 [¢k7 Oé] = _wk-i-l

and their duals. Equivalently, in terms of ¢(z) := Y, oy ¥k Z¥,

[0*, 0(2)] = 2e(2),  [¥(2),0] = —z79(2).

By “exponentiating” we get

Adgar (¥(2) = €¥(2),  Adera (¥(2)) = e (2)
where Ad,(Y) := ghg L.
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Eliminating the a's

From the CAR we deduce the commutation relations
[a*v l/)k] = ¢k—17 [¢k7 a] = —¢k+1
and their duals. Equivalently, in terms of ¢(z) := Y, oy ¥k Z¥,

[0*, 0(2)] = 2e(2),  [¥(2),0] = —z79(2).

By “exponentiating” we get

Adgor ((2)) = €%9(2),  Adexe ($(2)) = €7 4(2)

where Ad,(Y) := ghg~!. Equivalently,

x! (_X)g
Ad o (i) = Z ﬁ%bk—ea Ade—xa (V) = Z / Vicre

ez LeZ
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Eliminating the a's
Also, we have
[*,a] = 1

which implies, by the Baker-Campbell-Hausdorff formula,

xa*  xa 2 xa _xa*

XY X = X X%
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Eliminating the a's
Also, we have
[@",0] =1
which implies, by the Baker-Campbell-Hausdorff formula,

* 2 *
eXOé eXCY — eX exaexa .

Note that

Adgrar oa (1(2)) = 72 D(2)
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Eliminating the a's
Also, we have

[a*,a] =1
which implies, by the Baker-Campbell-Hausdorff formula,
* 2 *
eXOé eXCY — eX exaexa .
Note that
Ad _ x(z—z7h)
exarea (V(2)) = € ¥(z)
Ad gxa g —xa (Vi) = Z Jo(2x)pk—e =: i
LEL
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Eliminating the a's
Also, we have

[0*,a] = 1
which implies, by the Baker-Campbell-Hausdorff formula,
* 2 *
eXOé eXCY — eX exaexa .
Note that
Ad _ x(z—z7h)
exarea (V(2)) = € ¥(z)
Adgrar gxa (Vi) = Y J(2X)hie—e = Ui
LEL
vy et = vy e vy = v
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Eliminating the a's
Also, we have
[a",a] =1
which implies, by the Baker-Campbell-Hausdorff formula,

* 2 *
eXOé eXCY — eX exaexa .

Note that

Adgra oo (1(2)) = €7 Dy(2)
Ad ot g s (Vk) = > Je(2x )i =: i

LeZ

.
vé‘exo‘ = vg e vy = v

and combining everything

* xo™ * * X
Vp € ¢u1 u1"'1vbun ur € VD

p( U) = o2 = ngmwzl T %ﬂﬂzn Vp-
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Wick's lemma (fermionic version)
Let (O) := v;Ovy denote the vacuum expectation value of an operator O.
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Wick's lemma (fermionic version)
Let (O) := v;Ovy denote the vacuum expectation value of an operator O.

Wick's lemma (see Gaudin 1960 for a simple proof using CAR)

Let ©1,@3,...,p2n—1 denote linear combinations of the 's and
©5, P, - - > 5, denote linear combinations of the ¢;'s. Then we have

(120308 - P2n-102,) = 1§di3't§n Cij

ot T
where G j = <(’02'*1<p21> I I_J (“time-ordered correlator”).
—{p3jp2i-1) if i >
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Wick's lemma (fermionic version)
Let (O) := v;Ovy denote the vacuum expectation value of an operator O.

Wick's lemma (see Gaudin 1960 for a simple proof using CAR)

Let ©1,@3,...,p2n—1 denote linear combinations of the 's and
©5, P, - - > 5, denote linear combinations of the ¢;'s. Then we have

(120308 - P2n-102,) = 1§C!'3't§n Cij

ot T
where G j = <¢2'*1<p21> I I_J (“time-ordered correlator”).
—{p3jp2i-1) if i >

Example

For n = 2 we have

(p1903)  (p102)

“lotes) (oaet| = (p1993) - (p3pa) + (P12) - (P2¢03).

(p15030) = ’

v
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Applying Wick's lemma
We deduce that

pU) = Dl - uy ) = det ()

1<ij<n

(“time-ordering” does not matter here as —121\:‘,1;‘, = 12‘,121\:‘, for u # v).
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Applying Wick's lemma
We deduce that

pU) = Dl - uy ) = det ()

1<ij<n
(“time-ordering” does not matter here as —12;312‘, = 1;\,,12)\:‘, for u # v).
The final step is to observe that

(Yry) = Okelk<o

and therefore

(Ws7) = > Jsru(2)Jesu(2x) =t Jo(s, ).

/
u€Z>0
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Main result of “yesterday”

Theorem [Borodin-Okounkov-Olshanski 2000, Johansson 2001]

The particle configuration S(A{?)) associated with the poissonized
Plancherel measure is a determinantal point process in the sense that, for
any distinct points {uy,...,un,} C Z’, we have

P ({ul, s Upt C 5()\<9>)> = det Jo(uj, uj).

1<ij<n

The correlation kernel Jg is the discrete Bessel kernel

Jo(s, ) = D Jero(2V0) ey o(2V0),  stel

LeZL

where J, is the Bessel function of order n.
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“Today": asymptotics

Basically all we need to do is to understand the asymptotics of Jg.
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“Today": asymptotics

Basically all we need to do is to understand the asymptotics of Jg. We will
use contour integral representations:

dz
Zn+1

1 1
J,(2x) = — x(z—z71)
( X) 2im \z\:r €

Jo(s, t) = ! # =) dz - dw
T @R Mo € (2 - w)z it
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Bulk limit: discrete sine kernel
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Bulk limit: discrete sine kernel
Theorem 1 [BOO/J]

Fix A € R and consider the asymptotic regime § = x> — oo with
s,t ~ Ax and s — t fixed. Then we have

% if s =t,
sin x(s—t)

Jo(s,t) = Kgin(s — t; x) := i
(5—1) if s £ t,

where
arccos(A/2) if |A] <2,
x:=40 if A> 2,
7T if A< =2,
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Bulk limit: discrete sine kernel
Theorem 1 [BOO/J]

Fix A € R and consider the asymptotic regime § = x> — oo with
s,t ~ Ax and s — t fixed. Then we have

Jo(s,t) = Ksin(s — t; X) := {sin x(s—t)
)

where
arccos(A/2) if |A] <2,
x:=40 if A> 2,
71' if A< 2.

We deduce immediately that, if uy,..., u, are such that u; ~ Ax and
u; — uj remains fixed for all i, j, then

P ({ul, cooUpt C 5()\<9>)) — 1<di3‘t<n Kgin(ui — uj; x)-
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Connection with Vershik-Kerov-Logan-Shepp

In particular, for s = t we obtain the one-point function (particle density).

S 1.0

-3 -2 -1 1 2 3 -3 -2 -1

It is consistent with the VKLS limit shape.
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Connection with Vershik-Kerov-Logan-Shepp

In particular, for s = t we obtain the one-point function (particle density).

— 1.0 3.0

It is consistent with the VKLS limit shape.

We do not quite recover their theorem: here we do a first moment
calculation, we should also do second moment to prove concentration, and
depoissonize.

Jérémie Bouttier (CEA/ENS de Lyon) [Around the Plancherel measure on partitions 21 March 2019 27 / 28



Edge limit (A = 2): Airy kernel
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Edge limit (A = 2): Airy kernel
Theorem 2 [BOO/J]
Fix 0,7 € R and consider the asymptotic regime 6 = x> — oo with

s = 2x + ox/3 4 o(x1/3), t = 2x + 7x3 + o(x1/3).

Then we have

X3 3y(s, t) = A(0,7) == /oo Ai(o + v) Ai(T + v)dv
0

3
where Ai is the Airy function given by Ai(y) = % f§R(C)=1 e%fyCdC.
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Edge limit (A = 2): Airy kernel
Theorem 2 [BOO/J]
Fix 0,7 € R and consider the asymptotic regime 6 = x> — oo with

s = 2x + ox'/3 4 o(x*/3), t = 2x + 7x3 + o(x1/3).

Then we have

X3 3y(s, t) = A(0,7) == /OO Ai(o + v) Ai(T + v)dv
0

3
where Ai is the Airy function given by Ai(y) = % f§R(C)=1 e%fyCdC.

For the LIS problem we are interested in the gap probability

P(/\Y” < t) =det(l — Jo)qt,e41,..)
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Edge limit (A = 2): Airy kernel
Theorem 2 [BOO/J]
Fix 0,7 € R and consider the asymptotic regime 6 = x> — oo with

s = 2x + ox'/3 4 o(x*/3), t = 2x + 7x3 + o(x1/3).

Then we have

X3 3y(s, t) = A(0,7) == /OO Ai(o + v) Ai(T + v)dv
0

3
where Ai is the Airy function given by Ai(y) = % f§R(C)=1 e%fyCdC.

For the LIS problem we are interested in the gap probability

IP(/\§0> < t)=det(l = Jp)qt,e41,...) — det(l = A) (7 00) = F2(7).
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Edge limit (A = 2): Airy kernel
Theorem 2 [BOO/J]
Fix 0,7 € R and consider the asymptotic regime 6 = x> — oo with

s = 2x + ox'/3 4 o(x*/3), t = 2x + 7x3 + o(x1/3).

Then we have

X3 3y(s, t) = A(0,7) == /OO Ai(o + v) Ai(T + v)dv
0

3
where Ai is the Airy function given by Ai(y) = % f§R(C)=1 e%fygdg‘.

For the LIS problem we are interested in the gap probability

P()\§0> < t)=det(l = Jp)qt,e41,...) — det(l = A) (7 00) = F2(7).

The Baik-Deift-Johansson theorem follows by a depoissonization argument!
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