
Algorithms Seminar 2001–2002,
F. Chyzak (ed.), INRIA, (2003), pp. 177–182.

Available online at the URL
http://algo.inria.fr/seminars/.

Combinatorics and Random Generation

Dominique Gouyou-Beauchamps

LRI, Université Paris-Sud (France)

March 18, 2002

Summary by Nicolas Bonichon

Abstract

We present an overview of different techniques to randomly and uniformly generate combi-
natorial objects.

1. Motivations and Hypotheses

One of the goals of a combinatorist is to recognize, to enumerate, and to generate objects
of different combinatorial classes. Here we present several methods to randomly and uniformly
generate objects of a given class. This has applications in simulation in general: image syntheses,
statistical physics, genomic, program testing, algorithms analyses, etc. In general, we want to
generate an object of size n such that the probability that an object appears is the same for all
objects of size n.

There are several ways to measure the complexity of a generating algorithm. The first one is
to count the number of calls to the RANDOM() function. This function returns a floating-point
number between 0 and 1. Another way to measure the complexity is to count the number of
arithmetic operations on floating-point numbers or on integers (a call of the RANDOM() function
is considered as an arithmetic operation). This measure is called the arithmetic complexity. Since
the generated objects can be huge (up to 107 or 108) and the manipulated numbers are as large
as an or n! (hence coded with O(n) or O(n log n) bits), it also makes sense to count the number
of operations on single bits. This is the bit complexity. In order to compute some objects of large
size, the time complexity of efficient algorithms is usually O(n) or O(n log n).

2. The Predecessors

Nijenhuis and Wilf [7] were the first ones to propose two types of generation algorithms:
– NEXT: with a total order on objects of size n and a given object of the family, compute the

next one in the order. Generally, these algorithms have a constant average time complexity;
– RANDOM : we select randomly and uniformly objects of size n of the family.

Here are two examples of these types of algorithms. Here and throughout the remainder of the
text, [n] denotes the set {1, . . . , n}.

Example (Permutations of [n], algorithms NEXTPER and RANPER [7]). NEXTPER uses the
notion of sub-exceeding function: a function f from [n] to [n] is sub-exceeding is and only if for
each i ∈ [n], 1 ≤ f(i) ≤ i. It is obvious that the number of sub-exceeding functions from [n] to [n]
is n! (one possibility for f(1), two for f(2), and so on).

178 Combinatorics and Random Generation

A clever order on sub-exceeding functions allows us to transform a permutation into the next
one with few operations. The average cost of a transformation is O(1) steps.

Input: σ = (σ1, σ2, . . . , σn), a permutation of Sn and its signature s (i.e., the number of couples
(i, j) such that σi > σj and i < j).

Output: next permutation.
if s = 1 then
s← −1; switch σ1 and σ2 and exit

else
s← 1; i← 0; t← 0
loop
d← 0; i← i+ 1
for j from 1 to i do

if σj > σi+1 then d← d+ 1 end if
end for
t← t+ d
if (t is odd) and (d < i) then

find in σ = (σ1, σ1, . . . , σi) the largest number less than σi+1;
switch this number with σi+1 and exit

end if
if (t is even) and (d > 0) then

find in σ = (σ1, σ1, . . . , σi) the smallest number greater than σi+1;
switch this number with σi+1 and exit

end if
end loop

end if

Figure 1. Algorithm NEXTPER.

To compute a random permutation of [n], the algorithm is quite simple (see Algorithm 2). This
algorithm is incremental. This means that after m steps, for each m ≤ n, the algorithm generates
a random permutation of [m]. Considering this algorithm, we can see that the number of calls of
the function RANDOM is n. The arithmetic complexity is also linear. Since this algorithm works
with integers less than n, the bit complexity is O(n log n).

σ1 ← 1
for i from 2 to n do
σi ← i
k ←

⌈
RANDOM() ∗ i

⌉
switch σk and σi

end for

Figure 2. Algorithm RANPER.

Example (Subsets of size k of a set of size n, algorithms NEXTKSB and RANKSB). In this case,
RANKSB is more difficult than NEXKSB. For NEXTKSB, it is possible to use the lexicographic
order. If k < n/2, less than 2 operations are necessary to obtain the next subset with k elements.

D. Gouyou-Beauchamps, summary by N. Bonichon 179

If k > n/2, we apply the algorithm on subsets of n − k elements. For RANDKSB, it is more
complicated because k memory cells are needed to store the subsets with k elements. For this
purpose, there exists a rejection algorithm with an O(k) average complexity [7].

3. Ad Hoc Algorithms

For some classes of objects, general methods do not work or are not efficient. Hence, it is
necessary to develop ad hoc algorithms. In this section we present several algorithms that generate
random complete binary trees with 2n edges.

3.1. Rémy’s Algorithm. Rémy’s Algorithm [8] uses the fact that complete binary trees are in
bijection with well-formed parentheses words (or Dyck words on the alphabet A = {x, x̄}). The
equation of the non-commutative generating series of this language is D = ε + xDx̄D. The Dyck
words of length 2n are enumerated by the Catalan numbers:∣∣D ∩A2n

∣∣ = 1
n+ 1

(
2n
n

)
=: Cn.

Hence Cn enumerates the complete binary trees with (n+1) leaves, n inner vertices, and 2n edges.
For a complete binary tree T with 2n edges, we have (2n + 1) ways to choose one edge (if we

admit that there is a virtual edge that goes to the root). Then, we can choose an orientation left or
right (2 choices). We place a new vertex in the middle of the chosen edge and we add a new edge
to this vertex on the left or on the right depending on the chosen orientation. If it is the virtual
edge, we place above the root a “reversed chevron” (∧), so two edges, linked to the root by the
right leaf or the left leaf depending of the chosen orientation (see Figure 3). We obtain a complete
binary tree T ′ with (2n+ 2) edges with a pointed leaf (the new added leaf). This tree T ′ has n+ 2
leaves. So, there are n+ 2 ways to point it, in other words, there are n+ 2 ways to obtain it from
a tree with n+ 1 leaves with the described process.

2(2n+1)Cn

2(n+2)Cn+1

Figure 3. Rémy’s construction.

We just proved bijectively and gave a combinatorial interpretation of the (obvious) recurrence
relation 2(2n + 1)Cn = (n + 2)Cn+1. We also proved that this process generates after m steps a
random tree of size m in the class of trees of size m. By recursion, the probability of T is 1/Cn. The
probability of a pointed tree T ′ is 1/

(
2(2n+ 1)Cn

)
. If we call T ′′ the tree obtained from T ′ while

forgetting the pointing, then the probability of the tree T ′′ to be generated is (n+2)/
(
2(2n+1)Cn

)
and so 1/Cn+1. Note that this algorithm is incremental. Another advantage of this algorithm is
that it manipulates numbers of order O(n). Moreover it computes in linear time and memory (for
fixed-size arithmetic operations).

180 Combinatorics and Random Generation

3.2. Algorithm based on the cyclic lemma. There are other algorithms that can be built from
a combinatorial interpretation of the identity (2n + 1)Cn =

(
2n+1

n

)
satisfied by Catalan numbers.

For this identity we use the cyclic lemma (or Raney’s lemma) [6, p. 213–227]:

Lemma 1. A word f on the alphabet A = {x, x̄} composed of n letters x and n + 1 letters x̄ has
only one factorization f = f ′f ′′ with f ′ 6= ε (in the 2n+ 1 possibilities) such that f ′′f ′ represents a
complete binary tree with 2n edges (i.e., a Dyck words followed with a letter x̄).

In this case, we start from a random word composed of n letters x and n+ 1 letters x̄ (it is easy
to build such a word since it corresponds with a subset of n elements of a set of 2n+ 1 elements).
Then we look for the unique possible factorization. One can remark that this algorithm is not
incremental.

Another identity we can use is (n+ 1)Cn =
(
2n
n

)
, proved by the Catalan factorization [3].

3.3. Step-by-step random generation of Dyck words. Let L be a language on an alphabet A.
Let Ln be the set of words of L of length n. For a word w in L, a letter a in A, and an integer n, let
us define p(w, a, n) as the ratio of the number of words in Ln beginning with wa over the number
of words in Ln beginning with w. Using this function, it is possible to generate a word uniformly:

w ← ε
while |w| < n do

a ← a random letter with probability p(w, a, n)
w ← wa

end while

Figure 4. Algorithm to compute a uniform random word.

This method can be efficiently applied to generate Dyck words, and therefore complete binary
trees. For this purpose, let us assume that we have generated a left factor w of a Dyck word on the
alphabet A = {x, x̄}. This word is composed of p letters x and q letters x̄ with p+q = 2n−m ≤ 2n,
p− q = h ≥ 0 and such that m and h have the same parity. The number of Dyck words beginning
with p letters x and q letters x̄ is equal to the number of left factors of Dyck words with p letters x
and q letters x̄ times the number of left factors of Dyck words of length m with h more x than x̄:

Fh,m =
h+ 1
m+ 1

(
m+ 1

(m− h)/2

)
.

By induction we suppose that w is selected such that all Dyck words ww′ have probability 1/Cn

to appear. The probability of w is Fn,m/Cn. Now a letter x is selected with probability h+2
h+1

m−h
2m

and a letter x̄ is selected with probability h
h+1

m+h+2
2m . With such probabilities, the probability of

the left factor wx is equal to the probability of the left factor w to appear times the probability of
the letter x:

h+2
h+1

m−h
2m

h+1
m+1

(
m+1

(m−h)/2

)
Cn

=
h+2
m

(
m

(m−h−2)/2

)
Cn

=
Fh+1,m−1

Cn

Similarly, the probability for the left factor wx̄ is equal to the probability of w to be selected times
the probability of the letter x̄ to be selected:

h
h+1

m+h+2
2m

h+1
m+1

(
m+1

(m−h)/2

)
Cn

=
h
m

(
m

(m−h)/2

)
Cn

=
Fh−1,m−1

Cn
.

We set the expected probabilities. This proves the uniformity of the distribution.

D. Gouyou-Beauchamps, summary by N. Bonichon 181

4. Rejection Algorithms

Assume we want to uniformly generate an object of a set S1. The idea is to uniformly generate
an object e in a set S2 such that S1 ⊂ S2. If e ∈ S1 then we keep e, otherwise we reject e and
we try to select another one. This method assumes than we know how to select efficiently objects
in S2, that the ratio |S2|/|S1| is not too big, and that we can test membership to S1 efficiently.

4.1. Left factor of Motzkin words. Here is an example of rejection algorithm that computes
left factor of Motzkin words [2]. Motzkin’s language M is composed of words f on the alphabet
A = {x, x̄, a} such that the subset of f composed only of letters x and x̄ is a Dyck word. The
idea is to generate a word, letter by letter, with probability 1/3 for each letter until it reaches the
length n or until there is more letters x̄ than letters x. In this last case, the partially built word is
rejected and the algorithm is started again.

To evaluate the complexity of this algorithm, we enumerate the average number of letters
generated before a word of length n in F is obtained. The language M satisfies the equa-
tion M = ε + aM + xMx̄M . So, the generating function M(t) of M satisfies the equation
M(t) = 1 + tM(t) + t2M(t)2 and is equal to

(
1− t−

√
(1 + t)(1− 3t)

)
/(2t2). The language F of

left factors of Motzkin words satisfies the equation F = M+MxF . So, the generating function F (t)

of F satisfies the equation F (t) = M(t) + tM(t)F (t) and is equal to
(
−1 +

√
1+t
1−3t

)
/(2t).

Let Rn be the language of rejected words by the algorithm and let F≤p be the language of
words of F of length less or equal to p. One can remark that Rn = F≤n−1A r F≤n and that
limn→∞Rn = Mx̄. The algorithm generates words of the language G = Fn +RnG. The generating
function G(t) of G is equal to G(t) = fntn

1−Rn(t) where Rn(t) is the generating function of Rn and
where F (t) is the generating function of F .

Let PG(t) the probability generating function of G, i.e., the generating function where each word
is weighed by its probability; the average length γ(G) of words of G is P ′

G(1). In formulas:

PG(t) = G(t/3) =
fnt

n

3n
(
1−Rn(t/3)

) and P ′
G(t) =

nfnt
n−1

3n
(
1−Rn(t/3)

) +
fnt

nR′n(t/3)

3n+1
(
1−Rn(t/3)

)2 .
One can remark that An = Fn∪

⋃n
i=1R

(i)
n An−i where R(i)

n = Rn∩Ai. If we note r(i)n the cardinality of
R

(i)
n , then 3n = fn+

∑n
i=1 r

(i)
n 3n−i and so fn/3n = 1−Rn(1/3) and we get P ′

G(1) = n+ 3n−1

fn
R′n(1/3).

But, as R′n(1/3) =
∑n

i=1 ir
(i)
n 3−i+1 = kλ(Rn), we get P ′

G(1) = n + 3n

fn
λ(Rn) where λ(Rn) =

λ(F≤n−1 r F≤n) =
∑n

i=0 i
kfi−1−fi

3i =
∑n

i=0 i
fi

3i − n fn

3n . Using both equations above, we obtain:

P ′
G(1) =

[tn]
(

1
1−tF (t/3)

)
[tn]F (t/3)

, [tn]F (t/3) =
√

3√
πn

+O

(
1
n

)
, [tn]

(
1

1− t
F (t/3)

)
=

2
√

3n√
π

+O(1).

Therefore when n goes to infinity, the average number of selected letters converges to 2n. Alain
Denise has extended this rejection method to the fg-languages [4].

4.2. Motzkin words. Let us consider a Motzkin word of length n. This is a word of parentheses
on {x, x̄} of length 2i ≤ n with n − 2i letters a intertwined. The Motzkin words of length n are
enumerated by Motzkin numbers mn =

∑bn/2c
i=0

(
n
2i

)
Ci where Ci is a Catalan number. To select

a Motzkin word of length n uniformly, the problem is to decide the number i of letters x in the
word. Then the problem is easy to solve, as we know how to select a Dyck word length 2i and we
know how to select 2i positions in n possible ones where the letters of this word will be inserted.

182 Combinatorics and Random Generation

The probability that a word has i letters x and i letters x̄ is
(

n
2i

)
Ci/mn. To generate i with the

appropriate distribution, using the formula, it is necessary to manipulate huge numbers. The
idea of Laurent Alonso [1] is to approximate this distribution by a larger distribution, easy to
simulate. This idea can also be found in the Luc Devroye’s book [5]. Assume that we have v + 1
boxes numbered from 0 to v. Box i contains Ni black balls (N =

∑v
i=0Ni). This is the initial

distribution. For each i = 0, 1, . . . , v, we add Bi white balls into box i. Globally, there are D
balls (D =

∑v
i=0Di, Di = Ni + Bi). This is an easy distribution to compute. We select box i

with probability Di/D. Then we consider that this choice is correct with probability Ni/Di (the
probability to select a black ball in the box i). If this choice is not correct, we choose another box.
Otherwise the integer i is definitively selected. The probability to select the box i with such process
is Ni/N and the average number of trials before a box is definitively selected is D/N .

For Motzkin’s language, L. Alonso [1] takes v = n+ 1−
⌊
(n+ 1)/3

⌋
,

Ni =

{
n!

(i−1)! i! (n−2i+2)! for i ∈ [1, 1 + n/2],

0 otherwise,

and
Di =

n!⌊
(n+ 1)/3

⌋
! i!
(
n+ 1− i− b(n+ 1)/3c

)
!
.

Note that Di is mainly a binomial coefficient times a constant.
We can show that when i ∈ [1, 1 + n/2], we have Ni/Di =

(
a
c

)
/
(
b
c

)
≤ 1 where the values of a, b,

and c depend only of the position of i from
⌊
(n + 1)/3

⌋
+ 1. The choice of box i with probability

Di/D can be done by generating a sequence of n+ 1−
⌊
(n+ 1)/3

⌋
bits and considering the sum of

generated bits. The validity test of the choice of a box with a probability Ni/Di =
(
a
c

)
/
(
b
c

)
can be

done by choosing c integers in the interval [1, b] and verifying that they are less than a. We can
compute that

D ∼ 3n+2

2n3/2
√
π
, M ∼ 3n+1

√
3

2n3/2
√
π
.

This implies the result D/M ∼
√

3.

Theorem 1. [1] The average complexity of the random generating algorithm of Motzkin words is
linear.

Bibliography

[1] Alonso (Laurent) and Schott (René). – Random generation of trees. – Kluwer Academic Publishers, Boston, MA,
, x+208p. Random generators in computer science.

[2] Barcucci (E.), Pinzani (R.), and Sprugnoli (R.). – The random generation of directed animals. Theoretical Com-
puter Science, vol. 127, n̊ 2, , pp. 333–350.

[3] Chottin (Laurent) and Cori (Robert). – Une preuve combinatoire de la rationalité d’une série génératrice associée
aux arbres. RAIRO Informatique Théorique, vol. 16, n̊ 2, , pp. 113–128.

[4] Denise (Alain). – Méthodes de génération aléatoire d’objets combinatoires de grande taille et problèmes
d’énumération. – Thèse, Université Bordeaux I, .

[5] Devroye (Luc). – Nonuniform random variate generation. – Springer-Verlag, New York, , xvi+843p.
[6] Lothaire (M.). – Combinatorics on words. – Addison-Wesley, Reading, Mass., , Encyclopedia of Mathematics

and its Applications, vol. 17, xix+238p. Collective work under a pseudonym.
[7] Nijenhuis (Albert) and Wilf (Herbert S.). – Combinatorial algorithms. – Academic Press, New York, , second

edition, Computer Science and Applied Mathematics, xv+302p. For computers and calculators.
[8] Rémy (Jean-Luc). – Un procédé itératif de dénombrement d’arbres binaires et son application à leur génération

aléatoire. RAIRO Informatique Théorique, vol. 19, n̊ 2, , pp. 179–195.

