The GRAPH MOTIF problem

Guillaume Fertin

LS2N, Université de Nantes, France

March 2017

Some slides in this talk are courtesy:

- C. Komusiewicz, FS U. Jena
- F. Sikora U. Paris Dauphine

Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif

Colorful Graph Motif and parameter kColorful Graph Motif and parameter ℓ

FPT issues for Graph Motif Graph Motif and parameter *k* Graph Motif and parameter *l*

Graph Motif IRL

Conclusion

Motif Search in Texts

- Goal: search all occurrences of a motif in a text.
 - T = text, of length *n*
 - M = motif, of length m
 - M and T built on some alphabet Σ
 - ▶ typical use: m << n</p>

Motif Search in Texts

- Goal: search all occurrences of a motif in a text.
 - T = text, of length *n*
 - M = motif, of length m
 - M and T built on some alphabet Σ
 - typical use: m << n</p>
- Applications:
 - search for a word in a text editor [ctrl-f] ($|\Sigma| \sim 60 70$)

► bioinformatics: DNA ($|\Sigma| = 4$), proteins ($|\Sigma| = 20$)

Motif Search in Texts

- Goal: search all occurrences of a motif in a text.
 - T = text, of length n
 - M = motif, of length m
 - M and T built on some alphabet Σ
 - ▶ typical use: m << n</p>
- Applications:
 - search for a word in a text editor [ctrl-f] ($|\Sigma| \sim 60 70$)
 - ► bioinformatics: DNA ($|\Sigma| = 4$), proteins ($|\Sigma| = 20$)
- Algorithmics:
 - clearly polynomial (naive search w/ sliding window is in O(mn))
 - ▶ nice algorithms back from the 70s (KMP, Boyer-Moore, etc.)
 - see also e.g.

http://www-igm.univ-mlv.fr/~lecroq/string/string.pdf

Recess 1

Analysis of Algorithms

- Analysis of an algorithm, say A
- Running time of A ~ number of "elementary operations" executed by A

Recess 1

Analysis of Algorithms

- Analysis of an algorithm, say A
- Running time of A ~ number of "elementary operations" executed by A
- Elementary operation:
 - arithmetic operation (+,-,/,*), memory access, assignment, comparison
 - unit cost assumed for each

Recess 1

Analysis of Algorithms

- Analysis of an algorithm, say A
- Running time of A ~ number of "elementary operations" executed by A
- Elementary operation:
 - arithmetic operation (+,-,/,*), memory access, assignment, comparison
 - unit cost assumed for each
- Running time = f(n), function of input size *n* of the instance

O() notation

• Goal: simplify $f(n) \rightarrow g(n)$

O() notation

- Goal: simplify $f(n) \rightarrow g(n)$
- ► *f*(*n*) = *O*(*g*(*n*)) if

 $\exists c > 0, n_0 \text{ s.t. } f(n) \leq c \cdot g(n) \ \forall n \geq n_0$

• $\rightarrow g()$ is an upper bound for f()

O() notation

- Goal: simplify $f(n) \rightarrow g(n)$
- ► *f*(*n*) = *O*(*g*(*n*)) if

 $\exists c > 0, n_0 \text{ s.t. } f(n) \leq c \cdot g(n) \ \forall n \geq n_0$

- $\rightarrow g()$ is an upper bound for f()
- Roughly: take f(n), keep dominant term, remove multiplicative constant
- Example:
 - $f(n) = 7n^2 + 3n\log n + 12\sqrt{n} 7$
 - $f(n) = O(n^2)$

O() notation

- Goal: simplify $f(n) \rightarrow g(n)$
- ► *f*(*n*) = *O*(*g*(*n*)) if

 $\exists c > 0, n_0 \text{ s.t. } f(n) \leq c \cdot g(n) \ \forall n \geq n_0$

- $\rightarrow g()$ is an upper bound for f()
- Roughly: take f(n), keep dominant term, remove multiplicative constant
- Example:
 - $f(n) = 7n^2 + 3n\log n + 12\sqrt{n} 7$
 - $f(n) = O(n^2)$
- ► O() used for worst-case analysis robustness of algorithm

Motif search - naive algorithm (sliding window)

Motif search - naive algorithm (sliding window)

- each line (individually): constant number of elementary operations
- ► Lines 3. and 4. most costly: executed at worse m(n m) times
- f(n) = O(m(n-m)) = O(nm)

- species: yeast
- vertices \leftrightarrow proteins (~ 3 500)
- edges \leftrightarrow interactions (~ 11 000)

- species: yeast
- vertices \leftrightarrow proteins (~ 3 500)
- edges \leftrightarrow interactions (~ 11 000)

Goal: search one/all occurrence/s of a small graph H in a big graph G.

- ► G = target graph
- H = query graph (motif)
- ► typical use: |*V*(*H*)| << |*V*(*G*)|

Goal: search one/all occurrence/s of a small graph H in a big graph G.

- ► G = target graph
- H = query graph (motif)
- ► typical use: |*V*(*H*)| << |*V*(*G*)|

Remarks

- ► H : biologically known pathway or a complex of interest
- occurrence = induced subgraph of G isomorphic to H
- \blacktriangleright \rightarrow topology-based approach

Towards topology-free motifs

Two views for Motif Search in Graphs

- Topological view:
 - find a small graph in a big graph
 - $ightarrow \Rightarrow$ subgraph isomorphism problems

Towards topology-free motifs

Two views for Motif Search in Graphs

- Topological view:
 - find a small graph in a big graph
 - $ightarrow \Rightarrow$ subgraph isomorphism problems
- Functional view:
 - topology is less important
 - functionalities of network vertices \rightarrow governing principle
 - ▶ initiated in Lacroix, Fernandes & Sagot, IEEE/ACM TCBB 06

<ロ>9/9型><ヨ> 4 国 > 4 国 > 国 の 9 (0 型)

Topology-free motifs

Applicable in broader scenarios

- motif (pathway or complex) whose topology is not completely known
- noisy networks (missing connections)
- query between well and poorly annotated species

Functional approach

Model

- function \leftrightarrow color
- \Rightarrow graph is vertex-colored (but not properly!)

Functional approach

Model

- function \leftrightarrow color
- \Rightarrow graph is vertex-colored (but not properly!)
- motif (query): multiset of colors

Functional approach

Model

- function \leftrightarrow color
- \Rightarrow graph is vertex-colored (but not properly!)
- motif (query): multiset of colors
- motif occurs (and thus "accepted") if connected in graph

Definition (GRAPH MOTIF – LACROIX ET AL., IEEE/ACM TCBB 06) **Input:** A graph G = (V, E), a set of colors C, a coloring function $\chi : V \to C$, a motif^{*} M over C

* motif = multiset of colors whose underlying set is C.

Definition (GRAPH MOTIF – LACROIX ET AL., IEEE/ACM TCBB 06) **Input:** A graph G = (V, E), a set of colors C, a coloring function $\chi : V \to C$, a motif^{*} M over C

* motif = multiset of colors whose underlying set is C.

Question: Is there an occurrence of *M* in *G*?

Definition (GRAPH MOTIF – LACROIX ET AL., IEEE/ACM TCBB 06) **Input:** A graph G = (V, E), a set of colors C, a coloring function $\chi : V \to C$, a motif^{*} M over C

* motif = multiset of colors whose underlying set is C.

Question: Is there an occurrence of *M* in *G*?

Occurrence = subset $V' \subseteq V$ s.t.

- $\chi(V') = M$, and
- ▶ G[V'] is connected

Definition (GRAPH MOTIF – LACROIX ET AL., IEEE/ACM TCBB 06) **Input:** A graph G = (V, E), a set of colors C, a coloring function $\chi : V \to C$, a motif^{*} M over C

* motif = multiset of colors whose underlying set is C.

Question: Is there an occurrence of *M* in *G*?

Occurrence = subset $V' \subseteq V$ s.t.

- $\chi(V') = M$, and
- ► G[V'] is connected

Note: if $\chi : V \to C'$ with $C \subseteq C'$, pre-process *G* by deleting vertices $u \in V(G)$ s.t. $\chi(u) \notin C$

Example

Example

Example

Applications

- metabolic networks analysis [Lacroix, Fernandes & Sagot, IEEE/ACM TCBB 06]
- ▶ PPI networks analysis [BRUCKNER ET AL., J. COMP. BIOL. 10]

Applications

- metabolic networks analysis [Lacroix, Fernandes & Sagot, IEEE/ACM TCBB 06]
- ▶ PPI networks analysis [BRUCKNER ET AL., J. COMP. BIOL. 10]
- mass spectrometry (identification of metabolites) [BÖCKER & RASCHE, BIOINFORMATICS 08]

Applications

- metabolic networks analysis [Lacroix, Fernandes & Sagot, IEEE/ACM TCBB 06]
- ▶ PPI networks analysis [BRUCKNER ET AL., J. COMP. BIOL. 10]
- mass spectrometry (identification of metabolites) [BÖCKER & RASCHE, BIOINFORMATICS 08]
- ► also study of social networks [PINTER-WOLLMAN ET AL., BEHAVIORAL ECOLOGY 14]

A well-studied problem

► GRAPH MOTIF widely studied: ~150 citations for seminal paper in 11 years (source: Google Scholar)

A well-studied problem

- ► GRAPH MOTIF widely studied: ~150 citations for seminal paper in 11 years (source: Google Scholar)
- Many variants (...too many ?), e.g.:
 - approximate motif
 - connectivity of an occurrence
 - list-colored vertices
GRAPH MOTIF

A well-studied problem

- ► GRAPH MOTIF widely studied: ~150 citations for seminal paper in 11 years (source: Google Scholar)
- Many variants (...too many ?), e.g.:
 - approximate motif
 - connectivity of an occurrence
 - list-colored vertices
- Several software (a handful): Motus, Torque, GraMoFoNe, PINQ, etc.

◆□▶15/9野▶ ◆□▶ ◆□▶ □ ● のへで

GRAPH MOTIF

A well-studied problem

- ► GRAPH MOTIF widely studied: ~150 citations for seminal paper in 11 years (source: Google Scholar)
- Many variants (...too many ?), e.g.:
 - approximate motif
 - connectivity of an occurrence
 - list-colored vertices
- Several software (a handful): Motus, Torque, GraMoFoNe, PINQ, etc.

This talk

- ► Algorithmic results for GRAPH MOTIF: a guided tour
- Multiplicity of proof techniques: classical, ad hoc, imported from other contexts

G. Fertin

Some notations

- ► M^{*} = underlying set of M
- *M* is colorful if $M^* = M$

Some notations

- ► M^{*} = underlying set of M
- *M* is colorful if $M^* = M$
- <u>COLORFUL</u> GRAPH MOTIF (or CGM): restriction of GRAPH MOTIF to colorful motifs

Some notations

- ► M^{*} = underlying set of M
- *M* is colorful if $M^* = M$
- <u>COLORFUL</u> GRAPH MOTIF (or CGM): restriction of GRAPH MOTIF to colorful motifs
- $\mu(G, c)$ = number of vertices having color c in G
- $\mu(G) = \max\{\mu(G, c) : c \in C\}$

Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif

Colorful Graph Motif and parameter kColorful Graph Motif and parameter ℓ

FPT issues for Graph Motif Graph Motif and parameter *k* Graph Motif and parameter *l*

Graph Motif IRL

Conclusion

GRAPH MOTIF: first results

Theorem (LACROIX ET AL., IEEE/ACM TCBB 06) GRAPH MOTIF *is* NP-complete <u>even if G is a tree</u>.

Did you say NP-complete ?

Algorithmic complexity of Problems

Pb=a problem, n=size of the input

Did you say NP-complete ?

Algorithmic complexity of Problems

- Pb=a problem, n=size of the input
- ▶ *Pb* is tractable if solvable in $O(n^c)$ (*c*=constant) \Rightarrow *Pb* \in **P**

Did you say NP-complete ?

Algorithmic complexity of Problems

- Pb=a problem, n=size of the input
- ▶ *Pb* is tractable if solvable in $O(n^c)$ (*c*=constant) \Rightarrow *Pb* \in **P**
- ► *Pb* is intractable if no $O(n^c)$ algo. exists for solving it \Rightarrow *Pb* \notin **P**

Did you say NP-complete ?

Algorithmic complexity of Problems

- Pb=a problem, n=size of the input
- ▶ *Pb* is tractable if solvable in $O(n^c)$ (*c*=constant) \Rightarrow *Pb* \in **P**

- ► *Pb* is intractable if no $O(n^c)$ algo. exists for solving it \Rightarrow *Pb* \notin **P**
- very often: we do not know

Very often:

- cannot prove $Pb \in \mathbf{P}$
- cannot prove $Pb \notin \mathbf{P}$

Very often:

- cannot prove $Pb \in \mathbf{P}$
- cannot prove $Pb \notin \mathbf{P}$

Meanwhile...

New class: NP-complete

- Idea: identify the most difficult such problems
- Pb is NP-complete if reduction from another NP-complete problem applies

Very often:

- cannot prove $Pb \in \mathbf{P}$
- cannot prove $Pb \notin \mathbf{P}$

Meanwhile...

New class: NP-complete

- Idea: identify the most difficult such problems
- Pb is NP-complete if reduction from another NP-complete problem applies

<ロ>20/9型ト < ヨト < ヨト = ヨ の < ペ

In this talk I will deliberately not discuss NP-hard vs NP-complete

- ▶ Two problems: *Pb* and *Pb'*
- ► *Pb* and *Pb'* are decision problems (answer: YES/NO)
- ► *Pb'* is known to be **NP**-complete

- ▶ Two problems: *Pb* and *Pb'*
- ► *Pb* and *Pb'* are decision problems (answer: YES/NO)
- ► *Pb'* is known to be **NP**-complete
- ► For any instance I' of Pb'

- ▶ Two problems: *Pb* and *Pb'*
- ► Pb and Pb' are decision problems (answer: YES/NO)
- ► *Pb'* is known to be **NP**-complete
- ► For any instance I' of Pb'
- build in polynomial time a specific instance I of Pb

- ▶ Two problems: *Pb* and *Pb'*
- ► *Pb* and *Pb'* are decision problems (answer: YES/NO)
- ► *Pb'* is known to be **NP**-complete
- ► For any instance I' of Pb'
- build in polynomial time a specific instance I of Pb
- YES for $I \Leftrightarrow$ YES for I'

Meaning of all this

► If reduction applies, *Pb* is at least as hard as *Pb'*

Meaning of all this

- ► If reduction applies, *Pb* is at least as hard as *Pb'*
- ▶ $Pb \in \mathbf{P} \Rightarrow Pb' \in \mathbf{P}$ (using reduction)

Meaning of all this

- ► If reduction applies, *Pb* is at least as hard as *Pb'*
- ▶ $Pb \in \mathbf{P} \Rightarrow Pb' \in \mathbf{P}$ (using reduction)
- ightarrow
 ightarrow
 m NP-complete = class of hardest such problems

<□ >22/9型 > < □ > < □ > □ □ > つへへ

- problems in NP-complete thought not to be polynomial-time solvable
- but remains unknown (cf "P = NP ?")

GRAPH MOTIF: first results

Theorem (LACROIX ET AL., IEEE/ACM TCBB 06) GRAPH MOTIF *is* NP-complete <u>even if G is a tree</u>. **Theorem (**LACROIX ET AL., IEEE/ACM TCBB 06) GRAPH MOTIF *is* **NP***-complete even if G is a tree.*

► Reduction from EXACT COVER BY 3-SETS

Theorem (LACROIX ET AL., IEEE/ACM TCBB 06) GRAPH MOTIF *is* **NP***-complete even if G is a tree.*

- Reduction from EXACT COVER BY 3-SETS
- Proof does not hold for COLORFUL GRAPH MOTIF
- ► IS COLORFUL GRAPH MOTIF any "simpler" ?

GRAPH MOTIF: bad news

Theorem (Fellows, F., Hermelin & Vialette, J. COMPUT. Syst. Sci. 07) COLORFUL GRAPH MOTIF *is* NP*-complete even when:*

- G is a tree and
- ▶ G has maximum degree 3 and
- $\mu(G) = 3$

- \blacktriangleright Boolean formula Φ
 - set $X = \{x_1, x_2 \dots x_n\}$ of boolean variables
 - clauses $c_1, c_2 \dots c_m$, each c_i built from X

A detour by SAT

- \blacktriangleright Boolean formula Φ
 - set $X = \{x_1, x_2 \dots x_n\}$ of boolean variables
 - clauses $c_1, c_2 \dots c_m$, each c_i built from X
- Conjunctive Normal Form (CNF):
 - each clause c_i contains only logical OR (\lor)
 - Φ contains clauses connected by logical AND only (\wedge)

◆□→25/9型→ ◆ヨ→ ◆ヨ→ ヨー のへへ

A detour by SAT

- \blacktriangleright Boolean formula Φ
 - set $X = \{x_1, x_2 \dots x_n\}$ of boolean variables
 - clauses $c_1, c_2 \dots c_m$, each c_i built from X
- Conjunctive Normal Form (CNF):
 - each clause c_i contains only logical OR (\lor)
 - Φ contains clauses connected by logical AND only (\wedge)

Example:

$$\Phi = (\mathbf{x}_1 \lor \mathbf{x}_2 \lor \mathbf{x}_3) \land (\overline{\mathbf{x}_1} \lor \mathbf{x}_2 \lor \overline{\mathbf{x}_3}) \land (\mathbf{x}_1 \lor \overline{\mathbf{x}_2} \lor \overline{\mathbf{x}_3})$$

◆□→25/9型→ ◆ヨ→ ◆ヨ→ ヨー のへへ

- variable: x_i
- literal: x_i or $\overline{x_i}$

- variable: x_i
- literal: x_i or $\overline{x_i}$

•
$$\Phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$$

- variable: x_i
- literal: x_i or $\overline{x_i}$
- $\Phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$
- Goal: satisfy Φ
 - assign TRUE/FALSE to each x_i
 - s.t. Φ evaluates to TRUE, i.e.
 - each clause evaluates to TRUE
 - in each clause, at least one literal evaluates to TRUE

Definition (SAT)

Input: a boolean formula Φ in CNF, built on $X = \{x_1, x_2 \dots x_n\}$. **Question:** Is there an assignment TRUE/FALSE of each x_i s.t. Φ is satisfied ?

Definition (SAT)

Input: a boolean formula Φ in CNF, built on $X = \{x_1, x_2 \dots x_n\}$. **Question:** Is there an assignment TRUE/FALSE of each x_i s.t. Φ is satisfied ?

SAT is NP-complete (classical result)

3-SAT-x

Many constrained versions of SAT are NP-complete, e.g.:

- each clause of Φ contains at most 3 literals, and
- each variable appears in at most 3 clauses, and
- each literal appears in at most 2 clauses

3-SAT-x

Many constrained versions of SAT are NP-complete, e.g.:

- each clause of Φ contains at most 3 literals, and
- each variable appears in at most 3 clauses, and
- each literal appears in at most 2 clauses

 $\Phi = (\mathbf{x}_1 \lor \mathbf{x}_2 \lor \mathbf{x}_3) \land (\overline{\mathbf{x}_1} \lor \mathbf{x}_2 \lor \overline{\mathbf{x}_3}) \land (\mathbf{x}_1 \lor \overline{\mathbf{x}_2} \lor \overline{\mathbf{x}_3})$

variable x_3 , literal $\overline{x_3}$

From any instance of 3-SAT-x to an instance of CGM

- from $\Phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$
- construct graph G as above
- $M = \{1, 2, ..., n, 1', 2, ..., n', x_1, x_2, ..., x_n, c_1, c_2, ..., c_m\}$
Reduction from 3-SAT-x to CGM

From any instance of 3-SAT-x to an instance of CGM

- ► G is a tree of maximum degree 3 (literal appears in ≥ 2 clauses)
- $\mu(G) = 3$ (clause contains ≤ 3 literals)
- M is colorful

Reduction from 3-SAT-x to CGM

From any instance of 3-SAT-x to an instance of CGM

- ► G is a tree of maximum degree 3 (literal appears in ≥ 2 clauses)
- $\mu(G) = 3$ (clause contains ≤ 3 literals)
- M is colorful

Equivalence YES/NO answer

- (\Rightarrow) Pick color x_i corresponding to assignment
- ► (⇐) Pick vertices x_i and c_j corresponding to occurrence of motif

GRAPH MOTIF: bad news

Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07) COLORFUL GRAPH MOTIF *is* **NP***-complete even when:*

- G is a tree and
- G has maximum degree 3 and

•
$$\mu(G) = 3$$

GRAPH MOTIF: bad news

Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07) COLORFUL GRAPH MOTIF *is* **NP***-complete even when:*

- G is a tree and
- G has maximum degree 3 and
- $\mu(G) = 3$
- ▶ Restrictions on *G* and $\mu(G) \rightarrow NP$ -complete
- What if M uses few colors ?

GRAPH MOTIF: more bad news

Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07) GRAPH MOTIF *is* **NP**-*complete even when:*

- ► G is bipartite and
- ▶ G has maximum degree 4 and
- ► |*M**| = 2
- Reduction from EXACT COVER BY 3-SETS

GRAPH MOTIF: any polynomial case... please ?

Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07) GRAPH MOTIF *is in* **P** *whenever G is a tree and* $\mu(G) = 2$.

Equivalence with 2-SAT

 $(x_4 \Rightarrow \overline{x_5})$

< □→34/95 → < E → < E →

1

$$(\overline{x_3} \Rightarrow x_1) \land (x_5 \Rightarrow x_1) \land (x_3 \Rightarrow \overline{x_2}) \land (x_2 \Rightarrow \overline{x_1}) \land \dots$$

2-SAT formula as $(A \Rightarrow B) \Leftrightarrow (\overline{B} \lor A)$

Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif

Colorful Graph Motif and parameter kColorful Graph Motif and parameter ℓ

FPT issues for Graph Motif Graph Motif and parameter *k* Graph Motif and parameter *l*

Graph Motif IRL

Conclusion

Remarks

 motifs tend to be small in practice (compared to the target graph)

Remarks

- motifs tend to be small in practice (compared to the target graph)
- $\blacktriangleright \rightarrow$ Question 1: algorithm whose running time is
 - polynomial in n = |V(G)| and
 - exponential in k = |M|?

Remarks

- motifs tend to be small in practice (compared to the target graph)
- $\blacktriangleright \rightarrow$ Question 1: algorithm whose running time is
 - polynomial in n = |V(G)| and
 - exponential in k = |M|?
- $\blacktriangleright \rightarrow$ Question 2: algorithm whose running time is
 - polynomial in n = |V(G)| and
 - exponential in $c = |M^*|$?

Remarks

- motifs tend to be small in practice (compared to the target graph)
- $\blacktriangleright \rightarrow$ Question 1: algorithm whose running time is
 - polynomial in n = |V(G)| and
 - exponential in k = |M|?
- $\blacktriangleright \rightarrow$ Question 2: algorithm whose running time is
 - polynomial in n = |V(G)| and
 - exponential in $c = |M^*|$?

Fixed Parameterized Tractability (FPT) issues

Definition (Fixed-parameter tractability)

A problem *P* is fixed-parameter tractable (FPT) w.r.t. parameter k if it can be solved in time

 $O(f(k) \cdot poly(n))$

- f: any computable function depending only on k
- n: size of the input
- *poly(n)*: any polynomial function of *n*

Definition (Fixed-parameter tractability)

A problem *P* is fixed-parameter tractable (FPT) w.r.t. parameter k if it can be solved in time

 $O(f(k) \cdot poly(n))$

- f: any computable function depending only on k
- n: size of the input
- ▶ poly(n): any polynomial function of n
- complexity also noted $O^*(f(k))$ (hidden polynomial factor)
- $\blacktriangleright \rightarrow$ corresponding complexity class: FPT

$\label{eq:period} \begin{array}{l} \text{Definition (Parameterized hierarchy)} \\ \text{FPT} \subseteq \text{W[1]} \subseteq \text{W[2]} \subseteq \ldots \subseteq \text{XP} \end{array}$

$\begin{array}{l} \text{Definition (Parameterized hierarchy)} \\ \text{FPT} \subseteq \text{W[1]} \subseteq \text{W[2]} \subseteq \ldots \subseteq \text{XP} \end{array}$

In a nutshell

 FPT problems: (hopefully) efficiently solvable for small values of parameter

$\begin{array}{l} \text{Definition (Parameterized hierarchy)} \\ \text{FPT} \subseteq \text{W[1]} \subseteq \text{W[2]} \subseteq \ldots \subseteq \text{XP} \end{array}$

In a nutshell

- FPT problems: (hopefully) efficiently solvable for small values of parameter
- W[1]: first class of problems not believed to be in FPT
- W[1]-complete vs $\mathbf{FPT} \leftrightarrow \mathbf{NP}$ -complete vs \mathbf{P}

FPT: an ever-growing topic

Monographs

- R.G. Downey, M. R. Fellows Parameterized Complexity Springer-Verlag, 1999.
- H. Fernau Parameterized Algorithmics: A Graph-Theoretic Approach. 2005. Free download at

http://www.informatik.uni-trier.de/~fernau/papers/habil.pdf

- J. Flum and M. Grohe. Parameterized Complexity Theory Springer-Verlag, 2006.
- R. Niedermeier Invitation to Fixed-Parameter Algorithms Oxford University Press, 2006.
- R.G. Downey, M. R. Fellows Fundamentals of Parameterized Complexity – Springer-Verlag, 2013.
- M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh – Parameterized Algorithms – Springer-Verlag, 2015.

FPT: an ever-growing topic

Monographs

- R.G. Downey, M. R. Fellows Parameterized Complexity Springer-Verlag, 1999.
- H. Fernau Parameterized Algorithmics: A Graph-Theoretic Approach. 2005. Free download at

http://www.informatik.uni-trier.de/~fernau/papers/habil.pdf

- J. Flum and M. Grohe. Parameterized Complexity Theory Springer-Verlag, 2006.
- R. Niedermeier Invitation to Fixed-Parameter Algorithms Oxford University Press, 2006.
- R.G. Downey, M. R. Fellows Fundamentals of Parameterized Complexity – Springer-Verlag, 2013.
- M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh – Parameterized Algorithms – Springer-Verlag, 2015.
- Dedicated website http://fpt.wikidot.com/

 Dynamic Programming (table size and computation exponential in paramater only)

- Dynamic Programming (table size and computation exponential in paramater only)
- Bounded Search Tree: test all possible cases, show there are O(f(k) such cases

- Dynamic Programming (table size and computation exponential in paramater only)
- Bounded Search Tree: test all possible cases, show there are O(f(k) such cases
- ► Kernelization: (I, k) → (I', k') with same solution, I' solvable in O(f(k) · poly(n))
- Iterative Compression

- Dynamic Programming (table size and computation exponential in paramater only)
- Bounded Search Tree: test all possible cases, show there are O(f(k) such cases
- ► Kernelization: (I, k) → (I', k') with same solution, I' solvable in O(f(k) · poly(n))
- Iterative Compression
- Color-Coding
- etc.

GRAPH MOTIF and FPT: which parameters ?

The choice is yours

- Size of the motif k = |M| = solution size
 - \rightarrow classical parameter

GRAPH MOTIF and FPT: which parameters ?

The choice is yours

- Size of the motif k = |M| = solution size \rightarrow classical parameter
- ► Number of colors of the motif c = |M*| Remark: c ≤ k (k = c for COLORFUL GRAPH MOTIF) thus "stronger" than k

GRAPH MOTIF and FPT: which parameters ?

The choice is yours

- Size of the motif k = |M| = solution size \rightarrow classical parameter
- ► Number of colors of the motif c = |M*| Remark: c ≤ k (k = c for COLORFUL GRAPH MOTIF) thus "stronger" than k
- ► Dual parameter l = n k (with n = |V(G)|) Dual = number of vertices *not* in the solution

Dual parameter $\ell = n - k$ is probably large... but:

- Reduction rules \rightarrow smaller components in which $\ell \sim k$
- Worst case running time vs experimental running time
- ► Current-best algorithms for some subgraph mining problems use ℓ (HARTUNG ET AL., JGAA 15)

Reminder: $c = |M^*|$ =#colors in *M*

Reminder: $c = |M^*|$ =#colors in M

Theorem (Fellows, F., Hermelin & Vialette, J. COMPUT. Syst. Sci. 07) GRAPH MOTIF *is* **W[1]**-*complete when parameterized by c, even in trees.*

Reminder: $c = |M^*|$ =#colors in M

Theorem (Fellows, F., Hermelin & Vialette, J. COMPUT. Syst. Sci. 07) GRAPH MOTIF *is* **W[1]**-*complete when parameterized by c, even in trees.*

Reduction from CLIQUE

Reminder: $c = |M^*|$ =#colors in M

Theorem (Fellows, F., Hermelin & Vialette, J. COMPUT. Syst. Sci. 07) GRAPH MOTIF *is* **W[1]**-*complete* when parameterized by *c*, even in trees.

- Reduction from CLIQUE
- \Rightarrow *c* can be discarded for GRAPH MOTIF
- ► In proof of theorem, motif *M* is not colorful
- ... but in COLORFUL GRAPH MOTIF: c = k
- ightarrow c useless for Colorful Graph Motif
GRAPH MOTIF and CGM: FPT issues

Rest of the talk

- We are left with k and ℓ
- ► First COLORFUL GRAPH MOTIF (or CGM)
- Then GRAPH MOTIF

Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif Colorful Graph Motif and parameter *k* Colorful Graph Motif and parameter *l*

FPT issues for Graph Motif Graph Motif and parameter k Graph Motif and parameter l

Graph Motif IRL

Conclusion

G. Fertin

Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07) COLORFUL GRAPH MOTIF *is solvable in* $O^*(64^k)$ *time.*

Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07) COLORFUL GRAPH MOTIF *is solvable in* $O^*(64^k)$ *time.*

Remarks

- Deterministic (Dynamic Programming)
- Exponential space
- Proof of concept!

Theorem (BETZLER ET AL., CPM 08)

COLORFUL GRAPH MOTIF is solvable in $O^*(3^k)$ time.

Remarks

- Simpler (and faster) version of previous result
- Deterministic (Dynamic Programming)
- Exponential space $O^*(2^k)$
- ► Adapted from [SCOTT ET AL., J. COMP. BIOL. 06]

Key elements of Dynamic programming algorithm

- Boolean table B(v, S) with
 - ► v a vertex of G
 - ► S a subset of M
- B(v, S)=TRUE if there is in G a colorful subtree T
 - v is the root of T
 - colors of T "agree" with S

Key elements of Dynamic programming algorithm

For any S s.t.
$$|S| = 1$$

 $B(v, S) = \begin{cases} TRUE & \text{if } S = \{\chi(v)\} \\ FALSE & \text{otherwise} \end{cases}$

$$B(\mathbf{v}, S) = \bigvee_{\substack{u \in N(\mathbf{v}) \\ S_1 \uplus S_2 = S \\ \chi(\mathbf{v}) \in S_1, \chi(u) \in S_2}} B(\mathbf{v}, S_1) \land B(u, S_2)$$

 $O^*(3^k) \rightarrow \text{all 3-partitions of a set of size } k$

G. Fertin

The Graph Motif problem

<ロ>49/95 > < E > < E > E の Q ()

Theorem (Guillemot & Sikora, Algorithmica 13) COLORFUL GRAPH MOTIF *is solvable in O**(2^k) *time.*

Remarks

- Randomized
- Polynomial space
- Uses the "Multilinear Detection" technique (2010)

A detour by polynomials

P(X) = a polynomial built on a set $X = \{x_1, x_2 \dots x_p\}$ of variables

- ► a monomial *m* in *P*(*X*) is multilinear if each variable in *m* occurs at most once
- degree of a multilinear monomial = number of its variables
- example:

$$P(X) = x_1^2 x_3 x_5 + x_1 x_2 x_4 x_6$$

- $x_1 x_2 x_4 x_6$: multilinear monomial of degree 4
- $x_1^2 x_3 x_5$: not a multilinear monomial

A detour by arithmetic circuits

- arithmetic circuit C over a set X of variables = DAG s.t.
 - ► internal nodes are the operations × or +,
 - leaves are variables from X
- ▶ polynomial $P(X) \rightarrow$ arithmetic circuit *C* over *X*

A detour by arithmetic circuits

- arithmetic circuit C over a set X of variables = DAG s.t.
 - ► internal nodes are the operations × or +,
 - leaves are variables from X
- ▶ polynomial $P(X) \rightarrow$ arithmetic circuit *C* over *X*
- Example: $P(X) = (x_1 + x_2 + x_3)(x_3 + x_4 + x_5)$

Multilinear Detection problem

<u>Problem ISML-k</u>: given an arithmetic circuit *C*, determine whether P(X) contains a multilinear monomial of degree *k*

Theorem (KOUTIS & WILLIAMS,ICALP 09) ISML-k is solvable in $O^*(2^k)$ time using polynomial space.

Multilinear Detection problem

<u>Problem ISML-k</u>: given an arithmetic circuit *C*, determine whether P(X) contains a multilinear monomial of degree *k*

Theorem (KOUTIS & WILLIAMS, ICALP 09)

ISML-k is solvable in $O^*(2^k)$ time using polynomial space.

Remarks

- Randomized algorithm
- ► If *C* is an arithmetic circuit representing *P*:
 - ▶ Running time: poly. factor depends on #arcs of C
 - Space: depends on #internal nodes of C

$O^*(2^k)$ algorithm for CGM

Build polynomial as follows:

- variables \leftrightarrow colors in *M*
- monomial \leftrightarrow colors in a *k*-node subtree of *G*

 \Rightarrow multilinear monomial of degree $k \leftrightarrow$ colorful k-node subtree in G

$O^*(2^k)$ algorithm for CGM

Build polynomial as follows:

- variables \leftrightarrow colors in *M*
- monomial \leftrightarrow colors in a *k*-node subtree of *G*

 \Rightarrow multilinear monomial of degree $k \leftrightarrow$ colorful k-node subtree in G

- ▶ if circuit size polynomial in *k* and input size
- then algorithm in $O^*(2^k)$ for CGM

$$P_{1,u} = x_{\chi(u)}$$

$$P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}$$

$$P = \sum_{u \in V(G)} P_{k,u}$$

(Partial) computation of
$$P_{3,u}$$
 ($k = 3$)

$$P_{1,u} = x_{\chi(u)}$$

$$P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}$$

$$P = \sum_{u \in V(G)} P_{k,u}$$

(Partial) computation of
$$P_{3,u}$$
 (*k* = 3)
 $P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + ...$

$$P_{1,u} = x_{\chi(u)}$$

$$P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}$$

$$P = \sum_{u \in V(G)} P_{k,u}$$

(Partial) computation of $P_{3,u}$ (k = 3) $P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + \dots$ $= x_R \cdot (P_{2,v} + P_{2,w}) + \dots$

$$P_{1,u} = x_{\chi(u)}$$

$$P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}$$

$$P = \sum_{u \in V(G)} P_{k,u}$$

(Partial) computation of
$$P_{3,u}$$
 ($k = 3$)
 $P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + \dots$
 $= x_R \cdot (P_{2,v} + P_{2,w}) + \dots$
 $= x_R \cdot (x_Y \cdot (P_{1,u} + P_{1,w} + P_{1,t}) + P_{2,w}) + \dots$

$$P_{1,u} = x_{\chi(u)}$$

$$P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}$$

$$P = \sum_{u \in V(G)} P_{k,u}$$

(Partial) computation of $P_{3,u}$ (k = 3) $P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + \dots$ $= x_R \cdot (P_{2,v} + P_{2,w}) + \dots$ $= x_R \cdot (x_Y \cdot (P_{1,u} + P_{1,w} + P_{1,t}) + P_{2,w}) + \dots$ $= x_R \cdot (x_Y \cdot (x_R + x_R + x_B) + P_{2,w}) + \dots$

$$P_{1,u} = x_{\chi(u)}$$

$$P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}$$

$$P = \sum_{u \in V(G)} P_{k,u}$$

(Partial) computation of
$$P_{3,u}$$
 ($k = 3$)
 $P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + \dots$
 $= x_R \cdot (P_{2,v} + P_{2,w}) + \dots$
 $= x_R \cdot (x_Y \cdot (P_{1,u} + P_{1,w} + P_{1,t}) + P_{2,w}) + \dots$
 $= x_R \cdot (x_Y \cdot (x_R + x_R + x_B) + P_{2,w}) + \dots$
 $= x_R \cdot (x_Y \cdot x_R + x_Y \cdot x_R + x_Y \cdot x_B + P_{2,w}) + \dots$

٠

$$P_{1,u} = x_{\chi(u)}$$

$$P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}$$

$$P = \sum_{u \in V(G)} P_{k,u}$$

(Partial) computation of
$$P_{3,u}$$
 ($k = 3$)
 $P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + \dots$
 $= x_R \cdot (P_{2,v} + P_{2,w}) + \dots$
 $= x_R \cdot (x_Y \cdot (P_{1,u} + P_{1,w} + P_{1,t}) + P_{2,w}) + \dots$
 $= x_R \cdot (x_Y \cdot (x_R + x_R + x_B) + P_{2,w}) + \dots$
 $= x_R \cdot (x_Y \cdot x_R + x_Y \cdot x_R + x_Y \cdot x_B + P_{2,w}) + \dots$
 $= x_R x_Y x_R + x_R x_Y x_R + x_R x_Y x_B + \dots$

The Graph Motif problem

<□▶55/99 ▶ < ≧ ▶ < ≧ ▶ Ξ ∽ へへ

Can we do better than $O^*(2^k)$?

Can we do better than $O^*(2^k)$?

Theorem (BJÖRKLUND ET AL., ALGORITHMICA 15) Under SeCoCo^{*}, COLORFUL GRAPH MOTIF cannot be solved in $O^*((2 - \epsilon)^k)$ time, $\epsilon > 0$.

*SeCoCo = SET COVER Conjecture [CYGAN ET AL., CCC 12]:

if $\mathbf{P} \neq \mathbf{NP}$, for any $\epsilon > 0$, SET COVER cannot be solved in $O^*((2 - \epsilon)^p)$ where p = |U| is the size of the universe

Reduction

- SET COVER:
 - $U = \{x_1, x_2 \dots x_n\}$
 - $\blacktriangleright S = \{S_1, S_2 \dots S_m\}$
 - ► integer t

Reduction

- SET COVER:
 - $U = \{x_1, x_2 \dots x_n\}$
 - $\blacktriangleright S = \{S_1, S_2 \dots S_m\}$
 - ► integer t
- ► CGM:
 - ► Graph G
 - $V(G) = \{r\} \cup U \cup \{s_i^j : i \in [m], j \in [t]\}$
 - ► *r* connected to every s_j^i , x_p connected to all s_j^i s.t. $x_p \in S_i$
 - ► colors: $x_i \rightarrow c_i$, $r \rightarrow c_{n+1}$, $s_i^j = c_{n+1+j}$ ($i \in [m], j \in [t]$)
 - Motif $M = \{c_1, c_2 \dots c_{n+t+1}\}$ (thus k = n + t + 1)

 $O^*((2-\epsilon)^k)$ for CGM $\Rightarrow O^*((2-\epsilon)^{n+t})$ for Set Cover [Cygan et al., CCC 12]: $O^*((2-\epsilon)^{n+t})$ for Set Cover $\Rightarrow O^*((2-\epsilon')^n)$ for Set Cover

Summary: COLORFUL GRAPH MOTIF w.r.t. k

Complexity	Technique	Algorithm	Space
$O^*(64^k)$	Dyn. Prog.	Det.	Exp.
$O^{*}(3^{k})$	Dyn. Prog.	Det.	Exp.
O *(2 ^{<i>k</i>})	Multilinear Det.	Random	Poly.
no $O^*((2-\epsilon)^k)$			

Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif Colorful Graph Motif and parameter *k* Colorful Graph Motif and parameter *l*

FPT issues for Graph Motif Graph Motif and parameter k Graph Motif and parameter l

Graph Motif IRL

Conclusion

G. Fertin

Reminder: $\ell = n - k$ (=#nodes not kept in solution) **Theorem (**BETZLER ET AL., IEEE/ACM TCBB 11) CGM *is solvable in O**(2^{ℓ}) *time.*

Bounded Search Tree

Algorithm Analysis

- at least 1 vertex removed at each step
- $\blacktriangleright \rightarrow$ height of tree at most ℓ
- 2 choices per step
- $\rightarrow 2^{\ell}$ possibilities
- each leaf: colorful graph
- if one such graph is of order k and connected, return YES, otherwise NO

◆□→62/9型→ ◆ヨ→ ◆ヨ→ ヨー のへへ

Algorithm Analysis

- at least 1 vertex removed at each step
- $\blacktriangleright \ \rightarrow$ height of tree at most ℓ
- 2 choices per step
- $\rightarrow 2^{\ell}$ possibilities
- each leaf: colorful graph
- if one such graph is of order k and connected, return YES, otherwise NO

Can we do better ?

FPT lower bound for CGM and ℓ

Theorem (F. & KOMUSIEWICZ, CPM'16) Under SETH*, CGM cannot be solved in $O^*((2 - \epsilon)^{\ell})$ time, $\epsilon > 0$.

* SETH = Strong Exponential Time Hypothesis [IMPAGLIAZZO ET AL., JCSS 01]: if $\mathbf{P} \neq \mathbf{NP}$, for any $\epsilon > 0$, CNF-SAT cannot be solved in $O^*((2 - \epsilon)^p)$, with p=number of variables of CNF formula
Reduction from CNF-SAT with $\ell = p$

$$F = (x \vee \overline{y} \vee z) \land (y \vee \overline{z})$$

<□→64/95→ < ≣ > < ≣ >

∃ \$\\$<</p>\$\\$

Reduction from CNF-SAT with $\ell = p$

$$F = (x \vee \overline{y} \vee z) \land (y \vee \overline{z})$$

<□>64/95 → < 注 → < 注 → 注 の へ ()

Reduction from CNF-SAT with $\ell = p$

$$F = (x \vee \overline{y} \vee z) \land (y \vee \overline{z})$$

Reduction from CNF-SAT with $\ell = p$

$$F = (x \vee \overline{y} \vee z) \land (y \vee \overline{z})$$

<□>64/95→ < 注→ < 注→ 注 のへで

CGM and ℓ for trees

Theorem (F. & KOMUSIEWICZ, CPM'16) CGM *in trees is solvable in* $O^*(\sqrt{2}^{\ell})$ *time.*

Kernelization

- Use reduction rules
- ► Instance $(T, M) \rightarrow (T', M')$ with same answer YES/NO
- Reduced instance (T', M') called kernel
- If size of kernel = $O(f(\ell))$ then FPT in ℓ

Kernelization

- Use reduction rules
- ▶ Instance $(T, M) \rightarrow (T', M')$ with same answer YES/NO
- Reduced instance (T', M') called kernel
- If size of kernel = $O(f(\ell))$ then FPT in ℓ

Theorem (F. & Komusiewicz, CPM'16)

CGM in trees admits a kernel of size $2\ell + 1$.

T = the input tree

Definition

A vertex is unique if no other vertex has the same color in T

Observation: at most 2ℓ vertices are not unique in T.

T = the input tree

Definition

A vertex is unique if no other vertex has the same color in T

Observation: at most 2ℓ vertices are not unique in T.

- ► C^+ = set of colors occuring more than once in C; $|C^+| = c^+$
- ► $n^+ = \sum_{c \in C^+} \mu(T, c)$; n^- = # non-unique vertices

T = the input tree

Definition

A vertex is unique if no other vertex has the same color in T

Observation: at most 2ℓ vertices are not unique in *T*.

- ► C^+ = set of colors occuring more than once in C; $|C^+| = c^+$
- ► $n^+ = \sum_{c \in C^+} \mu(T, c)$; n^- = # non-unique vertices

►
$$n = n^+ + n^-$$

$$|M| = c^+ + n^-$$

 $\blacktriangleright \ \ell = n - |M| \Rightarrow \ell = n^+ - c^+$

T = the input tree

Definition

A vertex is unique if no other vertex has the same color in T

Observation: at most 2ℓ vertices are not unique in T.

►
$$C^+$$
= set of colors occuring more than once in C ; $|C^+| = c^+$

•
$$n^+ = \sum_{c \in C^+} \mu(T, c)$$
; n^- = # non-unique vertices

$$n = n^+ + n^-$$

$$|M| = c^+ + n^-$$

$$\ell = n - |M| \Rightarrow \ell = n^+ - c^+$$

$$n^+ \ge 2c^+ \Rightarrow \ell \ge \frac{n^+}{2}$$

Þ

- root T at arbitray unique vertex r
- if all vertices non-unique $\rightarrow l \geq \frac{n}{2}$ and kernel already exists

- root T at arbitray unique vertex r
- if all vertices non-unique $\rightarrow \ell \geq \frac{n}{2}$ and kernel already exists

Definition

- pendant subtree of root v: contains all descendants of v.
- pendant non-unique subtrees: maximal pendant subtrees in which no vertex is unique

- Left: input instance w/ pendant non-unique subtrees
- Middle: after Phase I, all vertices on paths between unique vertices are contracted into r.
- Right: after Phase II, all vertices with a color that was removed in Phase I are removed together with their descendants.

CGM and ℓ for trees

- Phases I and II: reduction rules
- After application: root r + non-unique vertices only

CGM and ℓ for trees

- Phases I and II: reduction rules
- After application: root r + non-unique vertices only
- ▶ by Observation, # non-unique vertices $\leq 2\ell$
- $\blacktriangleright \Rightarrow$ new tree with $\leq 2\ell+1$ vertices

Summary: COLORFUL GRAPH MOTIF w.r.t. ℓ

Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif Colorful Graph Motif and parameter *k* Colorful Graph Motif and parameter *l*

FPT issues for Graph Motif Graph Motif and parameter *k* Graph Motif and parameter *l*

Graph Motif IRL

Conclusion

From COLORFUL GRAPH MOTIF to GRAPH MOTIF

- 2 results can be transferred from CGM to GRAPH MOTIF
- Price to pay:
 - Increased time complexity (but still exp. in k only)
 - Randomized algorithm
- Secret ingredient: the Color-Coding technique

For a color c in M, $occ_M(c)$ =#occurrences of c in M

Color Coding: General Idea

- ▶ for each color $c \in C$ s.t. $occ_M(c) \ge 2$
 - create occ_M(c) new colors
 - replace c in M by these colors \rightarrow new motif is colorful
 - randomly recolor vertices of G with color c with one of new colors
- ► colorful motif → use your favorite CGM algorithm!

<□▶75/95 → < Ξ → < Ξ → Ξ → ○ < ⊙ < ⊙

М

G

Running-time increase

- random coloring: a "good" solution may not be colorful
 - may lead to false negatives
- ► repeat process until probability of success is 1ε ($\varepsilon > 0$)
- ▶ probability of a good coloring of G: $\frac{k!}{k^k} \ge e^{-k}$
- ▶ needs $|\ln(\epsilon)|e^k$ iterations (i.e., random colorings of *G*)

From COLORFUL GRAPH MOTIF to GRAPH MOTIF

In a nutshell:

- ► Fellows et al. 2007: $O^*(64^k) \rightarrow O^*(87^k)$
- ▶ Betzler et al. 2008: $O^*(3^k) \to O^*(4.32^k)$

Adapting MLD to GRAPH MOTIF

$O^*(2^k)$ algorithm by Guillemot & Sikora 2013

- works only for CGM
- if $M \neq M^*$, solution is not a multilinear monomial
- previous construction needs to be adapted
- introduction of variables for each vertex of G

Adapting MLD to GRAPH MOTIF

- One variable x_u per vertex u of G
- ► Each color *c* that appears *m* times in $M \rightarrow$ variables $y_{c,1}, y_{c,2}, \ldots, y_{c,m}$
- Circuit is modified: $P_{u,1} = x_u \cdot (y_{c,1} + y_{c,2} + \ldots + y_{c,m})$
 - Variables $x_u \rightarrow$ a node of *G* is used only once
 - Variables $y_j \rightarrow$ right #colors required by M
- Solution: multilinear monomial of degree k' = 2k (k nodes + k colors)
- Complexity $O^*(2^{k'}) \rightarrow O^*(4^k)$

 $x_u(y_{R,1}+y_{R,2}) \cdot x_v y_{Y,1} \cdot x_w(y_{R,1}+y_{R,2}) \cdot x_t y_{B,1} + \dots$

<□>80/95 → < 三 → < 三 → 三 → へへの

 $x_{u}(y_{R,1}+y_{R,2}) \cdot x_{v}y_{Y,1} \cdot x_{w}(y_{R,1}+y_{R,2}) \cdot x_{t}y_{B,1} + \dots = x_{u}y_{R,1} \cdot x_{v}y_{Y,1} \cdot x_{w}y_{R,1} \cdot x_{t}y_{B,1} + \dots$

 $\begin{aligned} x_u(y_{R,1} + y_{R,2}) \cdot x_v y_{Y,1} \cdot x_w(y_{R,1} + y_{R,2}) \cdot x_t y_{B,1} + \dots \\ &= x_u y_{R,1} \cdot x_v y_{Y,1} \cdot x_w y_{R,1} \cdot x_t y_{B,1} + \\ x_u y_{R,1} \cdot x_v y_{Y,1} \cdot x_w y_{R,2} \cdot x_t y_{B,1} + \dots \end{aligned}$

 $\begin{aligned} x_u(y_{R,1}+y_{R,2}) \cdot x_v y_{Y,1} \cdot x_w(y_{R,1}+y_{R,2}) \cdot x_t y_{B,1} + \dots \\ &= x_u y_{R,1} \cdot x_v y_{Y,1} \cdot x_w y_{R,1} \cdot x_t y_{B,1} + \\ x_u y_{R,1} \cdot x_v y_{Y,1} \cdot x_w y_{R,2} \cdot x_t y_{B,1} + \dots \end{aligned}$

solution: a multilinear monomial of degree
 2k = 8

GRAPH MOTIF is FPT in *k*

Previous results superseded by following theorem

Theorem (Björklund, Kaski & Kowalik, Algorithmica 15) GRAPH MOTIF *is solvable in O^*(2^k) time using polynomial space.*

Remarks

- Randomized
- Constrained Multilinear Detection
- Result independently published in [Pinter, Zehavi 2016]

Summary: GRAPH MOTIF w.r.t. k

Complexity	Technique	Algorithm	Space
$O^*(87^k)$	Dyn. Prog. + Color-Coding	Random	Exp.
$O^*(4.32^k)$	Dyn. Prog. + Color-Coding	Random	Exp.
$O^{*}(4^{k})$	Multilinear Det.	Random	Poly.
$O^*(2.54^k)$	Constrained Multilinear Det.	Random	Exp.
O [*] (2 ^k) Björklund et al.	Constrained Multilinear Det.	Random	Poly.
no $O^*((2-\epsilon)^k)$			

Note: best deterministic algorithm in $O^*(5.22^k)$ [PINTER ET AL., DAM 16]

GRAPH MOTIF w.r.t. *l*: bad news

Theorem (BETZLER ET AL., IEEE/ACM TCBB 11) GRAPH MOTIF *is* **W[1]***-complete* when parameterized by *l*.

GRAPH MOTIF w.r.t. *l*: bad news

Theorem (BETZLER ET AL., IEEE/ACM TCBB 11) GRAPH MOTIF *is* **W[1]***-complete when parameterized by ℓ.*

Remarks

- ► reduction from INDEPENDENT SET
- M has only 2 colors

<□>84/95 > < 注 > < 注 > 注 のへぐ

<□>84/95 → < 三→ < 三→ 三 のへぐ

<□>84/95 → < 三→ < 三→ 三 のへぐ

<□>84/95 → < 三→ < 三→ 三 のへぐ

GRAPH MOTIF w.r.t. *l* in trees ?

Theorem (F. & KOMUSIEWICZ, CPM 16) GRAPH MOTIF *is solvable in* $O^*(4^{\ell})$ *time when G is a tree.*

 \rightarrow Dynamic Programming

Summary: GRAPH MOTIF w.r.t. ℓ

General graphsTreesW[1]-complete $O^*(4^\ell)$ no poly. kernel

Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif

Colorful Graph Motif and parameter kColorful Graph Motif and parameter ℓ

FPT issues for Graph Motif Graph Motif and parameter *k* Graph Motif and parameter *l*

Graph Motif IRL

Conclusion

GRAPH MOTIF and variants: practical issues

- ► Motus [Lacroix et al., Bioinformatics 06]
- ► Torque [Bruckner, Hüffner, Karp, Shamir & Sharan, Bruckner et al., J. Comp. Biol. 10]
- ► GraMoFoNe [BLIN, SIKORA & VIALETTE, BICOB 10]
- ► RANGI [RUDI ET AL., IEEE ACM/TCBB 13].
- ► SIMBIO [RUBERT ET AL., BIBE 15]
- ► CeFunMo [Kouhsar et al., Computers in Biology and Medicine 16]

A focus on GraMoFoNe

- cytoscape plugin (open-source java platform, popular in bioinfo)
- supports queries up to 20–25 proteins
- colorful and multiset motifs
- can report all solutions
- deals with approx. solutions (insertions, deletions)
- also deals list-coloring
- technique: Pseudo-Boolean programming

Querying biological networks

Example

- Query: Mouse DNA synthesome complex (13 proteins)
- Target: Yeast network (~ 5 300 proteins, ~ 40 000 interactions)
- Output: match consists of 12 proteins with 2 insertions and 3 deletions

G. Fertin

Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif

Colorful Graph Motif and parameter kColorful Graph Motif and parameter ℓ

FPT issues for Graph Motif Graph Motif and parameter *k* Graph Motif and parameter *l*

Graph Motif IRL

Conclusion

About GRAPH MOTIF

Quick Summary

- Biologically motivated problem (also applies in other contexts)
- ► Very large literature (~140 citations in 10 years)
- Survey ? Work in progress! (with J. Fradin, G. Jean and F. Sikora)
- ► Multiple improvements over the time (see parameter *k*)
- Recent, sometimes involved techniques
 - SeCoCo (2012)
 - MLD (2010) and constrained versions
 - mixed techniques
- Many variants
- Several software

Open Questions ?

Yes and no!

- Yes: many questions, many variants
- ► No(t so much) if (COLORFUL) GRAPH MOTIF general case and parameter k...
- ► ...unless you require deterministic algorithms! → beat current-best solutions
- Yes:
 - further study parameter ℓ
 - specific case of trees + inquire about treewidth

A larger view 1/2

From Biology to Computer Science

- Biologically motivated problems become more "interesting"
 - discrete data structures
 - more and more "complicated" graphs (e.g. metagenomics)
 - more and more complicated structures (e.g. sequences with intergene sizes)
 - ightarrow
 ightarrow more and more intricate (thus interesting) problems

A larger view 1/2

From Biology to Computer Science

- Biologically motivated problems become more "interesting"
 - discrete data structures
 - more and more "complicated" graphs (e.g. metagenomics)
 - more and more complicated structures (e.g. sequences with intergene sizes)
 - ightarrow ightarrow more and more intricate (thus interesting) problems
- FPT well-adapted
 - together with data reduction rules (complexity often collapses on real data)
 - allows to "advertise" new FPT techniques
 - sometimes initiate new techniques

A larger view 2/2

From Computer Science to Bioinfo

- FPT + data reduction rules should be advertised and used
- ► see the different GRAPH MOTIF software
- how can we convince potential users?
- e.g. why relatively fast exact rather than very fast heuristic?

A larger view 2/2

From Computer Science to Bioinfo

- FPT + data reduction rules should be advertised and used
- ► see the different GRAPH MOTIF software
- how can we convince potential users?
- e.g. why relatively fast exact rather than very fast heuristic?

Thank you for your attention