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a b s t r a c t 

Cross-modal hashing maps heterogeneous multimedia data into Hamming space for retrieving relevant 

samples across modalities, which has received great research interests due to its rapid retrieval and low 

storage cost. In real-world applications, due to high manual annotation cost of multi-media data, we can 

only make use of limited number of labeled data with rich unlabeled data. In recent years, several semi- 

supervised cross-modal hashing (SCH) methods have been presented. However, how to fully explore and 

jointly utilize the modality-specific (complementarity) and modality-shared (correlation) information for 

retrieval has not been well studied for existing SCH works. In this paper, we propose a novel SCH ap- 

proach named Modality-specific and Cross-modal Graph Convolutional Networks (MCGCN). The network 

architecture contains two modality-specific channels and a cross-modal channel to learn modality-specific 

and shared representations for each modality, respectively. Graph convolutional network (GCN) is lever- 

aged in these three channels to explore intra-modal and inter-modal similarity, and perform semantic in- 

formation propagation from labeled data to unlabeled data. Modality-specific and shared representations 

for each modality are fused with attention scheme. To further reduce the modality gap, a discriminative 

model is designed, learning to classify the modality of representations, and network training is guided by 

adversarial scheme. Experiments on two widely used multi-modal datasets demonstrate MCGCN outper- 

forms state-of-the-art semi-supervised/supervised cross-modal hashing methods. 

© 2022 Published by Elsevier Ltd. 
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. Introduction 

With the rapid growth of multi-media data, cross-modal re- 

rieval [1–5] has received continuous research attention, whose 

oal is to search semantically relevant instances from one modal- 

ty with the query instance of another modality [6,7] . One of the 

ost popular pipeline is cross-modal hashing [8,9] , which learns to 

onvert multi-media data into binary hash codes for retrieval, due 

o its advantage in retrieval speed and storage for large-scale data 

10,11] . Different modalities usually have inconsistent distributions 

nd representations, which is the main challenge. To deal with 

his modality gap, several supervised cross-modal hashing meth- 
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ds have been developed [12] , e.g., collective matrix factorization 

ashing (CMFH) [13] , deep cross-modal hashing (DCMH) [8] , cycle- 

onsistent deep generative hashing (CYC-DGH) [14] , etc. 

Although supervised cross-modal hashing methods have 

chieved significant progress, they heavily rely on the semantic 

abel information. However, labeling a large repository of instances 

ontaining multiple modalities is time and labor consuming and is 

nfeasible. Some unsupervised cross-modal hashing methods have 

emonstrated that unlabeled multi-media data is also useful for 

he retrieval task [15,16] . For example, cluster-wise unsupervised 

ashing (CUH) [17] adopts the multi-view clustering manner 

o project data of different modalities into latent space to seek 

luster centroid points for learning compact hash codes and 

inear hash functions. Focusing on the unsupervised retrieval task, 

ggregation-based graph convolutional hashing (AGCH) [18] uses 

ultiple metrics to formulate affinity matrix for hash code learn- 

https://doi.org/10.1016/j.patcog.2022.109211
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.109211&domain=pdf
mailto:xiaoyuanjing@whu.edu.cn
https://doi.org/10.1016/j.patcog.2022.109211
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ng. Deep graph-neighbor coherence preserving network (DGCPN) 

19] presents graph-neighbor coherence to explore the relation- 

hips between unlabeled data and its neighbors, and adopts a 

omprehensive similarity preserving loss for preserving similarity. 

In real-world application, we usually can obtain a small quan- 

ity of labeled multi-media data and access rich unlabeled data 

ith multiple modalities to perform cross-modal hashing in this 

emi-supervised scenario. In recent years, benefited from the de- 

elopment of deep learning technology [20] , a few deep learn- 

ng based semi-supervised cross-modal hashing (SCH) methods 

ave been presented and demonstrated to bring favorable retrieval 

erformance, e.g., semi-supervised deep quantization (SSDQ) [21] , 

anking-based deep cross-modal hashing (RDCMH) [22] , semi- 

upervised cross-modal hashing approach by generative adversarial 

etwork (SCH-GAN) [23] , etc. Recently, the powerful representation 

earning technology, i.e., graph convolutional network (GCN) [24] , 

as been successfully introduced into SCH [25] . Semi-supervised 

raph convolutional hashing network (SGCH) [26] preserves high- 

rder intra-modality similarity with GCN and adopts a siamese 

etwork to map the learned node representations into hamming 

pace for achieving hash codes. 

.1. Motivation and contribution 

Although a set of SCH methods have been developed, existing 

CH methods mainly focus on intra-modal feature learning and 

imilarity preserving, and then build bridge across modalities in 

he way of loss function establishment, e.g., [21,22] and [25] , or a 

ertain network module, e.g., [23] and [26] , with the learned fea- 

ures of each modality for reducing the modality gap and learn- 

ng hash codes. How to jointly explore both intra-modal and inter- 

odal semantic similarity and structure information in labeled 

nd unlabeled data, such that the modality-specific and modality- 

hared information is fully exploited and used, has not been well 

tudied. In this paper, we propose a novel SCH approach named 

odality-specific and Cross-modal Graph Convolutional Networks 

MCGCN). The contributions of our work are summarized as fol- 

owing three points: 

(1) MCGCN provides a three-channel network architecture, in- 

cluding two modality-specific channels and a cross-modal 

channel for image and text modalities. Besides intra-modal 

graph modeling, cross-modal graph is also modeled with 

heterogeneous image and text features. Joint intra- and 

inter-modal semantic similarity preservation and seman- 

tic information propagation for unlabeled samples are per- 

formed based on GCN. And the modality-specific and shared 

representations are fused with attention scheme for each 

modality. To our knowledge, this is the first work to specially 

build cross-modal graph and jointly learn modality-specific 

and modality-shared features for SCH. 

(2) The adversarial scheme is employed to guide optimization of 

network parameters. The generative model learns to predict 

the semantic labels of feature representations, and makes 

full use of the label and semantic similarity information to 

generate discriminant hash codes. And the discriminative 

model builds modality classifier to model inter-modal invari- 

ance with the adversarial loss. 

(3) We evaluate MCGCN on the widely used benchmark datasets 

Wikipedia [27] and NUS-WIDE-10K [28] . The experimental 

results demonstrate our approach can achieve state-of-the- 

art SCH performance. 

.2. Organization 

The rest of this paper is organized as follows. Section 2 briefly 

ntroduces the related works on supervised and unsupervised 
2 
ross-modal hashing methods, semi-supervised cross-modal hash- 

ng methods, and graph convolutional networks. In Section 3 , we 

etail the proposed MCGCN approach. Section 4 reports the ex- 

erimental results on the Wikipedia and NUS-WIDE-10K datasets, 

nd provides a comprehensive discussion about MCGCN. Finally, 

he conclusions are drawn in Section 5 . 

. Related works 

.1. Supervised and unsupervised cross-modal hashing methods 

Nowadays, several supervised or unsupervised cross-modal 

ashing methods have been presented and have achieved sig- 

ificant process [29–32] . With the matrix factorization technol- 

gy, collective matrix factorization hashing (CMFH) [13] tries to 

earn unified hash codes in the shared latent semantic space 

or different modalities of an instance. Deep cross-modal hash- 

ng (DCMH) [8] provides an end-to-end deep learning framework 

o perform cross-modal retrieval. Cycle-consistent deep generative 

ashing (CYC-DGH) [14] adopts the adversarial training scheme to 

earn a couple of hash functions that can realize translation be- 

ween modalities for reducing the heterogeneity. Robust and dis- 

rete matrix factorization hashing (RDMH) [33] learns the binary 

odes without any relaxation, avoiding the quantization loss, and 

ses the semantic label embedding scheme to find the relation- 

hips between semantic labels and hash codes. 

The unsupervised generative adversarial cross-modal hashing 

UGACH) method [34] tries to use the ability of unsupervised rep- 

esentation learning of generative adversarial network (GAN) to ex- 

loit the manifold structure in data of different modalities. Un- 

upervised coupled cycle generative adversarial hashing networks 

UCH) [35] adopts the outer-cycle network to learn common rep- 

esentations, and uses the inner-cycle network to generate reliable 

ash codes. Deep graph-neighbor coherence preserving network 

DGCPN) [19] tries to exploit similarity, i.e., the graph-neighbor co- 

erence, the coexistent similarity, and the intra- and inter-modality 

onsistency, in unlabeled multi-modality data. 

However, these methods cannot be directly used in the semi- 

upervised scenario, where there exist both labeled multi-media 

ata and rich unlabeled data with multiple modalities. 

.2. Semi-supervised cross-modal hashing methods 

In recent years, to be flexible to use both labeled and unlabeled 

ata from multiple modalities, a few semi-supervised cross-modal 

ashing (SCH) methods have been developed. The semi-supervised 

emantic-preserving hashing (S3PH) method [36] integrates the re- 

axed latent subspace learning and semantic-preserving regular- 

zation into a unified optimization objective. Focusing on com- 

osite quantization, the semi-supervised deep quantization (SSDQ) 

ethod [21] incorporates the information of paired data, labeled 

ata and unlabeled data into a single framework. Focusing on the 

ssue of incomplete and insufficient labels of multi-media data, the 

eakly-supervised cross-modal hashing (WCHash) method [37] en- 

iches the labels of training data for learning cross-modal hash- 

ng functions. The ranking-based deep cross-modal hashing (RD- 

MH) method [22] learns the semi-supervised semantic ranking 

ist based on the feature and label information of data, and then 

ntegrates the semantic ranking information into the deep cross- 

odal hashing process. The semi-supervised cross-modal hashing 

pproach by generative adversarial network (SCH-GAN) method 

23] provides a GAN-based solution for cross-modal hashing and 

ses reinforcement learning for optimization, where the generative 

odel learns to select margin examples for the given cross-modal 

uery and the discriminative model tries to judge their relevance. 
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There exist obvious differences between our approach and these 

CH methods. Our approach utilizes the graph neural network to 

xploit relationship between samples and conduct semantic infor- 

ation propagation, and models both intra-modal and cross-modal 

raphs to jointly explore the modality-specific and modality-shared 

nformation for learning discriminative hash codes. 

.3. Graph convolutional networks 

Graph convolutional network (GCN) presented by Kipf and 

elling [24] has been demonstrated to be effective for semi- 

upervised classification [38–40] . It provides an efficient layer- 

ise propagation rule that can directly perform convolution op- 

ration on graphs, which is a powerful technology for analyz- 

ng graph data. Its main idea is to aggregate information from 

ocal graph neighborhoods and perform semi-supervised learning 

ased on the fact that similar connected nodes have a large prob- 

bility to be from the same class. Recently, GCN has been suc- 

essfully introduced into the cross-modal retrieval task. Xu et al. 

41] presented the graph convolutional hashing (GCH) method, 

hich uses a semantic encoder for semantic information exploiting 

nd adopts GCN to explore the similarity structure among nodes 

or generating favorable hash codes. Duan et al. [25] developed the 

emi-supervised cross-modal graph convolutional network hashing 

CMGCNH) method, which applies asymmetric GCN for retrieval, 

nd performs cooperative multimodal learning to learn hash codes. 

hen et al. [26] presented the semi-supervised graph convolu- 

ional hashing network (SGCH) method, which preserves intra- 

odal similarity with GCN and tries to realize distribution agree- 

ent across modalities with the adversarial loss. 

Different from these GCN-based cross-modal retrieval methods, 

e for the first time focus on cross-modal graph modeling and 

epresentation learning, and we provide a joint intra- and inter- 

odal graph structure exploration solution that achieves the state- 

f-the-art retrieval performance. 

. Proposed approach 

.1. Notation 

Given multimodal dataset D = { I, T } , where I = [ i 1 , . . . , i N ] ∈ 

 

d I ×N and T = [ t 1 , . . . , t N ] ∈ R 

d T ×N separately denote the feature 

atrices for the image and text modalities, which can be divided 

nto a retrieval set D r and a query set D q . Here, N is the total num- 

er of feature vectors of image/text modalities and d I � = d T . The re- 

rieval set D r = 

{
D 

L 
r , D 

U 
r 

}
, where D 

L 
r is a collection of N L instances 

f labeled image-text pairs, and D 

U 
r is a set of N RU instances of 

nlabeled image-text pairs. l L p ∈ { 0 , 1 } C×1 represents the class la- 

el vector of the pth instance o L p = 

(
i L p , t 

L 
p 

)
in D 

L 
r , where i L p and t L p 

eparately denote the labeled image and text feature vectors, and 

denotes the total number of classes. If o L p is from the cth class, 

 

L 
pc = 1 , otherwise, l L pc = 0 . The query set D q includes N Q unlabeled

airs of image features and text features. In this paper, we em- 

loy graph convolution networks (GCN) to explore the structure 

nformation of labeled and unlabeled samples in graph. For con- 

enience, we denote the total set of unlabeled image-text pairs 

s D 

U = 

{
o U p 

}N U 

p=1 
= 

{(
i U p , t 

U 
p 

)}N U 

p=1 
, where N U denotes the total num- 

er of unlabeled instances. The objective of cross-modal hashing is 

o learn hash functions for generating discriminative hash code of 

ach input image/text feature vector. 

.2. Network architecture 

The overall architecture of our approach MCGCN is shown in 

ig. 1 . It consists of three modules, i.e., intra-modal and cross- 
3 
odal graph modeling, graph convolutional representation learn- 

ng, and adversarial learning. In the graph construction module, 

e separately define the intra-modal adjacency matrices G 

I and G 

T 

or image and text modalities, and employ auto-encoders to ob- 

ain encoded representations with the same dimensionality for I

nd T for constructing cross-modal adjacency matrix G 

S . The graph 

onvolutional representation learning module uses GCN to explore 

ntra-modal and inter-modal semantic similarity for obtaining dis- 

riminant feature representations, and utilizes attention scheme to 

use modality-specific and shared representations. In the adversar- 

al learning module, the generative model learns to predict the 

emantic labels of features and learns to generate discriminative 

ash codes, and the discriminative model learns to classify the 

odality of features. 

.3. Intra-modal and cross-modal graph modeling 

To make use of the powerful representation learning ability of 

CN, we need to explore discriminant information on the graph 

ata. To fully explore intra-modal semantic similarity, we sepa- 

ately build undirected graphs G ∗ = ( ν∗, ε ∗) , ∗ ∈ { I, T } , which de- 

ote the graphs of size N with nodes x n = i n ( t n ) ∈ ν∗ and edges 

 

x n , x m 

) ∈ ε ∗, for image and text modalities. With the established 

raph G I , the adjacency matrix G 

I for the image modality is defined 

s 

 

I 
mn = 

{ 

1 , if i m 

and i n are labeled and l m 

= l n 
1 , if i m 

or i n is unlabeled and i m 

( i n ) ∈ N r ( i n ( i m 

) ) 
0 , otherwise 

(1) 

here l n is the one-hot class label vector of i n , i n ∈ N r ( i m 

) denotes 

hat i n belongs to the r nearest neighbors of i m 

. The adjacency ma- 

rix G 

T for the text modality can be defined in the same manner. 

n this paper, r is empirically set as r = 20 . 

Besides modality-specific semantic similarity exploration, we 

lso make effort to explore inter-modal semantic similarity 

hrough cross-modal graph modeling. However, the dimensions of 

eature vectors from different modalities are usually different, such 

hat the features across modalities can not be directly compared. 

nspired by the idea of dimensionality reduction and feature re- 

onstruction of autoencoder [42] , in this paper, we introduce au- 

oencoders to obtain latent representations with the same dimen- 

ionality for different modalities. Specifically, we adopt the autoen- 

oder with one fully connected layer for the encoder and decoder 

arts for each modality. Given the feature matrices for the image 

nd text modalities I and T , the encoders learn latent representa- 

ions I e = f I e (I) ∈ R 

d×N and T e = f T e (T ) ∈ R 

d×N with mapping func-

ions f I e and f T e for two modalities, and the decoders map the rep- 

esentations back to the reconstruction I d = f I 
d ( I e ) and T d = f T 

d ( T e ) 

ith the mapping functions f I 
d 

and f T 
d 

. θ I 
ae and θ T 

ae are the param- 

ters of the autoencoders for the image and text modalities. We 

hould minimize the reconstruction loss L r (θ I 
ae , θ

T 
ae ) with the ob- 

ective shown in Fig. 2 . 

We build the cross-modal graph as G S = ( νS , ε S ) , where νS is 

he vertex set corresponding to the total representation set S IT = 

 

I e , T e } and ε S is the collection of edges. We define the cross-modal 

djacency matrix G 

S based on intra-modal adjacency matrices G 

I 

nd G 

T , since we deem that if any two image(text) features, e.g., 

 m 

(t m 

) and i n (t n ) are connected, the corresponding encoder out- 

uts i m 

e (t m 

e ) and i n e (t n e ) should be connected, and i m 

e (t m 

e ) and t n e (i n e )

hould also be connected, leaving aside the modality difference. 

pecifically, G 

S is defined as follows 

 

S = 

[
G 

I G I + G T 
2 

G I + G T 
2 

G 

T 

]
(2) 
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Fig. 1. The overall framework of our MCGCN approach. 

Fig. 2. The objective of the reconstruction loss in the autoencoders of two modali- 

ties. 

Fig. 3. Schematic depiction of GCN. 
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.4. Graph convolutional representation learning 

With the established modality-specific graphs G I and G T , and 

he cross-modal graph G S , we build a three-channel network 

odule based on graph convolutional networks (GCN) to learn 

odality-specific and shared representations for each modality. 

pecifically, for each channel, a two-layer GCN is used, and the 

ayer-wise propagation H 

k 
l+1 

= f k 
l 

(
H 

k 
l 
, G 

k ;�k 
l 

)
, k = { I, T , S} is per-

ormed for the lth layer of GCN. The detailed process is shown in 

ig. 3 . 

The output feature representation set H 

k 
l+1 

can be obtained 

hrough graph convolutional function f k 
l 

based on input feature 

et H 

k 
l 

and the adjacency matrix G 

k . l = 0 , 1 and �k = 

{
�k 

0 
, �k 

1 

}
s the set of parameters of two layers. H 

k is the input of GCN, i.e.,

0 

4 
 

I ( T ) 
0 

= I ( T ) for the image and text modalities, and H 

S 
0 

= S IT for the

ross-modal channel. The convolution function in [24] is used 

f k l = tanh 

((
D 

k 
)− 1 

2 ˜ G 

k 
(
D 

k 
)− 1 

2 H 

k 
l �

k 
l 

)
(3) 

here ˜ G 

k = G 

k + I , I is an identity matrix, D 

k is a degree matrix 

ith the diagonal element D 

k 
nn = 

∑ 

m 

˜ G 

k 
mn , and tanh (·) is an ac- 

ivation function. In this way, GCN can explore and preserve the 

igh-order intra-modal and inter-modal similarity, and perform se- 

antic information propagation from unlabeled samples to labeled 

amples. 

When we obtain the output feature representations of GCN cor- 

esponding to the image-modality, text-modality, and cross-modal 

hannels, i.e., Z I = H 

I 
2 , Z T = H 

T 
2 , and 

[
Z I S , Z 

T 
S 

]
= H 

S 
2 

, we fuse the

odality-specific and modality-shared representations to generate 

nified representations for each specific modality, such that sub- 

equent hashing learning can be performed based on the intra- 

odal characteristics and the correlation (commonness) across 

odalities jointly for each modality. Considering that the modality- 

pecific representations and modality-shared representations may 

ontribute differently to the unified representations, we provide a 

ross-graph attention scheme to seek the significance of each kind 

f representations for fusion. Specifically, we adopt an attention 

unction f I a 
(
·; θ I 

a 

)
, i.e., a single-layer feed-forward sub-network ac- 

ivated by the Sigmoid function and parameterized by θ I 
a , to obtain 

he attention coefficient for the image modality 

A 

I = f I a 
(
Z I ; θ I 

a 

)
A 

I 
S = f I a 

(
Z I S ; θ I 

a 

) (4) 

he Softmax function is used to further normalize these coeffi- 

ients. Then, we can obtain the fused node feature representation 

et R I for the image modality 

 

I = A 

I Z I + A 

I 
S Z 

I 
S (5) 

or the text modality, the fused feature representation set R T can 

e obtained in the same way. 

.5. Adversarial learning 

In this section, we will introduce the loss functions of the 

roposed approach, including the label prediction loss, hash code 
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earning loss, and the adversarial loss. And network training will 

e guided by the adversarial mechanism between the generative 

odel and the discriminative model. 

.5.1. Generative model 

To further make the fused feature representations be semanti- 

ally discriminative, we build a mapping from the feature repre- 

entation space to the semantic label space. We adopt a one-layer 

ub-network activated by the Softmax function as a classifier for 

ach modality. When the labeled representation of R I 
(
R T 

)
, i.e., r I p 

r r T p , is input into the corresponding classifier, the probability dis- 

ribution of semantic categories of the feature representation, i.e., 

 

I 
(
r I p 

)
or P T 

(
r T p 

)
, can be obtained. We utilize these probability dis- 

ributions to define the label prediction loss as follows 

 l p 

(
θ I 

l p , θ
T 
l p 

)
= − 1 

N L 

N L ∑ 

p=1 

l L p 

(
log P I 

(
r I p 

)
+ log P T 

(
r T p 

))
(6) 

To facilitate efficient retrieval with significantly reduced storage 

eeds, we map feature representations into Hamming space to ob- 

ain the corresponding hash codes. Specifically, the hash codes can 

e obtained through B ∗ = sign ( R ∗) ∈ { −1 , +1 } v ×N 
, ∗ ∈ { I, T } , where 

ign ( ·) is the element-wise sign function. Each column of B ∗ is the 

earned v -bit hash codes. Cross-modal semantic similarity is ex- 

ected to be preserved between feature representations and be- 

ween the corresponding hash codes. Inspired by Jiang and Li [8] , 

u et al. [41] , we provide the following hash code learning loss 

ith semantic similarity preservation 

 hcl 

(
�I , �T , �S , θ I 

a , θ
T 
a 

)
= −

N L ∑ 

p,q =1 

( J pq ω pq − log ( 1 + e ω pq ) ) 

+ α
(∥∥B 

I − R 

I 
∥∥2 

F 
+ 

∥∥B 

T − R 

T 
∥∥2 

F 

)
+ β

(∥∥B 

I 1 

∥∥2 

F 
+ 

∥∥B 

T 1 

∥∥2 

F 

) (7) 

here ω pq = 

1 
2 r 

I ′ 
p r 

T 
q , 1 is a vector with all elements being 1, α and

are balance factors, and (·) ′ denotes the transposition opera- 

ion. J is the cross-modal semantic similarity matrix, and J pq = 1 , 

f r I p and r T q is from the same class, and J pq = 0 , otherwise. The

rst term is a cross-modal semantic similarity preservation loss 

n features, which is the negative log-likelihood function. By min- 

mizing this term, the similarity of feature representations of the 

ame class across modalities will be maximized, while the cross- 

odal similarity of representations from different classes will be 

inimized simultaneously. The second term is the approximation 

oss for the fused feature representations and corresponding hash 

odes. Through this approximation, the hash codes are also ex- 

epted to preserve the cross-modal semantic similarity. The third 

erm is used to promote each bit of hash code to be balanced for 

ll input samples. 

.5.2. Discriminative model 

To further reduce the modality gap, we build a modality classi- 

er acting as an adversary, which aims to recognize the modality 

f fused feature representations, with a three-layer fully connected 

ub-network. The adversarial loss is defined as follows 

 adv ( θA ) = − 1 

N 

N ∑ 

n =1 

(
log A 

(
r I n ; θA 

)
+ log 

(
1 − A 

(
r T n ; θA 

)))
(8) 

here A 

(
r I n ; θA 

)
denotes the probability of modality for the repre- 

entation r I n , and θA is the parameter of the sub-network. By defin- 

ng this cross-entropy based loss, we intend to reduce the cross- 

odal heterogeneity gap in the level of features with the adver- 

arial scheme. 
5 
.5.3. Optimization 

We should jointly minimize the hash code learning loss L hcl in 

q. (7) , the label prediction loss L l p in Eq. (6) , and the reconstruc- 

ion loss L r in Fig. 2 of the generative model, and minimize the 

dversarial loss L adv in Eq. (8) of the discriminative model. Con- 

idering that the generative model and discriminative model have 

pposite optimization goals, we use mini-max game for optimiza- 

ion 

ˆ θ ∗
ae , 

ˆ �∗, ˆ �S , ˆ θ ∗
a , 

ˆ θ ∗
l p 

)
= arg min 

θ ∗
ae , �

∗, �S ,θ ∗
a ,θ

∗
lp 

L hcl 

(
�∗, �S , θ ∗

a 

)
+ γ L l p 

(
θ ∗

l p 

)
+ ηL r ( θ

∗
ae ) − L adv 

(
ˆ θA 

)
(9) 

ˆ θA 

)
= arg max 

θA 

L hcl 

(
ˆ �∗, ˆ �S , ˆ θ ∗

a 

)
+ γ L l p 

(
ˆ θ ∗
l p 

)
+ ηL r 

(
ˆ θ ∗
ae 

)
− L adv ( θA ) (10) 

here γ and η are hyper-parameters to balance three terms of the 

enerative model, and ∗ = { I, T } . These parameters are updated by 

sing the stochastic gradient descent algorithm. Following [43] , a 

radient reversal layer (GRL) is added before the first layer of the 

odality classifier to facilitate optimization. The optimization pro- 

ess is briefly summarized in Algorithm 1 . 

lgorithm 1 Optimization of MCGCN. 

1. Input : Image and text features I and T , and class label set {
l L p 

}N L 

p=1 
of labeled feature set. 

2. Construct intra-modal and cross-modal graphs G I , G T , and 

G S . 
3. Update until convergence 

(a) Separately update θ ∗
ae , �

∗, �S , θ ∗
a , θ

∗
l p 

, ∗ = { I, T } by 

descending their stochastic gradients with the learn- 

ing rate ρ: 

θ ∗
ae ← θ ∗

ae − ρ∇ θ∗
ae 

1 
N 

(
L hcl + γ L l p + ηL r − L adv 

)
, 

�∗ ← �∗ − ρ∇ �∗ 1 
N 

(
L hcl + γ L l p + ηL r − L adv 

)
, 

�S ← �S − ρ∇ �S 
1 
N 

(
L hcl + γ L l p + ηL r − L adv 

)
, 

θ ∗
a ← θ ∗

a − ρ∇ θ∗
a 

1 
N 

(
L hcl + γ L l p + ηL r − L adv 

)
, 

θ ∗
l p 

← θ ∗
l p 

− ρ∇ θ∗
l p 

1 
N 

(
L hcl + γ L l p + ηL r − L adv 

)
. 

(b) Update θA by ascending the stochastic gradients 

through GRL: 

θA ← θA + ρ∇ θA 

1 
N 

(
L hcl + γ L l p + ηL r − L adv 

)
. 

4. Output : Hash codes B I and B T of the image and text modal- 

ities. 

. Experiments 

.1. Datasets and compared methods 

In this paper, we use two benchmark datasets Wikipedia 

27] and NUS-WIDE-10K [28] to evaluate our approach MCGCN. 

-The Wikipedia dataset [27] is collected from Wikipedia arti- 

les. It contains 2,866 image-text pairs from 10 categories. Follow- 

ng [23] , the dataset is divided into a training set (retrieval set) 

ith 2,173 pairs and a test set (query set) with the remaining 693 

airs. 

-The NUS-WIDE-10K dataset [28] is a subset of the NUS-WIDE 

ataset [44] , including the pairs of 10 largest categories of NUS- 

IDE. It contains 10,0 0 0 image-text pairs, where 8,0 0 0 pairs are 

elected to constitute the training set (retrieval set), and the re- 

aining 2,0 0 0 pairs are used for testing (query set). 
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On these two datasets, following [26,43,45] , 4,096d feature vec- 

ors extracted by the Fc7 layer of the VGGNet are used to represent 

mages. The 3,0 0 0d bag-of-words (BoW) feature vectors are used 

o represent texts for Wikipedia, and 1,0 0 0d BoW vectors are used 

or text features on NUS-WIDE-10K. 

Six state-of-the-art and related cross-modal retrieval meth- 

ds are used as baselines for comparison, including three semi- 

upervised cross-modal hashing methods, i.e., RDCMH [22] , SGCH 

26] , SCH-GAN [23] , an unsupervised cross-modal hashing method, 

.e., DGCPN [19] , a GCN-based supervised cross-modal hashing 

ethod, i.e., GCH [41] , and a non-hashing semi-supervised cross- 

odal retrieval method, i.e., SMLN [4] . For semi-supervised and 

nsupervised methods, all labeled and unlabeled available data is 

sed for training, while only the labeled data is used for training 

or the supervised method GCH. For these compared methods, the 

ource codes are kindly provided by the authors. For fairness, we 

se the same experimental setting in this paper for these baselines 

or experiment. We carefully tune the hyper-parameters as recom- 

ended by the original papers. 

.2. Implementation details and evaluation measures 

The details of the network are as follows: we deploy the 

utoencoder for each modality to learn latent representations, 

.e., d I ( d T ) → 2048 → d I ( d T ) for Wikipedia and d I ( d T ) → 1024 → 

 I ( d T ) for NUS-WIDE-10K, where the ReLU activation function is 

sed after each fully connected layer. In the graph convolutional 

epresentation learning module, a two-layer GCN based three- 

hannel sub-network is used, where the image-modality GCN per- 

orms d I → 512 → v for Wikipedia and d I → 1024 → v for NUS-

IDE-10K, the text-modality GCN performs d T → 512 → v for both 

atasets, and the cross-modal GCN performs 2048 → 1024 → v for 

ikipedia and 1024 → 512 → v for NUS-WIDE-10K. For modality 

lassification, three layers (i.e., v → 16 → 8 → 2 ) activated by the

eLU function are used for both datasets. The learning rate is set 

s 0.0 0 01. 

In this paper, we tune the hyper-parameters (balance factors α
nd β in Eq. (7) , and γ and η in Eq. (9) ) using the grid search

trategy. The search range of α, β and η is 
[
10 −3 

, 10 2 
]

and the 

ange of γ is 
[
10 1 , 10 5 

]
, with 10 times per step. Specifically, 

hese parameters are set as: β = 0 . 1 , γ = 10 0 0 , η = 0 . 01 for both

atasets, α = 1 for Wikipedia and α = 0 . 1 for NUS-WIDE-10K. 

In this paper, we randomly select 30% and 70% image-text pairs 

n the training set as labeled data, and mask the labels of the re-

aining pairs as the unlabeled data. Following [22] , we also report 

he retrieval results with 100% training data being used for the la- 

eled data. We investigate two cross-modal retrieval tasks, i.e., re- 

rieving text given an image query (I2T) and image retrieval using 

 text query (T2I). The retrieval performance is evaluated by us- 

ng mean average precision (MAP) [45] . To evaluate the influence 

f random running and random partition for the labeled and unla- 

eled data, we perform 10 random runnings to report the average 

esults across 10 random runnings (partitions). 

.3. Comparison with state-of-the-arts 

Tables 1 and 2 separately show the cross-modal retrieval results 

average MAP result ( ± standard deviation)) on MAP of our MCGCN 

nd other compared methods on Wikipedia and NUS-WIDE-10K 

atasets. It is noted that in the tables, 2.9E-3 means 2 . 9 × 10 −3 =
 . 0029 . The best results are highlighted in bold. From the tables,

e have the following observations: (1) As the size of labeled 

ata and the length of hash codes increase, better retrieval per- 

ormances will be achieved for compared methods in most cases. 

GCPN is an unsupervised method that uses all training data as 

nlabeled data. Thus, it seems that it is not sensitive to the size of 
6 
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Table 3 

Ablation study (on MAP) on the contribution of important components of MCGCN. 

Task Method 

Wikipedia NUS-WIDE-10K 

16-bit 32-bit 64-bit 16-bit 32-bit 64-bit 

I2T MCGCN-S 0.521 0.569 0.575 0.539 0.564 0.572 

MCGCN-IT 0.468 0.495 0.497 0.504 0.510 0.524 

MCGCN-A 0.514 0.552 0.567 0.568 0.574 0.589 

MCGCN-C 0.477 0.588 0.589 0.504 0.567 0.568 

MCGCN 0.544 0.638 0.654 0.569 0.590 0.594 

T2I MCGCN-S 0.524 0.567 0.578 0.542 0.561 0.571 

MCGCN-IT 0.471 0.494 0.498 0.497 0.508 0.515 

MCGCN-A 0.513 0.550 0.568 0.566 0.571 0.591 

MCGCN-C 0.478 0.583 0.593 0.508 0.563 0.564 

MCGCN 0.553 0.641 0.653 0.576 0.592 0.593 
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7 
abeled data. In addition, SMLN is a non-hashing semi-supervised 

ross-modal retrieval method. We list the same retrieval results of 

MLN for different lengths of hash codes. (2) From these tables, we 

an see that our approach can always achieve the best retrieval re- 

ults in different cases of the rates of labeled data and lengths of 

ash codes. Take labeled data rate of 30% and hash code length of 

6 as an example, MCGCN improves MAP at least by 0.092 = (0.544- 

.452) in the case of I2T and 0.09 = (0.553-0.463) in the case of 

2I on Wikipedia, and by 0.049 = (0.569-0.520) in the I2T case and 

.039 = (0.576-0.537) in the T2I case on NUS-WIDE-10K. (3) Our ap- 

roach achieves comparable standard deviation against competing 

ethods. 

The reasons of the performance improvement of our approach 

ie in the following three points: (a) By jointly intra-modal and 

ross-modal graph modeling and representation learning, both 

ithin-modal and between-modal structure and correlation infor- 

ation is well explored, such that modality-specific and modality- 

hared features are effectively fused and leveraged to generate 

ash codes for cross-modal retrieval. (b) The label and structure 

nformation of labeled and unlabeled samples are fully explored, 

nd GCN is adopted to perform semantic information propagation. 

c) The inter-modal invariance is elaborately modeled with the ad- 

ersarial mechanism. 

.4. Discussion 

.4.1. Ablation study 

In this subsection, we discuss the methodological details of 

CGCN. We separately call the version of MCGCN without the 

ross-modal channel as MCGCN-S, the version of MCGCN without 

oth the image-modality and text-modality channels as MCGCN-IT, 

he version of MCGCN without the cross-graph attention scheme as 

CGCN-A, which concatenates the modality-specific and modality- 

hared representations for fusion, and the version of MCGCN with- 

ut the modality classifier as MCGCN-C. Table 3 tabulates the MAP 

esults of these variants of MCGCN when the rate of labeled data 

s 30%. 

We can see that the MAP results of MCGCN-S and (especially) 

CGCN-IT are obviously inferior to those of the complete version 

f MCGCN on two datasets. This phenomenon indicates that both 

ffective intra-modal and cross-modal graph representation and 

earning are useful to the cross-modal retrieval task. In addition, 

esults of MCGCN-A and MCGCN-C are also inferior to those of 

CGCN, which means that the cross-graph attention based fusion 

nd adversarial learning scheme with the modality classifier also 

ontribute to the performance of our approach. 
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Fig. 4. T-SNE visualization of data on the Wikipedia dataset. In the figure, squares and triangles separately denote features/hash codes of image and text modalities. Different 

colors denote features/hash codes from different classes, and grayness denotes the unlabeled features. 
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.4.2. Visualization of the learned representations 

In order to further investigate the effectiveness of the learned 

epresentations by our MCGCN approach, we employ the t-SNE 

ool to embed the features/hash codes into the two-dimensional 

pace for visualization. Taken the first five categories of training 

amples on the Wikipedia dataset (when 30% training samples are 

abeled) as an example, Fig. 4 (a) and (b) separately show the dis- 

ributions of original training samples (including labeled and un- 

abeled samples) from image and text modalities, and Fig. 4 (c) 

hows the distributions of learned 32-bit hash codes of two 

odalities. 

We can observe that the features with different class labels 

re not well separated and the distributions of two modalities are 

argely different in the original feature space. On the contrary, the 

earned hash codes from different classes are generally separated 
o  

8 
nto ten semantically clusters. Furthermore, from Fig. 4 (c), we can 

ee that the distributions of image and text modalities are better 

ixed together. As a summary, this comparison indicates that our 

CGCN approach can effectively reduce the modality gap and ob- 

ain hash codes with more favorable discriminant ability. 

.4.3. Parameter sensitivity 

Lastly, we investigate the sensitivity of our approach to hyper- 

arameters α, β , γ and η. Figure 5 shows I2T/T2I retrieval results 

on MAP) versus different values of α, β , γ and η on the Wikipedia 

ataset with 32-bit hash codes when the rate of labeled data is 

0%. When one hyper-parameter is evaluated, the others are fixed. 

rom the figure, MCGCN is not sensitive to the choice of α in the 

ange of [0.001,1], β in the range of [0.01,0.1], and η in the range 

f [0.001,0.01]. The best results can be obtained when γ = 10 0 0 .
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Fig. 5. Retrieval results of MCGCN versus different values of α, β , γ and η on Wikipedia. 
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[

or simplicity, these hyper-parameters are set as α = 1 , β = 0 . 1 ,

= 10 0 0 and η = 0 . 01 on Wikipedia. Similar experiment results

an also be found on NUS-WIDE-10K. 

. Conclusion 

In this paper, we propose a novel semi-supervised cross-modal 

ashing approach named MCGCN. Modality-specific and modality- 

hared features are effectively explored through joint intra-modal 

nd cross-modal graph modeling and graph convolutional repre- 

entation learning. The label and structure information of labeled 

nd unlabeled samples are fully leveraged to perform semantic in- 

ormation propagation and learn discriminative hash codes. 

Comprehensive experiments on two widely used datasets 

emonstrate that our approach performs better than state-of- 

he-art semi-supervised/supervised cross-modal retrieval meth- 

ds. The experiment results also indicate the effectiveness of the 

dopted mechanisms in our approach, including modality-specific 

nd cross-modal graph learning, cross-graph attention based fu- 

ion, and adversarial learning based optimization. 
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