The GRAPH MOTIF problem

Guillaume Fertin

LS2N, Université de Nantes, France

March 2017

Some slides in this talk are courtesy:

- \blacktriangleright C. Komusiewicz, FS U. Jena
- \blacktriangleright F. Sikora U. Paris Dauphine

Outline

[Introduction](#page-1-0)

[First Results](#page-41-0)

[FPT issues](#page-84-0)

[FPT issues for Colorful Graph Motif](#page-109-0)

[Colorful Graph Motif and parameter](#page-110-0) *k* [Colorful Graph Motif and parameter](#page-135-0) ℓ

[FPT issues for Graph Motif](#page-161-0) [Graph Motif and parameter](#page-162-0) *k* [Graph Motif and parameter](#page-178-0) ℓ

[Graph Motif IRL](#page-192-0)

[Conclusion](#page-196-0)

 $2Q$

Motif Search in Texts

- \triangleright Goal: search all occurrences of a motif in a text.
	- \triangleright **T** = text, of length *n*
	- \blacktriangleright *M* = motif, of length *m*
	- **►** *M* and *T* built on some alphabet Σ
	- **v** typical use: $m \ll n$

Motif Search in Texts

- \triangleright Goal: search all occurrences of a motif in a text.
	- \triangleright *T* = text, of length *n*
	- \blacktriangleright *M* = motif, of length *m*
	- **►** *M* and *T* built on some alphabet Σ
	- **I** typical use: $m \ll n$
- \blacktriangleright Applications:
	- \triangleright search for a word in a text editor [ctrl-f] ($|\Sigma| \sim 60 70$)
	- \triangleright bioinformatics: DNA ($|\Sigma| = 4$), proteins ($|\Sigma| = 20$)

Motif Search in Texts

- \triangleright Goal: search all occurrences of a motif in a text.
	- \triangleright *T* = text, of length *n*
	- \blacktriangleright *M* = motif, of length *m*
	- **►** *M* and *T* built on some alphabet Σ
	- **I** typical use: $m \ll n$
- \blacktriangleright Applications:
	- \triangleright search for a word in a text editor [ctrl-f] ($|\Sigma| \sim 60 70$)
	- \triangleright bioinformatics: DNA ($|\Sigma| = 4$), proteins ($|\Sigma| = 20$)
- \blacktriangleright Algorithmics:
	- \triangleright clearly polynomial (naive search w/ sliding window is in *O*(*mn*))
	- \triangleright nice algorithms back from the 70s (KMP, Boyer-Moore, etc.)
	- \triangleright see also e.g.

http://www-igm.univ-mlv.fr/∼lecroq/string/string.pdf

Recess 1

Analysis of Algorithms

- ► Analysis of an algorithm, say A
- **• Running time of** $A \simeq$ **number of "elementary operations"** executed by *A*

Recess 1

Analysis of Algorithms

- Analysis of an algorithm, say \overline{A}
- **Running time of** $A \simeq$ **number of "elementary operations"** executed by *A*
- \blacktriangleright Elementary operation:
	- \triangleright arithmetic operation $(+,-,'')$, memory access, assignment, comparison
	- \blacktriangleright unit cost assumed for each

Recess 1

Analysis of Algorithms

- ► Analysis of an algorithm, say A
- **F** Running time of $A \simeq$ number of "elementary operations" executed by *A*
- \blacktriangleright Elementary operation:
	- \triangleright arithmetic operation $(+,-,'')$, memory access, assignment, comparison
	- \blacktriangleright unit cost assumed for each
- In Running time $= f(n)$, function of input size *n* of the instance

O() **notation**

 \blacktriangleright Goal: simplify $f(n) \rightarrow g(n)$

O() **notation**

- \blacktriangleright Goal: simplify $f(n) \rightarrow g(n)$
- \blacktriangleright $f(n) = O(g(n))$ if

∃*c* > 0, n_0 s.t. $f(n)$ ≤ *c* · $g(n)$ ∀*n* ≥ n_0

 $\blacktriangleright \rightarrow g()$ is an upper bound for $f()$

O() **notation**

- \blacktriangleright Goal: simplify $f(n) \rightarrow g(n)$
- \blacktriangleright $f(n) = O(g(n))$ if

∃*c* > 0, *n*₀ s.t. *f*(*n*) < *c* · *g*(*n*) ∀*n* > *n*₀

- $\blacktriangleright \rightarrow q()$ is an upper bound for $f()$
- \blacktriangleright Roughly: take $f(n)$, keep dominant term, remove multiplicative constant
- \blacktriangleright Example:
	- \blacktriangleright *f*(*n*) = 7*n*² + 3*n* log *n* + 12√*n* − 7
	- \blacktriangleright $f(n) = O(n^2)$

O() **notation**

- \blacktriangleright Goal: simplify $f(n) \rightarrow g(n)$
- \blacktriangleright $f(n) = O(g(n))$ if

∃*c* > 0, *n*₀ s.t. *f*(*n*) < *c* · *g*(*n*) ∀*n* > *n*₀

- $\blacktriangleright \rightarrow q()$ is an upper bound for $f()$
- \blacktriangleright Roughly: take $f(n)$, keep dominant term, remove multiplicative constant
- \blacktriangleright Example:
	- \blacktriangleright *f*(*n*) = 7*n*² + 3*n* log *n* + 12√*n* − 7
	- \blacktriangleright $f(n) = O(n^2)$

 \triangleright *O*() used for worst-case analysis – robustness of algorithm

Motif search - naive algorithm (sliding window)

```
void naive(M[0..m-1], T[0..n-1])
1. for i=0 to n-m do
2. \dot{1} <-- 0;
3. while M[j]=T[i+j] & j<=m-1 do
4. \vec{1} \leftarrow -\vec{1} + 1;5. endwhile
6. if j=m then
7. printf(''Motif found at position %d\n'',i);
8. endif
9. endfor
```
Motif search - naive algorithm (sliding window)

```
void naive(M[0..m-1], T[0..n-1])
1. for i=0 to n-m do
2. \dot{1} <-- 0;
3. while M[j]=T[i+j] & j<=m-1 do
4. \vec{1} \leftarrow -11;5. endwhile
6. if j=m then
7. printf(''Motif found at position d\n'',i;
8. endif
9. endfor
```
- \triangleright each line (individually): constant number of elementary operations
- ^I Lines 3. and 4. most costly: executed at worse *m*(*n* − *m*) times
- \blacktriangleright *f*(*n*) = *O*(*m*(*n* − *m*)) = *O*(*nm*)

- \blacktriangleright species: yeast
- ► vertices ↔ proteins (~ 3500)
- ► edges ↔ interactions (~ 11 000)

- \blacktriangleright species: yeast
- ► vertices ↔ proteins (~ 3500)
- ► edges ↔ interactions (~ 11 000)

Goal: search one/all occurrence/s of a small graph *H* in a big graph *G*.

- \blacktriangleright *G* = target graph
- $H =$ query graph (motif)
- ▶ typical use: $|V(H)| \lt \lt |V(G)|$

Goal: search one/all occurrence/s of a small graph *H* in a big graph *G*.

- \triangleright *G* = target graph
- $H =$ query graph (motif)
- ▶ typical use: $|V(H)| \lt \lt |V(G)|$

Remarks

- \blacktriangleright *H* : biologically known pathway or a complex of interest
- \triangleright occurrence = induced subgraph of *G* isomorphic to *H*
- $\blacktriangleright \rightarrow$ topology-based approach

Towards topology-free motifs

Two views for Motif Search in Graphs

- \triangleright Topological view:
	- \blacktriangleright find a small graph in a big graph
	- $\triangleright \Rightarrow$ subgraph isomorphism problems

Towards topology-free motifs

Two views for Motif Search in Graphs

- \triangleright Topological view:
	- \triangleright find a small graph in a big graph
	- $\triangleright \Rightarrow$ subgraph isomorphism problems
- \blacktriangleright Functional view:
	- \triangleright topology is less important
	- Intertionalities of network vertices \rightarrow governing principle
	- **Initiated in LACROIX, FERNANDES & SAGOT, IEEE/ACM TCBB 06**

Topology-free motifs

Applicable in broader scenarios

- \triangleright motif (pathway or complex) whose topology is not completely known
- \triangleright noisy networks (missing connections)
- \rightarrow query between well and poorly annotated species

Functional approach

Model

- \blacktriangleright function \leftrightarrow color
- $\triangleright \Rightarrow$ graph is vertex-colored (but not properly!)

Functional approach

Model

- \blacktriangleright function \leftrightarrow color
- $\triangleright \Rightarrow$ graph is vertex-colored (but not properly!)
- \triangleright motif (query): multiset of colors

Functional approach

Model

- \blacktriangleright function \leftrightarrow color
- $\triangleright \Rightarrow$ graph is vertex-colored (but not properly!)
- \triangleright motif (query): multiset of colors
- \triangleright motif occurs (and thus "accepted") if connected in graph

Definition (GRAPH MOTIF – LACROIX ET AL., IEEE/ACM TCBB 06**) Input:** A graph $G = (V, E)$, a set of colors *C*, a coloring function $\chi : V \to C$, a motif^{*} M over C

[∗] motif = multiset of colors whose underlying set is *C*.

Definition (GRAPH MOTIF – LACROIX ET AL., IEEE/ACM TCBB 06**) Input:** A graph $G = (V, E)$, a set of colors *C*, a coloring function $\chi : V \to C$, a motif^{*} M over C

[∗] motif = multiset of colors whose underlying set is *C*.

Question: Is there an occurrence of *M* in *G* ?

Definition (GRAPH MOTIF – LACROIX ET AL., IEEE/ACM TCBB 06**) Input:** A graph $G = (V, E)$, a set of colors C, a coloring function $\chi : V \to C$, a motif^{*} M over C

[∗] motif = multiset of colors whose underlying set is *C*.

Question: Is there an occurrence of *M* in *G* ?

Occurrence = subset $V' \subseteq V$ s.t.

- $\blacktriangleright \chi(V') = M$, and
- \blacktriangleright *G*[*V'*] is connected

Definition (GRAPH MOTIF – LACROIX ET AL., IEEE/ACM TCBB 06**) Input:** A graph $G = (V, E)$, a set of colors *C*, a coloring function $\chi : V \to C$, a motif^{*} M over C

[∗] motif = multiset of colors whose underlying set is *C*.

Question: Is there an occurrence of *M* in *G* ?

Occurrence = subset $V' \subseteq V$ s.t.

- $\blacktriangleright \chi(V') = M$, and
- \blacktriangleright *G*[*V'*] is connected

Note: if $\chi : V \to C'$ with $C \subseteq C'$, pre-process *G* by deleting vertices $u \in V(G)$ s.t. $\chi(u) \notin C$

Example

Example

G. Fertin The Graph Motif problem [1](#page-30-0)[3/](#page-27-0)[95](#page-28-0)

Example

Applications

- \triangleright metabolic networks analysis [LACROIX, FERNANDES & SAGOT, IEEE/ACM TCBB 06]
- PPI networks analysis [BRUCKNER ET AL., J. COMP. BIOL. 10]

Applications

- \triangleright metabolic networks analysis [LACROIX, FERNANDES & SAGOT, IEEE/ACM TCBB 06]
- PPI networks analysis [BRUCKNER ET AL., J. COMP. BIOL. 10]
- ► mass spectrometry (identification of metabolites) [BÖCKER & RASCHE, BIOINFORMATICS 08]

Applications

- **P** metabolic networks analysis [LACROIX, FERNANDES & SAGOT, IEEE/ACM TCBB 06]
- PPI networks analysis [BRUCKNER ET AL., J. COMP. BIOL. 10]
- \triangleright mass spectrometry (identification of metabolites) [BÖCKER & RASCHE, BIOINFORMATICS 08]
- I also study of social networks [PINTER-WOLLMAN ET AL., BEHAVIORAL ECOLOGY 14]

A well-studied problem

► GRAPH MOTIF widely studied: ∼150 citations for seminal paper in 11 years (source: Google Scholar)

A well-studied problem

- ► GRAPH MOTIF widely studied: ∼150 citations for seminal paper in 11 years (source: Google Scholar)
- \blacktriangleright Many variants (...too many ?), e.g.:
	- \blacktriangleright approximate motif
	- \triangleright connectivity of an occurrence
	- \blacktriangleright list-colored vertices
GRAPH MOTIF

A well-studied problem

- ► GRAPH MOTIF widely studied: ∼150 citations for seminal paper in 11 years (source: Google Scholar)
- \blacktriangleright Many variants (...too many ?), e.g.:
	- \blacktriangleright approximate motif
	- \triangleright connectivity of an occurrence
	- \blacktriangleright list-colored vertices
- \triangleright Several software (a handful): Motus, Torque, GraMoFoNe, PINQ, etc.

GRAPH MOTIF

A well-studied problem

- ► GRAPH MOTIF widely studied: ∼150 citations for seminal paper in 11 years (source: Google Scholar)
- \blacktriangleright Many variants (...too many ?), e.g.:
	- \blacktriangleright approximate motif
	- \triangleright connectivity of an occurrence
	- \blacktriangleright list-colored vertices
- \triangleright Several software (a handful): Motus, Torque, GraMoFoNe, PINQ, etc.

This talk

- \triangleright Algorithmic results for GRAPH MOTIF: a guided tour
- ▶ Multiplicity of proof techniques: classical, *ad hoc*, imported from other contexts

Some notations

- ► M^* = underlying set of M
- ^I *M* is colorful if *M*[∗] = *M*

Some notations

- ► M^* = underlying set of M
- ^I *M* is colorful if *M*[∗] = *M*
- ▶ COLORFUL GRAPH MOTIF (or CGM): restriction of GRAPH MOTIF to colorful motifs

Some notations

- ^I *M*[∗] = underlying set of *M*
- ^I *M* is colorful if *M*[∗] = *M*
- ▶ COLORFUL GRAPH MOTIF (or CGM): restriction of GRAPH MOTIF to colorful motifs
- \blacktriangleright $\mu(G, c)$ = number of vertices having color *c* in *G*
- \blacktriangleright µ(*G*) = max{µ(*G*, *c*) : *c* ∈ *C*}

Outline

[Introduction](#page-1-0)

[First Results](#page-41-0)

[FPT issues](#page-84-0)

[FPT issues for Colorful Graph Motif](#page-109-0)

[Colorful Graph Motif and parameter](#page-110-0) *k* [Colorful Graph Motif and parameter](#page-135-0) ℓ

[FPT issues for Graph Motif](#page-161-0) [Graph Motif and parameter](#page-162-0) *k* [Graph Motif and parameter](#page-178-0) ℓ

[Graph Motif IRL](#page-192-0)

[Conclusion](#page-196-0)

Theorem (LACROIX ET AL., IEEE/ACM TCBB 06) GRAPH MOTIF *is* **NP***-complete even if G is a tree.*

Did you say **NP**-complete ?

Algorithmic complexity of Problems

 \rightarrow *Pb*=a problem, *n*=size of the input

Did you say **NP**-complete ?

Algorithmic complexity of Problems

- \rightarrow *Pb*=a problem, *n*=size of the input
- ► *Pb* is tractable if solvable in $O(n^c)$ (*c*=constant) \Rightarrow *Pb* \in **P**

Did you say **NP**-complete ?

Algorithmic complexity of Problems

- \rightarrow *Pb*=a problem, *n*=size of the input
- ► *Pb* is tractable if solvable in $O(n^c)$ (*c*=constant) \Rightarrow *Pb* \in **P**
- \blacktriangleright *Pb* is intractable if no $O(n^c)$ algo. exists for solving it \Rightarrow *Pb* ∉ **P**

Did you say **NP**-complete ?

Algorithmic complexity of Problems

- \rightarrow *Pb*=a problem, *n*=size of the input
- ► *Pb* is tractable if solvable in $O(n^c)$ (*c*=constant) \Rightarrow *Pb* \in **P**
- \blacktriangleright *Pb* is intractable if no $O(n^c)$ algo. exists for solving it \Rightarrow *Pb* \notin **P**
- \triangleright very often: we do not know

Very often:

- ^I cannot prove *Pb* ∈ **P**
- ► cannot prove *Pb* \notin **P**

Very often:

- ^I cannot prove *Pb* ∈ **P**
- **►** cannot prove *Pb* \notin **P**

Meanwhile...

New class: NP-complete

- \blacktriangleright Idea: identify the most difficult such problems
- ► Pb is NP-complete if reduction from another NP-complete problem applies

Very often:

- ^I cannot prove *Pb* ∈ **P**
- **►** cannot prove *Pb* \notin **P**

Meanwhile...

New class: NP-complete

- \blacktriangleright Idea: identify the most difficult such problems
- ► Pb is NP-complete if reduction from another NP-complete problem applies
- In this talk I will deliberately not discuss **NP**-hard vs **NP**-complete

- \blacktriangleright Two problems: *Pb* and *Pb'*
- ► Pb and Pb['] are decision problems (answer: YES/NO)
- ► Pb' is known to be NP-complete

- \blacktriangleright Two problems: *Pb* and *Pb'*
- ► Pb and Pb['] are decision problems (answer: YES/NO)
- ► Pb' is known to be NP-complete
- ► For any instance *I'* of *Pb*^{*'*}

- \blacktriangleright Two problems: *Pb* and *Pb'*
- ► Pb and Pb['] are decision problems (answer: YES/NO)
- ► Pb' is known to be NP-complete
- ► For any instance *I'* of *Pb*^{*'*}
- ► build in polynomial time a specific instance *I* of *Pb*

- \blacktriangleright Two problems: *Pb* and *Pb'*
- ► Pb and Pb['] are decision problems (answer: YES/NO)
- ► Pb' is known to be NP-complete
- ► For any instance *I'* of *Pb*^{*'*}
- ► build in polynomial time a specific instance *I* of *Pb*
- **►** YES for $I \Leftrightarrow$ YES for I'

Meaning of all this

If reduction applies, Pb is at least as hard as Pb'

Meaning of all this

- If reduction applies, Pb is at least as hard as Pb'
- \blacktriangleright *Pb* ∈ **P** \Rightarrow *Pb'* ∈ **P** (using reduction)

Meaning of all this

- If reduction applies, Pb is at least as hard as Pb'
- \blacktriangleright *Pb* ∈ **P** \Rightarrow *Pb'* ∈ **P** (using reduction)
- $\triangleright \Rightarrow \mathsf{NP}\text{-complete} = \text{class of hardest such problems}$
- \triangleright problems in **NP**-complete thought not to be polynomial-time solvable
- \triangleright but remains unknown (cf " \triangleright =NP ?")

Theorem (LACROIX ET AL., IEEE/ACM TCBB 06) GRAPH MOTIF *is* **NP***-complete even if G is a tree.*

Theorem (LACROIX ET AL., IEEE/ACM TCBB 06) GRAPH MOTIF *is* **NP***-complete even if G is a tree.*

▶ Reduction from EXACT COVER BY 3-SETS

Theorem (LACROIX ET AL., IEEE/ACM TCBB 06) GRAPH MOTIF *is* **NP***-complete even if G is a tree.*

- ► Reduction from EXACT COVER BY 3-SETS
- Proof does not hold for COLOREUL GRAPH MOTIF
- **IS COLORFUL GRAPH MOTIF any "simpler" ?**

GRAPH MOTIF: bad news

Theorem (FELLOWS, F., HERMELIN & VIALETTE, J. COMPUT. SYST. SCI. 07) COLORFUL GRAPH MOTIF *is* **NP***-complete even when:*

- ► *G* is a tree and
- ^I *G has maximum degree* 3 *and*
- $\blacktriangleright \mu(G) = 3$

- \blacktriangleright Boolean formula Φ
	- \triangleright set $X = \{x_1, x_2 \dots x_n\}$ of boolean variables
	- \triangleright clauses $c_1, c_2 \ldots c_m$, each c_i built from X

- **E** Boolean formula Φ
	- \triangleright set $X = \{x_1, x_2, \ldots, x_n\}$ of boolean variables
	- \triangleright clauses $c_1, c_2 \ldots c_m$, each c_i built from X
- \triangleright Conjunctive Normal Form (CNF):
	- \triangleright each clause c_i contains only logical OR (\vee)
	- \triangleright Φ contains clauses connected by logical AND only (∧)

A detour by SAT

- **E** Boolean formula Φ
	- \triangleright set $X = \{x_1, x_2, \ldots, x_n\}$ of boolean variables
	- \triangleright clauses $c_1, c_2 \ldots c_m$, each c_i built from X
- \triangleright Conjunctive Normal Form (CNF):
	- \triangleright each clause c_i contains only logical OR (\vee)
	- \triangleright Φ contains clauses connected by logical AND only (∧)

\blacktriangleright Example:

$$
\Phi=(x_1\vee x_2\vee x_3)\wedge(\overline{x_1}\vee x_2\vee\overline{x_3})\wedge(x_1\vee\overline{x_2}\vee\overline{x_3})
$$

- \blacktriangleright variable: x_i
- literal: x_i or $\overline{x_i}$

- \blacktriangleright variable: x_i
- literal: x_i or $\overline{x_i}$

$$
\blacktriangleright \Phi = (x_1 \vee x_2 \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_3}) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_3})
$$

- \triangleright variable: x_i
- \blacktriangleright literal: *x_i* or $\overline{X_i}$
- \blacktriangleright $\Phi = (x_1 \vee x_2 \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_3}) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_3})$
- \triangleright Goal: satisfy Φ
	- \triangleright assign TRUE/FALSE to each x_i
	- \triangleright s.t. Φ evaluates to TRUE, i.e.
		- \triangleright each clause evaluates to TRUE
		- \triangleright in each clause, at least one literal evaluates to TRUE

Definition (SAT)

Input: a boolean formula Φ in CNF, built on $X = \{x_1, x_2 \dots x_n\}$. **Question:** Is there an assignment TRUE/FALSE of each *xⁱ* s.t. Φ is satisfied ?

Definition (SAT)

Input: a boolean formula Φ in CNF, built on $X = \{x_1, x_2, \ldots, x_n\}$. **Question:** Is there an assignment TRUE/FALSE of each *xⁱ* s.t. Φ is satisfied ?

 \triangleright SAT is **NP**-complete (classical result)

3-SAT-X

Many constrained versions of SAT are **NP**-complete, e.g.:

- each clause of Φ contains at most 3 literals, and
- \triangleright each variable appears in at most 3 clauses, and
- \triangleright each literal appears in at most 2 clauses

3-SAT-X

Many constrained versions of SAT are **NP**-complete, e.g.:

- each clause of Φ contains at most 3 literals, and
- \triangleright each variable appears in at most 3 clauses, and
- \triangleright each literal appears in at most 2 clauses

$$
\Phi=(x_1\vee x_2\vee x_3)\wedge(\overline{x_1}\vee x_2\vee\overline{x_3})\wedge(x_1\vee\overline{x_2}\vee\overline{x_3})
$$

variable x_3 , literal $\overline{x_3}$

From any instance of 3-SAT-X to an instance of CGM

- \triangleright from $\Phi = (x_1 \vee x_2 \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_3}) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_3})$
- ► construct graph *G* as above
- $M = \{1, 2, \ldots, n, 1', 2, \ldots, n', x_1, x_2, \ldots, x_n, c_1, c_2, \ldots, c_m\}$
Reduction from 3-SAT-X to CGM

From any instance of 3-SAT-X to an instance of CGM

- \triangleright *G* is a tree of maximum degree 3 (literal appears in \triangleright 2 clauses)
- $\blacktriangleright \mu(G) = 3$ (clause contains < 3 literals)
- \blacktriangleright *M* is colorful

Reduction from 3-SAT-X to CGM

From any instance of 3-SAT-X to an instance of CGM

- \triangleright *G* is a tree of maximum degree 3 (literal appears in \geq 2 clauses)
- \blacktriangleright $\mu(G) = 3$ (clause contains ≤ 3 literals)
- \blacktriangleright *M* is colorful

Equivalence YES/NO answer

- \blacktriangleright (\Rightarrow) Pick color x_i corresponding to assignment
- \blacktriangleright (\Leftarrow) Pick vertices x_i and c_i corresponding to occurrence of motif

GRAPH MOTIF: bad news

Theorem (FELLOWS, F., HERMELIN & VIALETTE, J. COMPUT. SYST. SCI. 07) COLORFUL GRAPH MOTIF *is* **NP***-complete even when:*

- ► *G* is a tree and
- ^I *G has maximum degree* 3 *and*

$$
\blacktriangleright \ \mu(G) = 3
$$

GRAPH MOTIF: bad news

Theorem (FELLOWS, F., HERMELIN & VIALETTE, J. COMPUT. SYST. SCI. 07) COLORFUL GRAPH MOTIF *is* **NP***-complete even when:*

- ► *G* is a tree and
- ^I *G has maximum degree* 3 *and*

$$
\blacktriangleright \ \mu(G) = 3
$$

- **Figure** Restrictions on *G* and $\mu(G) \rightarrow \textbf{NP-complete}$
- ► What if *M* uses few colors ?

GRAPH MOTIF: more bad news

Theorem (FELLOWS, F., HERMELIN & VIALETTE, J. COMPUT. SYST. SCI. 07) GRAPH MOTIF *is* **NP***-complete even when:*

- ► *G* is bipartite and
- ^I *G has maximum degree 4 and*
- \blacktriangleright $|M^*| = 2$
- ▶ Reduction from EXACT COVER BY 3-SETS

GRAPH MOTIF: any polynomial case... please ?

Theorem (FELLOWS, F., HERMELIN & VIALETTE, J. COMPUT. SYST. SCI. 07) GRAPH MOTIF *is in* **P** whenever G is a tree and $\mu(G) = 2$.

Equivalence with 2-SAT

 299 ミー

Equivalence with 2-SAT

Equivalence with 2-SAT

 299

÷.

Equivalence with 2-SAT

Equivalence with 2-SAT

 $(x_4 \Rightarrow \overline{x_5})$

 299

÷.

Equivalence with 2-SAT

$$
(\overline{x_3} \Rightarrow x_1) \land (x_5 \Rightarrow x_1) \land (x_3 \Rightarrow \overline{x_2}) \land (x_2 \Rightarrow \overline{x_1}) \land \dots
$$

2-SAT formula as $(A \Rightarrow B) \Leftrightarrow (\overline{B} \lor A)$

Outline

[Introduction](#page-1-0)

[First Results](#page-41-0)

[FPT issues](#page-84-0)

[FPT issues for Colorful Graph Motif](#page-109-0)

[Colorful Graph Motif and parameter](#page-110-0) *k* [Colorful Graph Motif and parameter](#page-135-0) ℓ

[FPT issues for Graph Motif](#page-161-0) [Graph Motif and parameter](#page-162-0) *k* [Graph Motif and parameter](#page-178-0) ℓ

[Graph Motif IRL](#page-192-0)

[Conclusion](#page-196-0)

Remarks

 \triangleright motifs tend to be small in practice (compared to the target graph)

Remarks

- \triangleright motifs tend to be small in practice (compared to the target graph)
- $\triangleright \rightarrow$ Question 1: algorithm whose running time is
	- \triangleright polynomial in $n = |V(G)|$ and
	- **Exponential** in $k = |M|$?

Remarks

- \triangleright motifs tend to be small in practice (compared to the target graph)
- $\triangleright \rightarrow$ Question 1: algorithm whose running time is
	- \triangleright polynomial in $n = |V(G)|$ and
	- **Exponential** in $k = |M|$?
- $\triangleright \rightarrow$ Question 2: algorithm whose running time is
	- \triangleright polynomial in $n = |V(G)|$ and
	- **Proponential** in $c = |M^*|$?

Remarks

- \triangleright motifs tend to be small in practice (compared to the target graph)
- $\triangleright \rightarrow$ Question 1: algorithm whose running time is
	- \triangleright polynomial in $n = |V(G)|$ and
	- **Exponential** in $k = |M|$?
- $\triangleright \rightarrow$ Question 2: algorithm whose running time is
	- \triangleright polynomial in $n = |V(G)|$ and
	- **Proponential** in $c = |M^*|$?

 \triangleright Fixed Parameterized Tractability (FPT) issues

Definition (Fixed-parameter tractability)

A problem *P* is fixed-parameter tractable (FPT) w.r.t. parameter *k* if it can be solved in time

 $O(f(k) \cdot poly(n))$

- \triangleright *f*: any computable function depending only on *k*
- \triangleright *n*: size of the input
- \rightarrow *poly*(*n*): any polynomial function of *n*

Definition (Fixed-parameter tractability)

A problem *P* is fixed-parameter tractable (FPT) w.r.t. parameter *k* if it can be solved in time

 $O(f(k) \cdot poly(n))$

- \blacktriangleright *f*: any computable function depending only on *k*
- \triangleright *n*: size of the input
- \rightarrow *poly*(*n*): any polynomial function of *n*
- ► complexity also noted $O^*(f(k))$ (hidden polynomial factor)
- $\triangleright \rightarrow$ corresponding complexity class: **FPT**

Definition (Parameterized hierarchy) FPT ⊆ **W[1]** ⊆ **W[2]** ⊆ . . . ⊆ **XP**

Definition (Parameterized hierarchy) FPT ⊆ **W[1]** ⊆ **W[2]** ⊆ . . . ⊆ **XP**

In a nutshell

FPT problems: (hopefully) efficiently solvable for small values of parameter

Definition (Parameterized hierarchy) FPT ⊆ **W[1]** ⊆ **W[2]** ⊆ . . . ⊆ **XP**

In a nutshell

- **FPT** problems: (hopefully) efficiently solvable for small values of parameter
- ▶ W[1]: first class of problems not believed to be in **FPT**
- ▶ WI11-complete vs FPT \leftrightarrow NP-complete vs P

FPT: an ever-growing topic

Monographs

- \blacktriangleright R.G. Downey, M. R. Fellows Parameterized Complexity Springer-Verlag, 1999.
- \blacktriangleright H. Fernau Parameterized Algorithmics: A Graph-Theoretic Approach. 2005. Free download at http://www.informatik.uni-trier.de/∼fernau/papers/habil.pdf
- \triangleright J. Flum and M. Grohe. Parameterized Complexity Theory Springer-Verlag, 2006.
- \triangleright R. Niedermeier Invitation to Fixed-Parameter Algorithms Oxford University Press, 2006.
- \triangleright R.G. Downey, M. R. Fellows Fundamentals of Parameterized Complexity – Springer-Verlag, 2013.
- ► M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh – Parameterized Algorithms – Springer-Verlag, 2015.

FPT: an ever-growing topic

Monographs

- \blacktriangleright R.G. Downey, M. R. Fellows Parameterized Complexity Springer-Verlag, 1999.
- \blacktriangleright H. Fernau Parameterized Algorithmics: A Graph-Theoretic Approach. 2005. Free download at http://www.informatik.uni-trier.de/∼fernau/papers/habil.pdf
- \triangleright J. Flum and M. Grohe. Parameterized Complexity Theory Springer-Verlag, 2006.
- \triangleright R. Niedermeier Invitation to Fixed-Parameter Algorithms Oxford University Press, 2006.
- \triangleright R.G. Downey, M. R. Fellows Fundamentals of Parameterized Complexity – Springer-Verlag, 2013.
- ► M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh – Parameterized Algorithms – Springer-Verlag, 2015.
- **Dedicated website http://fpt.wikidot.com/**
The Graph Motif problem
 \leftarrow PRAGE AT 2009 PARE AT 2 PRAGE

G. Fertin The Graph Motif problem [3](#page-96-0)[9/](#page-93-0)[95](#page-94-0)

 \triangleright Dynamic Programming (table size and computation exponential in paramater only)

- \triangleright Dynamic Programming (table size and computation exponential in paramater only)
- \triangleright Bounded Search Tree: test all possible cases, show there are *O*(*f*(*k*) such cases

- \triangleright Dynamic Programming (table size and computation exponential in paramater only)
- \triangleright Bounded Search Tree: test all possible cases, show there are *O*(*f*(*k*) such cases
- ► Kernelization: (I, k) → (I', k') with same solution, *I'* solvable in $O(f(k) \cdot poly(n))$
- \blacktriangleright Iterative Compression

- \triangleright Dynamic Programming (table size and computation exponential in paramater only)
- \triangleright Bounded Search Tree: test all possible cases, show there are *O*(*f*(*k*) such cases
- ► Kernelization: (I, k) → (I', k') with same solution, *I'* solvable in $O(f(k) \cdot poly(n))$
- \blacktriangleright Iterative Compression
- \triangleright Color-Coding
- \blacktriangleright etc.

GRAPH MOTIF and FPT: which parameters ?

The choice is yours

 \triangleright Size of the motif $k = |M|$ = solution size \rightarrow classical parameter

GRAPH MOTIF and FPT: which parameters ?

The choice is yours

- \triangleright Size of the motif $k = |M|$ = solution size \rightarrow classical parameter
- ► Number of colors of the motif $c = |M^*|$ Remark: $c \leq k$ ($k = c$ for COLORFUL GRAPH MOTIF) thus "stronger" than *k*

GRAPH MOTIF and FPT: which parameters ?

The choice is yours

- \triangleright Size of the motif $k = |M|$ = solution size \rightarrow classical parameter
- ► Number of colors of the motif $c = |M^*|$ Remark: $c \leq k$ ($k = c$ for COLORFUL GRAPH MOTIF) thus "stronger" than *k*
- \triangleright Dual parameter $\ell = n - k$ (with $n = |V(G)|$) Dual = number of vertices *not* in the solution

Dual parameter $\ell = n - k$ is probably large... but:

- **Example Reduction rules** \rightarrow smaller components in which $\ell \sim k$
- \triangleright Worst case running time vs experimental running time
- \triangleright Current-best algorithms for some subgraph mining problems use ℓ (HARTUNG ET AL., JGAA 15)

Reminder: *c* = |*M*[∗] |=#colors in *M*

Reminder: *c* = |*M*[∗] |=#colors in *M*

Theorem (FELLOWS, F., HERMELIN & VIALETTE, J. COMPUT. SYST. SCI. 07) GRAPH MOTIF *is* **W[1]***-complete when parameterized by c, even in trees.*

Reminder: *c* = |*M*[∗] |=#colors in *M*

Theorem (FELLOWS, F., HERMELIN & VIALETTE, J. COMPUT. SYST. SCI. 07) GRAPH MOTIF *is* **W[1]***-complete when parameterized by c, even in trees.*

 \blacktriangleright Reduction from CLIQUE

Reminder: *c* = |*M*[∗] |=#colors in *M*

Theorem (FELLOWS, F., HERMELIN & VIALETTE, J. COMPUT. SYST. SCI. 07) GRAPH MOTIF *is* **W[1]***-complete when parameterized by c, even in trees.*

- \blacktriangleright Reduction from CLIQUE
- $\triangleright \Rightarrow c$ can be discarded for GRAPH MOTIF
- In proof of theorem, motif *M* is not colorful
- \blacktriangleright ... but in COLOREUL GRAPH MOTIF: $c = k$
- $\triangleright \rightarrow c$ useless for COLORFUL GRAPH MOTIF
GRAPH MOTIF and CGM: FPT issues

Rest of the talk

- \triangleright We are left with *k* and ℓ
- **First COLORFUL GRAPH MOTIF (or CGM)**
- \triangleright Then GRAPH MOTIF

Outline

[Introduction](#page-1-0)

[First Results](#page-41-0)

[FPT issues](#page-84-0)

[FPT issues for Colorful Graph Motif](#page-109-0)

[Colorful Graph Motif and parameter](#page-110-0) *k* [Colorful Graph Motif and parameter](#page-135-0) ℓ

[FPT issues for Graph Motif](#page-161-0) [Graph Motif and parameter](#page-162-0) *k* [Graph Motif and parameter](#page-178-0) ℓ

[Graph Motif IRL](#page-192-0)

[Conclusion](#page-196-0)

COLORFUL GRAPH MOTIF IS FPT in $k = |M|$

Theorem (FELLOWS, F., HERMELIN & VIALETTE, J. COMPUT. SYST. SCI. 07) COLORFUL GRAPH MOTIF *is solvable in O*[∗] (64*^k*) *time.*

COLORFUL GRAPH MOTIF IS FPT in $k = |M|$

Theorem (FELLOWS, F., HERMELIN & VIALETTE, J. COMPUT. SYST. SCI. 07) COLORFUL GRAPH MOTIF *is solvable in O*[∗] (64*^k*) *time.*

Remarks

- \triangleright Deterministic (Dynamic Programming)
- \blacktriangleright Exponential space
- \blacktriangleright Proof of concept!

Theorem (BETZLER ET AL., CPM 08)

COLORFUL GRAPH MOTIF *is solvable in O*[∗] (3 *k*) *time.*

Remarks

- \triangleright Simpler (and faster) version of previous result
- \triangleright Deterministic (Dynamic Programming)
- ► Exponential space $O^*(2^k)$
- • Adapted from [SCOTT ET AL., J. COMP. BIOL. 06]

Key elements of Dynamic programming algorithm

- \blacktriangleright Boolean table $B(v, S)$ with
	- \triangleright *v* a vertex of *G*
	- ^I *S* a subset of *M*
- \blacktriangleright *B*(*v*, *S*)=TRUE if there is in *G* a colorful subtree *T*
	- \triangleright *v* is the root of T
	- ► colors of *T* "agree" with *S*

Key elements of Dynamic programming algorithm

For any S s.t.
$$
|S| = 1
$$

\n
$$
B(v, S) = \begin{cases} \text{TRUE} & \text{if } S = \{ \chi(v) \} \\ \text{FALSE} & \text{otherwise} \end{cases}
$$

$$
B(\nu,S)=\bigvee\limits_{U\in N(\nu) \atop{S_1\oplus S_2=S}\atop{\chi(\nu)\in S_1,\chi(\nu)\in S_2}} B(\nu,S_1)\wedge B(u,S_2)
$$

$O^*(3^k)$ → all 3-partitions of a set of size *k*

G. Fertin The Graph Motif problem [4](#page-115-0)[9/](#page-113-0)[95](#page-114-0)

Theorem (GUILLEMOT & SIKORA, ALGORITHMICA 13) COLORFUL GRAPH MOTIF *is solvable in O*[∗] (2 *k*) *time.*

Remarks

- \blacktriangleright Randomized
- \triangleright Polynomial space
- \triangleright Uses the "Multilinear Detection" technique (2010)

A detour by polynomials

 $P(X)$ = a polynomial built on a set $X = \{x_1, x_2 \ldots x_p\}$ of variables

- \triangleright a monomial *m* in $P(X)$ is multilinear if each variable in *m* occurs at most once
- \rightarrow degree of a multilinear monomial = number of its variables
- \blacktriangleright example:

$$
P(X) = x_1^2 x_3 x_5 + x_1 x_2 x_4 x_6
$$

- \triangleright $x_1x_2x_4x_6$: multilinear monomial of degree 4
- \blacktriangleright $x_1^2x_3x_5$: not a multilinear monomial

A detour by arithmetic circuits

- **Example 1** arithmetic circuit C over a set X of variables = DAG s.t.
	- \triangleright internal nodes are the operations \times or $+$,
	- \blacktriangleright leaves are variables from X
- **P** polynomial $P(X) \to$ arithmetic circuit *C* over *X*

A detour by arithmetic circuits

- **Example 1** arithmetic circuit C over a set X of variables = DAG s.t.
	- internal nodes are the operations \times or $+$,
	- \blacktriangleright leaves are variables from X
- \triangleright polynomial $P(X)$ → arithmetic circuit *C* over *X*
- \blacktriangleright Example: $P(X) = (x_1 + x_2 + x_3)(x_3 + x_4 + x_5)$

Multilinear Detection problem

Problem ISML-*k*: given an arithmetic circuit *C*, determine whether *P*(*X*) contains a multilinear monomial of degree *k*

Theorem (KOUTIS & WILLIAMS,ICALP 09) ISML-*k is solvable in O*[∗] (2 *k*) *time using polynomial space.*

Multilinear Detection problem

Problem ISML-*k*: given an arithmetic circuit *C*, determine whether *P*(*X*) contains a multilinear monomial of degree *k*

Theorem (KOUTIS & WILLIAMS,ICALP 09)

ISML-*k is solvable in O*[∗] (2 *k*) *time using polynomial space.*

Remarks

- \blacktriangleright Randomized algorithm
- If *C* is an arithmetic circuit representing P :
	- ► Running time: poly. factor depends on #arcs of *C*
	- ► Space: depends on #internal nodes of *C*

O[∗] (2 *k*) **algorithm for CGM**

Build polynomial as follows:

- \triangleright variables \leftrightarrow colors in M
- **Example 3** monomial \leftrightarrow colors in a *k*-node subtree of G

 \Rightarrow multilinear monomial of degree $k \leftrightarrow$ colorful *k*-node subtree in *G*

O[∗] (2 *k*) **algorithm for CGM**

Build polynomial as follows:

- \triangleright variables \leftrightarrow colors in M
- **Example 3** monomial \leftrightarrow colors in a *k*-node subtree of G

 \Rightarrow multilinear monomial of degree $k \leftrightarrow$ colorful *k*-node subtree in *G*

- \triangleright if circuit size polynomial in k and input size
- ► then algorithm in $O^*(2^k)$ for CGM

$$
P_{1,u}=x_{\chi(u)}
$$

$$
P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}
$$

$$
P=\sum_{u\in V(G)}P_{k,u}
$$

(Partial) computation of
$$
P_{3,u}
$$
 ($k = 3$)

$$
P_{1,u}=x_{\chi(u)}
$$

$$
P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}
$$

$$
P=\sum_{u\in V(G)}P_{k,u}
$$

(Partial) computation of
$$
P_{3,u}
$$
 ($k = 3$)
 $P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + ...$

$$
P_{1,u}=x_{\chi(u)}
$$

$$
P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}
$$

$$
P=\sum_{u\in V(G)}P_{k,u}
$$

(Partial) computation of $P_{3,u}$ ($k = 3$) $P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + \dots$ $= x_R \cdot (P_{2,v} + P_{2,w}) + \ldots$

$$
P_{1,u}=x_{\chi(u)}
$$

$$
P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}
$$

$$
P=\sum_{u\in V(G)}P_{k,u}
$$

(Partial) computation of
$$
P_{3,u}
$$
 ($k = 3$)
\n $P_{3,u} = P_{1,u} \cdot (P_{2,v}+P_{2,w}) + \dots$
\n $= x_R \cdot (P_{2,v}+P_{2,w}) + \dots$
\n $= x_R \cdot (x_Y \cdot (P_{1,u}+P_{1,w}+P_{1,t})+P_{2,w}) + \dots$

$$
P_{1,u}=x_{\chi(u)}
$$

$$
P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}
$$

$$
P = \sum_{u \in V(G)} P_{k,u}
$$

(Partial) computation of $P_{3,u}$ ($k = 3$) $P_{3,\mu} = P_{1,\mu} \cdot (P_{2,\nu} + P_{2,\mu}) + \ldots$ $= x_R \cdot (P_{2,v} + P_{2,w}) + \dots$ $= x_R \cdot (x_Y \cdot (P_{1,u} + P_{1,w} + P_{1,t}) + P_{2,w}) + \ldots$ $= x_R \cdot (x_Y \cdot (x_R + x_R + x_R) + P_{2,W}) + \ldots$

$$
P_{1,u}=x_{\chi(u)}
$$

$$
P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}
$$

$$
P=\sum_{u\in V(G)}P_{k,u}
$$

(Partial) computation of
$$
P_{3,u}
$$
 ($k = 3$)
\n $P_{3,u} = P_{1,u} \cdot (P_{2,v}+P_{2,w}) + \dots$
\n $= x_R \cdot (P_{2,v}+P_{2,w}) + \dots$
\n $= x_R \cdot (x_Y \cdot (P_{1,u}+P_{1,w}+P_{1,t})+P_{2,w}) + \dots$
\n $= x_R \cdot (x_Y \cdot (x_R + x_R + x_B)+P_{2,w}) + \dots$
\n $= x_R \cdot (x_Y \cdot x_R + x_Y \cdot x_R + x_Y \cdot x_B + P_{2,w}) + \dots$

$$
P_{1,u}=x_{\chi(u)}
$$

$$
P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}
$$

$$
P=\sum_{u\in V(G)}P_{k,u}
$$

(Partial) computation of
$$
P_{3,u}
$$
 ($k = 3$)
\n $P_{3,u} = P_{1,u} \cdot (P_{2,v}+P_{2,w}) + \dots$
\n $= x_R \cdot (P_{2,v}+P_{2,w}) + \dots$
\n $= x_R \cdot (x_Y \cdot (P_{1,u}+P_{1,w}+P_{1,t})+P_{2,w}) + \dots$
\n $= x_R \cdot (x_Y \cdot (x_R + x_R + x_B)+P_{2,w}) + \dots$
\n $= x_R \cdot (x_Y \cdot x_R + x_Y \cdot x_R + x_Y \cdot x_B + P_{2,w}) + \dots$
\n $= x_R x_Y x_R + x_R x_Y x_R + x_R x_Y x_B + \dots$

Can we do better than $O^*(2^k)$?

Can we do better than $O^*(2^k)$?

Theorem (BJORKLUND ET AL ¨ ., ALGORITHMICA 15) *Under SeCoCo*[∗] *,* COLORFUL GRAPH MOTIF *cannot be solved* $sin O^*((2 - \epsilon)^k)$ *time,* $\epsilon > 0$ *.*

[∗]SeCoCo = SET COVER Conjecture [CYGAN ET AL., CCC 12]:

if **P** ≠NP, for any $\epsilon > 0$, SET COVER cannot be solved in $O^*((2-\epsilon)^p)$ where $p = |U|$ is the size of the universe

Reduction

SET COVER:

$$
\blacktriangleright U = \{x_1, x_2 \ldots x_n\}
$$

$$
\quad \blacktriangleright \; \mathcal{S} = \{S_1, S_2 \ldots S_m\}
$$

 \blacktriangleright integer *t*

Reduction

- \triangleright SET COVER:
	- $U = \{x_1, x_2, \ldots, x_n\}$
	- $S = \{S_1, S_2, \ldots, S_m\}$
	- \blacktriangleright integer *t*
- \triangleright CGM:
	- ► Graph *G*
		- $V(G) = {r} \cup U \cup {s'_i : i ∈ [m], j ∈ [t]}$
		- ► *r* connected to every s_j^i , x_p connected to all s_j^i s.t. $x_p \in S_p$
		- ► colors: $x_i \to c_i$, $r \to c_{n+1}$, $s_i^j = c_{n+1+j}$ ($i \in [m], j \in [t]$)
	- \triangleright Motif $M = \{c_1, c_2 \dots c_{n+t+1}\}$ (thus $k = n + t + 1$)

O^{*}((2− ϵ)^{*k*})</sub> for CGM \Rightarrow *O*^{*}((2− ϵ)^{*n+t*}) for SET COVER [CYGAN ET AL., CCC 12]: $O^*((2-\epsilon)^{n+t})$ for SET COVER \Rightarrow $O^*((2-\epsilon')^n)$ for SET COVER

Summary: COLORFUL GRAPH MOTIF w.r.t. *k*

Outline

[Introduction](#page-1-0)

[First Results](#page-41-0)

[FPT issues](#page-84-0)

[FPT issues for Colorful Graph Motif](#page-109-0)

[Colorful Graph Motif and parameter](#page-110-0) *k* [Colorful Graph Motif and parameter](#page-135-0) ℓ

[FPT issues for Graph Motif](#page-161-0) [Graph Motif and parameter](#page-162-0) *k* [Graph Motif and parameter](#page-178-0) ℓ

[Graph Motif IRL](#page-192-0)

[Conclusion](#page-196-0)

Reminder: $\ell = n - k$ (=#nodes not kept in solution)

Theorem (BETZLER ET AL., IEEE/ACM TCBB 11) CGM *is solvable in O*[∗] (2 `) *time.*

Bounded Search Tree

Algorithm Analysis

- \blacktriangleright at least 1 vertex removed at each step
- \blacktriangleright \rightarrow height of tree at most ℓ
- \triangleright 2 choices per step
- \blacktriangleright \rightarrow 2^{ℓ} possibilities
- \blacktriangleright each leaf: colorful graph
- \triangleright if one such graph is of order *k* and connected, return YES, otherwise NO

Algorithm Analysis

- \triangleright at least 1 vertex removed at each step
- \blacktriangleright \rightarrow height of tree at most ℓ
- \triangleright 2 choices per step
- \blacktriangleright \rightarrow 2^{ℓ} possibilities
- \blacktriangleright each leaf: colorful graph
- \triangleright if one such graph is of order *k* and connected, return YES, otherwise NO

Can we do better ?

FPT lower bound for CGM and ℓ

Theorem (F. & KOMUSIEWICZ, CPM'16) *Under SETH*^{*}, CGM *cannot be solved in* $O^*((2 - \epsilon)^{\ell})$ *time,* $\varepsilon > 0$.

[∗] SETH = Strong Exponential Time Hypothesis [IMPAGLIAZZO ET AL., JCSS 01]: if **P** \neq **NP**, for any $\epsilon > 0$, CNF-SAT cannot be solved in $O^*((2 - \epsilon)^p)$, with *p*=number of variables of CNF formula
Reduction from CNF-SAT with $\ell = p$

$$
F = (x \vee \overline{y} \vee z) \wedge (y \vee \overline{z})
$$

 \equiv 990

Reduction from CNF-SAT with $\ell = p$

$$
F = (x \vee \overline{y} \vee z) \wedge (y \vee \overline{z})
$$

Reduction from CNF-SAT with $\ell = p$

$$
F = (x \vee \overline{y} \vee z) \wedge (y \vee \overline{z})
$$

Reduction from CNF-SAT with $\ell = p$

$$
F = (x \vee \overline{y} \vee z) \wedge (y \vee \overline{z})
$$

CGM and ℓ for trees

Theorem (F. & KOMUSIEWICZ, CPM'16) CGM *in trees is solvable in O*[∗] (√ $\overline{2}^{\ell}$) time.

Kernelization

- \triangleright Use reduction rules
- Instance $(T, M) \rightarrow (T', M')$ with same answer YES/No
- Reduced instance (T', M') called kernel
- If size of kernel = $O(f(\ell))$ then FPT in ℓ

Kernelization

- \blacktriangleright Use reduction rules
- Instance $(T, M) \rightarrow (T', M')$ with same answer YES/No
- Reduced instance (T', M') called kernel
- If size of kernel = $O(f(\ell))$ then FPT in ℓ

Theorem (F. & KOMUSIEWICZ, CPM'16)

CGM in trees admits a kernel of size $2\ell + 1$.

T= the input tree

Definition

A vertex is unique if no other vertex has the same color in *T*

Observation: at most 2 ℓ vertices are not unique in *T*.

T= the input tree

Definition

A vertex is unique if no other vertex has the same color in *T*

Observation: at most 2 ℓ vertices are not unique in T.

 \blacktriangleright C^+ = set of colors occuring more than once in C ; $|C^+| = c^+$

 \blacktriangleright *n*⁺ = $\sum_{c \in C^+}$ μ(*T*, *c*); *n*[−]= # non-unique vertices

T= the input tree

Definition

A vertex is unique if no other vertex has the same color in *T*

Observation: at most 2 ℓ vertices are not unique in *T*.

 \blacktriangleright C^+ = set of colors occuring more than once in C ; $|C^+| = c^+$

 \blacktriangleright *n*⁺ = $\sum_{c \in C^+}$ μ(*T*, *c*); *n*[−]= # non-unique vertices

$$
\blacktriangleright n = n^+ + n^-
$$

$$
\blacktriangleright \ |M| = c^+ + n^-
$$

 $\ell = n - |M| \Rightarrow \ell = n^+ - c^+$

T= the input tree

Definition

A vertex is unique if no other vertex has the same color in *T*

Observation: at most 2 ℓ vertices are not unique in *T*.

$$
\blacktriangleright
$$
 C⁺ = set of colors occurring more than once in C ; $|C^+| = c^+$

$$
\blacktriangleright n^+ = \sum_{c \in C^+} \mu(T, c) \; ; \; n^- = \text{\# non-unique vertices}
$$

$$
n = n^+ + n^-
$$

$$
\blacktriangleright |M| = c^+ + n^-
$$

$$
\triangleright \ell = n - |M| \Rightarrow \ell = n^+ - c^+
$$

$$
\blacktriangleright n^+\geq 2c^+\Rightarrow \ell\geq \tfrac{n^+}{2}
$$

- \triangleright root *T* at arbitray unique vertex *r*
- **►** if all vertices non-unique $\rightarrow \ell \geq \frac{n}{2}$ $\frac{\pi}{2}$ and kernel already exists

- \triangleright root *T* at arbitray unique vertex *r*
- **►** if all vertices non-unique $\rightarrow \ell \geq \frac{n}{2}$ $\frac{\pi}{2}$ and kernel already exists

Definition

- \triangleright pendant subtree of root *v*: contains all descendants of *v*.
- \triangleright pendant non-unique subtrees: maximal pendant subtrees in which no vertex is unique

- \blacktriangleright Left: input instance w/ pendant non-unique subtrees
- \triangleright Middle: after Phase I, all vertices on paths between unique vertices are contracted into *r*.
- \triangleright Right: after Phase II, all vertices with a color that was removed in Phase I are removed together with their descendants.

CGM and ℓ for trees

- \triangleright Phases I and II: reduction rules
- After application: root $r +$ non-unique vertices only

CGM and ℓ for trees

- \triangleright Phases I and II: reduction rules
- After application: root $r +$ non-unique vertices only
- ► by Observation, # non-unique vertices $\leq 2\ell$
- $\triangleright \Rightarrow$ new tree with $\leq 2\ell + 1$ vertices

Summary: COLORFUL GRAPH MOTIF w.r.t. `

Outline

[Introduction](#page-1-0)

[First Results](#page-41-0)

[FPT issues](#page-84-0)

[FPT issues for Colorful Graph Motif](#page-109-0) [Colorful Graph Motif and parameter](#page-110-0) *k* [Colorful Graph Motif and parameter](#page-135-0) ℓ

[FPT issues for Graph Motif](#page-161-0) [Graph Motif and parameter](#page-162-0) *k* [Graph Motif and parameter](#page-178-0) ℓ

[Graph Motif IRL](#page-192-0)

[Conclusion](#page-196-0)

From COLORFUL GRAPH MOTIF to GRAPH MOTIF

- \triangleright 2 results can be transfered from CGM to GRAPH MOTIF
- \blacktriangleright Price to pay:
	- Increased time complexity (but still exp. in k only)
	- \blacktriangleright Randomized algorithm
- \triangleright Secret ingredient: the Color-Coding technique

For a color *c* in *M*, *occ^M* (*c*)=#occurrences of *c* in *M*

Color Coding: General Idea

- \triangleright for each color *c* ∈ *C* s.t. *occ_M*(*c*) ≥ 2
	- \triangleright create $occ_M(c)$ new colors
	- replace *c* in *M* by these colors \rightarrow new motif is colorful
	- ► randomly recolor vertices of *G* with color *c* with one of new colors
- \triangleright colorful motif \rightarrow use your favorite CGM algorithm!

G. Fertin The Graph Motif problem [7](#page-165-0)[5/](#page-163-0)[95](#page-164-0)

1

3

4

5

2

G. Fertin The Graph Motif problem \leftarrow [7](#page-167-0)[5/](#page-163-0)[95](#page-164-0)^{\rightarrow} \equiv \rightarrow \equiv \rightarrow \equiv 990

G. Fertin The Graph Motif problem \leftarrow [7](#page-168-0)[5/](#page-163-0)[95](#page-164-0)^{\rightarrow} \equiv \rightarrow \equiv \rightarrow \equiv 990

Running-time increase

- \triangleright random coloring: a "good" solution may not be colorful
	- \blacktriangleright may lead to false negatives
- repeat process until probability of success is 1ϵ ($\epsilon > 0$)
- probability of a good coloring of $G: \frac{k!}{k^k}$ $\frac{k!}{k^k}$ ≥ e^{-k}
- **•** needs $|\ln(\epsilon)|e^{k}$ iterations (i.e., random colorings of *G*)

From COLORFUL GRAPH MOTIF to GRAPH MOTIF

In a nutshell:

- **Fellows et al. 2007:** *O***[∗](64^{***k***}) →** *O***[∗](87^{***k***})**
- ► Betzler et al. 2008: $O^*(3^k) \rightarrow O^*(4.32^k)$

Adapting MLD to GRAPH MOTIF

O[∗] (2 *k*) **algorithm by Guillemot & Sikora 2013**

- \triangleright works only for CGM
- \blacktriangleright if *M* \neq *M*[∗], solution is not a multilinear monomial
- \triangleright previous construction needs to be adapted
- \triangleright introduction of variables for each vertex of G

Adapting MLD to GRAPH MOTIF

- ► One variable *x_u* per vertex *u* of *G*
- Each color *c* that appears *m* times in $M \rightarrow$ variables *yc*,1, *yc*,2, . . . , *yc*,*^m*
- ► Circuit is modified: $P_{u,1} = x_u \cdot (y_{c,1} + y_{c,2} + ... + y_{c,m})$
	- \triangleright Variables x ^{*u*} → a node of *G* is used only once
	- \triangleright Variables $y_i \rightarrow$ right #colors required by M
- Solution: multilinear monomial of degree $k' = 2k$ (*k* nodes + *k* colors)
- ► Complexity $O^*(2^{k'}) \rightarrow O^*(4^k)$

 $x_u(y_{R,1}+y_{R,2})\cdot x_v y_{Y,1} \cdot x_w(y_{R,1}+y_{R,2})\cdot x_t y_{B,1} + \ldots$

 $2Q$ (語)

 $x_u(y_{R,1}+y_{R,2})\cdot x_v y_{Y,1} \cdot x_w(y_{R,1}+y_{R,2})\cdot x_t y_{B,1} + \ldots$ $= x_{u}y_{R,1}.x_{v}y_{Y,1}.x_{w}y_{R,1}.x_{t}y_{B,1} +$

 $x_u(y_{R,1}+y_{R,2})\cdot x_v y_{Y,1} \cdot x_w(y_{R,1}+y_{R,2})\cdot x_t y_{B,1} + \ldots$ $= x_{u}y_{R,1}.x_{v}y_{Y,1}.x_{w}y_{R,1}.x_{t}y_{B,1} +$ $x_0 y_{R,1} x_v y_{Y,1} x_w y_{R,2} x_t y_{B,1} + \ldots$

 OQ

 $x_u(y_{R,1}+y_{R,2})\cdot x_v y_{Y,1}\cdot x_w(y_{R,1}+y_{R,2})\cdot x_t y_{B,1}+\ldots$ $= x_{u}y_{R,1}.x_{v}y_{Y,1}.x_{w}y_{R,1}.x_{t}y_{B,1} +$ $x_{u}y_{R,1}.x_{v}y_{Y,1}.x_{w}y_{R,2}.x_{t}y_{R,1} + ...$

 \triangleright solution: a multilinear monomial of degree $2k = 8$

GRAPH MOTIF is FPT in *k*

Previous results superseded by following theorem

Theorem (BJÖRKLUND, KASKI & KOWALIK, ALGORITHMICA 15) GRAPH MOTIF *is solvable in O*[∗] (2 *k*) *time using polynomial space.*

Remarks

- \blacktriangleright Randomized
- ▶ *Constrained* Multilinear Detection
- Result independently published in [Pinter, Zehavi - 2016]

Summary: GRAPH MOTIF w.r.t. *k*

Note: best deterministic algorithm in *O* ∗ (5.22*^k*) [PINTER ET AL., DAM 16]

GRAPH MOTIF w.r.t. `**: bad news**

Theorem (BETZLER ET AL., IEEE/ACM TCBB 11) GRAPH MOTIF *is* **W[1]**-complete when parameterized by ℓ .

GRAPH MOTIF w.r.t. `**: bad news**

Theorem (BETZLER ET AL., IEEE/ACM TCBB 11) GRAPH MOTIF *is* **W[1]**-complete when parameterized by ℓ .

Remarks

- **Peduction from INDEPENDENT SET**
- \blacktriangleright *M* has only 2 colors

 299

÷.

 299 ミー

G. Fertin The Graph Motif problem [8](#page-186-0)[4/](#page-179-0)[95](#page-180-0)

G. Fertin The Graph Motif problem [8](#page-187-0)[4/](#page-179-0)[95](#page-180-0)

*u*4

 \bigcap_{m+1}

*u*4

 \bigcap_{m+1}

GRAPH MOTIF w.r.t. ` **in trees ?**

Theorem (F. & KOMUSIEWICZ, CPM 16) GRAPH MOTIF *is solvable in O*[∗] (4 `) *time when G is a tree.*

 \rightarrow Dynamic Programming

Summary: GRAPH MOTIF w.r.t. `

Outline

[Introduction](#page-1-0)

[First Results](#page-41-0)

[FPT issues](#page-84-0)

[FPT issues for Colorful Graph Motif](#page-109-0)

[Colorful Graph Motif and parameter](#page-110-0) *k* [Colorful Graph Motif and parameter](#page-135-0) ℓ

[FPT issues for Graph Motif](#page-161-0) [Graph Motif and parameter](#page-162-0) *k* [Graph Motif and parameter](#page-178-0) ℓ

[Graph Motif IRL](#page-192-0)

[Conclusion](#page-196-0)

GRAPH MOTIF and variants: practical issues

- **Motus** LACROIX ET AL., BIOINFORMATICS 06
- ▶ Torque [BRUCKNER, HÜFFNER, KARP, SHAMIR & SHARAN, BRUCKNER ET AL., J. COMP. BIOL. 10]
- **GraMoFoNe [BLIN, SIKORA & VIALETTE, BICOB 10]**
- **RANGI [RUDI ET AL., IEEE ACM/TCBB 13].**
- **BIMBIO** RUBERT ET AL., BIBE 15
- ▶ CeFunMo [KOUHSAR ET AL., COMPUTERS IN BIOLOGY AND MEDICINE 16]

A focus on GraMoFoNe

- \triangleright cytoscape plugin (open-source java platform, popular in bioinfo)
- \triangleright supports queries up to 20–25 proteins
- \triangleright colorful and multiset motifs
- \triangleright can report all solutions
- \triangleright deals with approx. solutions (insertions, deletions)
- \blacktriangleright also deals list-coloring
- \triangleright technique: Pseudo-Boolean programming

Querying biological networks

Example

- **Query:** Mouse DNA synthesome complex (13 proteins)
- **Farget: Yeast network (∼ 5 300 proteins, ∼ 40 000** interactions)
- ▶ Output: match consists of 12 proteins with 2 insertions and 3 deletions

Outline

[Introduction](#page-1-0)

[First Results](#page-41-0)

[FPT issues](#page-84-0)

[FPT issues for Colorful Graph Motif](#page-109-0)

[Colorful Graph Motif and parameter](#page-110-0) *k* [Colorful Graph Motif and parameter](#page-135-0) ℓ

[FPT issues for Graph Motif](#page-161-0) [Graph Motif and parameter](#page-162-0) *k* [Graph Motif and parameter](#page-178-0) ℓ

[Graph Motif IRL](#page-192-0)

[Conclusion](#page-196-0)

About GRAPH MOTIF

Quick Summary

- \blacktriangleright Biologically motivated problem (also applies in other contexts)
- ► Very large literature (∼140 citations in 10 years)
- \triangleright Survey ? Work in progress! (with J. Fradin, G. Jean and F. Sikora)
- \blacktriangleright Multiple improvements over the time (see parameter k)
- \blacktriangleright Recent, sometimes involved techniques
	- \triangleright SeCoCo (2012)
	- \blacktriangleright MLD (2010) and constrained versions
	- \blacktriangleright mixed techniques
- \blacktriangleright Many variants
- \blacktriangleright Several software

Open Questions ?

\triangleright Yes and no!

- \triangleright Yes: many questions, many variants
- \triangleright No(t so much) if (COLORFUL) GRAPH MOTIF general case and parameter *k*...
- \blacktriangleright ...unless you require deterministic algorithms! \rightarrow beat current-best solutions
- \triangleright Yes:
	- \blacktriangleright further study parameter ℓ
	- \triangleright specific case of trees $+$ inquire about treewidth

A larger view 1/2

From Biology to Computer Science

- \blacktriangleright Biologically motivated problems become more "interesting"
	- \blacktriangleright discrete data structures
	- \triangleright more and more "complicated" graphs (e.g. metagenomics)
	- \triangleright more and more complicated structures (e.g. sequences with intergene sizes)
	- \rightarrow \rightarrow more and more intricate (thus interesting) problems

A larger view 1/2

From Biology to Computer Science

- \blacktriangleright Biologically motivated problems become more "interesting"
	- \blacktriangleright discrete data structures
	- \triangleright more and more "complicated" graphs (e.g. metagenomics)
	- \triangleright more and more complicated structures (e.g. sequences with intergene sizes)
	- \rightarrow \rightarrow more and more intricate (thus interesting) problems
- \blacktriangleright FPT well-adapted
	- \triangleright together with data reduction rules (complexity often collapses on real data)
	- \blacktriangleright allows to "advertise" new FPT techniques
	- \triangleright sometimes initiate new techniques

A larger view 2/2

From Computer Science to Bioinfo

- \triangleright FPT + data reduction rules should be advertised and used
- \triangleright see the different GRAPH MOTIF software
- \blacktriangleright how can we convince potential users?
- \triangleright e.g. why relatively fast exact rather than very fast heuristic?

A larger view 2/2

From Computer Science to Bioinfo

- \triangleright FPT + data reduction rules should be advertised and used
- \triangleright see the different GRAPH MOTIF software
- \blacktriangleright how can we convince potential users?
- \triangleright e.g. why relatively fast exact rather than very fast heuristic?

Thank you for your attention