
HAL Id: lirmm-02421182
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02421182v1

Submitted on 20 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconstructing a 3D heart surface with
stereo-endoscope by learning eigen-shapes

Bo O. Yang, Chao Liu, Wenfeng Zheng, Shan Liu, Keli Huang

To cite this version:
Bo O. Yang, Chao Liu, Wenfeng Zheng, Shan Liu, Keli Huang. Reconstructing a 3D heart surface
with stereo-endoscope by learning eigen-shapes. Biomedical optics express, 2018, 9 (12), pp.6222-6236.
�10.1364/BOE.9.006222�. �lirmm-02421182�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02421182v1
https://hal.archives-ouvertes.fr


Reconstructing a 3D heart surface with
stereo-endoscope by learning eigen-shapes

BO YANG,1,* CHAO LIU,2 WENFENG ZHENG,1 SHAN LIU,1 AND KELI
HUANG3

1School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu,
China
2LIRMM, CNRS-UM, Montpellier, France
3Cardiac Surgery Center, Sichuan Provincial People’s Hospital, Chengdu, China
*boyang@uestc.edu.cn

Abstract: An efficient approach to dynamically reconstruct a region of interest (ROI) on a
beating heart from stereo-endoscopic video is developed. A ROI is first pre-reconstructed with a
decoupled high-rank thin plate spline model. Eigen-shapes are learned from the pre-reconstructed
data by using principal component analysis (PCA) to build a low-rank statistical deformable
model for reconstructing subsequent frames. The linear transferability of PCA is proved, which
allows fast eigen-shape learning. A general dynamic reconstruction framework is developed that
formulates ROI reconstruction as an optimization problem of model parameters, and an efficient
second-order minimization algorithm is derived to iteratively solve it. The performance of the
proposed method is finally validated on stereo-endoscopic videos recorded by da Vinci robots.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In robotic-assisted off-pump heart surgery, heart beating considerably influences the accuracy
of surgical operations, resulting in longer surgical duration and increased surgical risks. By
measuring heart motion and actively synchronizing surgical instruments with this motion, a
technique called active motion compensation, it is possible to provide a virtually stable operating
environment to surgeons [1, 2]. Passive vision using stereo-endoscope, compared with other
sensing techniques such as structured lighting [3, 4] and ultrasound [5], is more appropriate for
measuring heart motion in a Minimally Invasive Surgery (MIS) because no additional instrument
ports are required, as indicated in [6]. The 3D reconstruction with endoscope is also important for
other advanced surgical techniques, e.g. augmented reality guidance [7], and multispectral [8] or
multimodal [9] imaging. In addition, it is useful for offline applications as well, such as surgery
simulation [10] and visual medical record [11], for learning, training or evaluation purposes.
However, in a highly dynamic MIS, it is very challenging to track and reconstruct Regions

of Interest (ROIs) with complex soft-tissue deformations from real-time endoscopic videos.
Model-based methods have been explored [12–18]. With a parameterized deformable model,
an initial ROI is warped as a template to match pixels at subsequent stereo-pair frames. Model
complexity (rank) can be simply measured by the number of model parameters. Low-rank
models, such as rigid and affine models, are robust and computationally efficient but difficult
to deal with complex soft-tissue deformations, while high-rank models generally suffer from
problems of parameter convergence and heavy computational burden, difficult to meet real-time
and robustness requirements, as indicated in [16].
On the other hand, most existing models, typically based on the mesh [2, 11, 13, 19] or

spline [12, 14, 16–18], are designed for general deformations with certain continuity and
smoothness constraints, which do not take into account the statistics and specificities of ROIs.
Statistical shape models have been explored to reconstruct static anatomical structures, such as
bone surfaces from X-ray images [20] and employed as a priori information in a wide range
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of segmentation tasks from CT [21], MRI [22], 3D ultrasound [23], and optical coherence
tomography [24, 25]. The training shapes in the literature are usually from CT databases or
obtained manually by experts from pre-operative imaging. To the author’s knowledge, statistical
modeling in full 3D space for highly dynamic soft-tissues from stereo-endoscope is still open. It
is almost impossible to establish a valid pre-operative shape database for beating heart. The shape
similarity of anatomical structures from a given population, which has been used for statistical
modeling in the literature, is unavailable for modeling beating heart due to high dynamics of
cardiac soft-tissues.
In this work, we first derive a general 3D shape representation of ROI by decoupling a Thin

Plate Spline (TPS) mapping into shape and position components. The high-rank version of
the decoupled TPS is employed to pre-reconstruct a ROI for a number of frames to obtain
ROI-specific shape data. Eigen-shapes are then learnt from these data, on which a low-rank
3D model is built and used to reconstruct subsequent frames. The linear transferability of
Principal Component Analysis (PCA) is proved, which significantly reduces the computational
burden of eigen-shape learning and thus makes real-time statistical modeling possible. A general
model-based reconstruction framework with an iterative algorithm for estimating model parameter
is presented. The feasibility and effectiveness of the proposed method is finally validated on
stereo-endoscopic videos recorded by da Vinci (Intuitive Surgical, CA) robots.

2. Methods

2.1. Representing 3D shape with TPS

The TPS has been widely used in image alignment and shape matching, and recently used to
handle soft-tissue deformations [14,17]. We extend and decouple the classical TPS mapping into
two independent components related to shape and position, respectively.
Let m ∈ R2 denote pixel coordinates. The TPS of K Control Points (CPs) is written as

f (m) = ϕ (m)α +
[
mT 1

]
β, (1)

where ϕ (m) is a row vector of elements {ϕ (‖m − ck ‖)}Kk=1 with ϕ (r) = r2 ln r and ck being the
k-th CP, and {α, β} are parameter vectors associated with non-affine and affine transformations,
respectively. All vectors are column vectors, unless otherwise specified. To obtain square-
integrable second derivatives, the following constraint is imposed.[

c̃1 c̃2 · · · c̃K
]
α = 0 (2)

where x̃ denotes the augmented vectors of x by adding 1 as the last element. By substituting it
into Eq. (1), we can re-parameterize the non-affine part of the TPS as ϕ′(m)α′, where α′ is a
K − 3 dimensional subvector of α (three elements of α are eliminated).
Let p ∈ R3 denote 3D coordinates in the real space. By separately mapping in the x, y, z

directions, the TPS can be extended to R2 → R3 that maps m to p with the parameter vectors
{α′x, βx,α

′
y, βy,α

′
z, βz}, which contain 3K model parameters (scalars) in total.

Let R = {mn}Nn=1 be a ROI. Assume that mo is the center of R, and its 3D counterpart po
can denote the position of R. The relative 3D coordinates of N pixels with respect to po can
represent the 3D shape of R that is position-independent. Let p′ = p − po,

p′ =


b(m) 0 0

0 b(m) 0

0 0 b(m)



θx

θy

θz


= B (m) θ, (3)
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where b(m) =
[
ϕ′(m) − ϕ′(mo), (m −mo)T

]
, and θx/y/z is a parameter vector stacked by α′x/y/z

and the first two elements of βx/y/z. Accordingly, the 3D shape of the ROI is represented as

s = Bθ, (4)

where s is a N ′-dimensional shape vector stacked by {p′n}Nn=1 with N ′ = 3N , and B is a N ′ × K ′

transformation matrix stacked by {B(mn)}Nn=1 with K ′ = 3(K − 1).
The shape and position parameters {θ, po} together determine a 3D surface in the real space,

and the decoupled TPS model can be rewritten as p = B(m)θ + po.

2.2. Low-rank shape modeling based on eigen-shapes

With enough CPs, the TPS model can accurately describe any 3D surface. Such general models,
however, are inefficient for the ROI reconstruction of beating heart. Since heart motion is
normally quasi-periodic with stable statistics [26], it is possible to learn a low-rank model for a
specific ROI from its past shapes. For this, the PCA is applied to the shape data.
Assume that {sl}Ll=1 are past shapes. A shape data matrix of row-wise zero mean is built:

S =
[

s1 − s̄ s2 − s̄ · · · sL − s̄
]
, s̄ =

L∑
l=1

sl/L (5)

The PCA of S can be computed by using the Eigen Decomposition (ED):

SST = UΛUT, (6)

where Λ is a diagonal matrix of the eigenvalues {λj}N
′

j=1 sorted in descending order, and the
columns of U are the corresponding eigenvectors. Each eigenvector identifies a specific shape in
the 3D space, so we call it eigen-shape.

According to the Eckart-Young theorem, a data matrix can be optimally rebuilt on the first few
eigenvectors. Assume that Ŝ is the rebuilt matrix on the first J eigenvectors. The rebuilding error
defined with the Frobenius norm is S − Ŝ

2
F =

N ′∑
j=J+1

λj (7)

Since the eigenvectors corresponding to the largest eigenvalues are reserved, information loss
caused by Ŝ is minimal of all possible J-rank rebuilding. In fact, the rebuilt data may be closer to
ground truth, as the original data are usually contaminated by measurement noise, which is more
likely to rest on the discarded eigenvectors.
For quasi-periodic heartbeat, the shape vectors of a ROI at different moments are correlated

and sparse-distributed in the high-dimensional shape vector space. Accordingly, the past shapes
of the ROI can be recovered accurately on the principal eigen-shapes. With the assumption of
stable statistics, the shapes of the ROI in the future can also be reconstructed accurately with

s = UJw + s̄, (8)

where UJ is the submatrix of U formed by the first J eigenvectors, and w is a new parameter
vector of J dimension. Compared with the general shape model in Eq. (4), the new model in Eq.
(8) is more efficient as statistics of the ROI are introduced.

However, the PCA for a large matrix is computationally expensive in both time and memory.
The complexity for analyzing S is O

(
N ′L2) by assuming L ≤ N ′. It is impractical for most

real-time systems, as N ′ and L are very large for a typical reconstruction task. Here, we develop
a fast eigen-shape algorithm, which reduces the complexity to O

(
LK ′2

)
where K ′ � L.
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Since rank (B) = K ′, for the shape matrix S there are at most K ′ valid eigen-shapes that
correspond to non-zero eigenvalues. Assume that Θ is the shape-parameter matrix of S, i.e.
S = BΘ. Let UΘΛΘUT

Θ
be the ED of ΘΘT, then it can be easily proved that:

Proposition 1: ΛΘ andBUΘ are the non-zero eigenvalues and eigenvectors of SST, respectively,
if and only if B is column-orthonormal.
The proposition shows that with an orthonormal transformation matrix (called transferring

condition), the PCA can be transferred from a large data matrix to a small parameter matrix.
Unfortunately, the shape transformation matrix B of the TPS is not orthonormal, which distorts
the mapping from the eigen-parameters (UΘ) to eigen-shapes (U).
To overcome this problem, we orthonormalize B with the QR decomposition B = B′R, and

re-parameterize Eq. (4) as s = B′θ′. Correspondingly, the parameter matrix Θ′ is built. By
using Proposition 1, the eigen-shapes can be computed fast with B′UΘ′ , and the eigenvalues are
obtained from ΛΘ′ directly. The computational complexity is hence reduced to O(LK ′2).
Though proposed for shape modeling, Proposition 1 is useful to other PCA tasks associated

with linear systems. We can extend it from the point view of function composition:
Proposition 2: Given two real vector spaces that are isomorphic, there is a linear function
F : X 7→ BVBT

UX, mapping one vector set (matrix) X in U to another in V, where BU/V
is a transformation matrix formed by an orthonormal basis of U/V. Let P : X 7→ UX and
S : X 7→ ΛX be the functions of calculating eigenvectors and eigenvalues from a vector set,
respectively. Then there are P ◦ F = F ◦ P and S ◦ F = S for any vector set in U.
The proof is given in Appendix A. Proposition 2 shows that between any two isomorphic

real vector spaces, we can always find an invertible linear transformation (bijection) that is
commutative with the eigenvector operation and transparent to the eigenvalue operation, such
that we can map the eigenvectors from one space to another and keep the eigenvalues unchanged.

2.3. Model-based tracking and reconstruction

The past shapes can be collected with high computational cost and even manual intervention by
employing a high-rank TPS for pre-reconstruction. The shape transformation matrix of the TPS
can be orthonormalized offline because it is constant for any ROI of given size.
The complete steps of the proposed reconstruction method are summarized as follows:
1) Given a ROI (R) in the template image, the shape transformation matrix of a K-CP TPS is

constructed and orthonormalized with B′ = BR−1.
2) The first L frames are pre-reconstructed with the orthonormalized TPS model, written as

∀ m ∈ R, p = B′ (m) θ′ + po, (9)

where B′ (m) is the submatrix of B′ associated with m. As a result, {θ′l}Ll=1 are saved.
3) The parameter matrix Θ′ is built and decomposed by Θ′Θ′T = UΘ′ΛΘ′UT

Θ′ .
4) A low-rank deformable model is built on the first J columns of UΘ′ (denoted as [UΘ′]J ),

∀ m ∈ R, p = UJ (m)w + s̄ (m) + po, (10)

where UJ (m) = B′ (m) [UΘ′]J and s̄ (m) = B′ (m) θ̄′.
5) The subsequent frames from L + 1 are reconstructed with the new model in Eq. (10).
With a calibrated stereo-endoscope, the ROI reconstruction involved in the steps 2) and 5) can

be converted into an optimization problem, i.e., finding the best model parameters that minimize
the alignment error of ROI between the template image and the current stereo-pair images.
We discuss the problem, without loss of generality, based on a general R2 → R3 model:

p = T (m) ξ + d (m) , (11)

where ξ is the parameter vector, T (m) and d (m) are the transformation matrix and offset vector
associated with m, respectively. Many existing models can be written in this form. For linear
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models, both T (m) and d (m) are linear with respect to m, such as the affine model [2], while for
nonlinear models at least one of them is nonlinear, such as the TPS, B-Spline [12], Piecewise
Bilinear Mapping (PBM) [13], as well as the new statistical model in Eq. (10). The TPS in Eq.
(9), for instance, is obtained by letting T (m) = [B′(m), I(3)], d(m) = 0, and ξ be a combined
vector of θ′ and po, where I(3) denotes a 3-dimensional identity matrix.

As illustrated in Fig. 1, given a pixel m in the template image, its 3D coordinates p in the real
space are determined by the model parameter ξ to be estimated by using Eq. (11). According to
the pinhole camera model, the perspective projection of p onto the left/right camera plane of the
stereo-endoscope can be represented by the homogeneous coordinates

pL/R = CL/Rp̃, (12)

whereCL/R is the 3×4 left/right camera matrix, which can be calibrated with Zhang’s method [27]
before surgery. The corresponding pixel coordinates can be calculated by

mL/R = H
(
pL/R

)
, (13)

whereH maps homogeneous coordinates to pixel coordinates,

H
©«


a

b

c


ª®®®®¬
=


a/c

b/c

 (14)

Fig. 1. Illustration of model-based ROI reconstruction

Let IT denote the intensity function of the template image and IL/R be that of the current
left/right image. For the given ROI, there should be

IT (m) ≡ IL/R
(
mL/R |ξ∗

)
, ∀ m ∈ R (15)

with an ideal parameter ξ∗. However, in most cases, the ideal parameter does not exist, involving
the solution of an overdetermined nonlinear system of equations. With the sum of squared pixel
differences. The reconstruction problem can be formulated as

arg min
ξ

(
‖IL − IT‖2 + ‖IR − IT‖2

)
, (16)
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where IL/R and IT are N-dimensional intensity vectors stacked by {IL/R(mL/R
n )}Nn=1 and

{IT(mn)}Nn=1, respectively. Regularization items can be added in Eq. (16) for robust solu-
tion, as in [28].
The Efficient Second-order Minimization (ESM) technique [29] is used to solve Eq. (16),

which has a wider convergence basin and a faster convergence rate than traditional minimization
algorithms. In the ESM, the model parameter is updated iteratively at each frame, ξ← ξ + ∆ξ,
until ‖∆ξ‖ is less than a preset threshold. The increment is calculated by

∆ξ = −2

∇ξIL + ∇ξ∗IL

∇ξIR + ∇ξ∗IR


+ 

IL − IT

IR − IT

 , (17)

where ∇xY denotes the Jacobian matrix of Y at x, and “+” denotes the matrix pseudo-inverse.
The computations of the Jacobians in Eq. (17) are given in Appendix B.

It should be noted that the proposed modeling method as well as the reconstruction algorithm,
though derived from the TPS, apply equally to other deformable models. The shape representation
in Eq. (4) and thus the statistical shape model in Eq. (8) can be derived from any R2 → R3

deformable model that can be written in the form of Eq. (11), including the B-spline and the PBM
mentioned before. In fact, the R2 → R B-spline based statistical shape model used for tissue
segmentation in [23] is sub-optimal, because it is learnt simply from the parameter spaces without
orthonormalizing the transformation matrix, which distorts the mapping from eigen-parameters
to eigen-shapes, as proved in Proposition 1.

3. Results

Taking shape statistics into account, the low-rank model can be efficient in computation and robust
against divergence of model parameter, when incorporated into the model-based reconstruction
framework. Four stereo-endoscopic videos captured by the da Vinci robots are used to validate
the proposed method. Each video consists of 800 stereo-pair frames with a frame rate of 25 Hz.
As shown in Fig. 2, the videos I and II record the motion of a phantom heart model [30, 31], and
the videos III and IV are in vivo beating hearts in real TECAB procedures [32]. Color images
are converted into 8-bit grayscale for efficient processing.

Fig. 2. Stereo-endoscopic videos (I-IV) for validation
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3.1. Sparsity and statistical stability of shape data

The rank of eigen-shape based model (J) is adjustable according to the efficiency and robustness
requirements of reconstruction tasks in practice, as well as the sparsity of shape data itself, which
can be indicated by the eigenvalues. A guideline for choosing J is given in our experiments.
To obtain shape data, an orthonormalized 9-CP TPS is employed to reconstruct a 120 × 120

ROI on each video for 600 frames. At each frame, the ESM is used to estimate the shape and
position parameters iteratively. Specular reflections caused by glossy tissue surfaces are removed
by using a simple thresholding method [14]. The reconstruction flow is restarted manually when
it is interrupted. We finally obtain four 24 × 600 shape-parameter matrices, which identify four
hyper-high dimensional shape matrices (43200 × 600).
The eigenvalues and eigen-shapes are computed from shape-parameter matrices by using

Proposition 1. As shown in Fig. 3(a), the eigenvalues on each video are sparse, indicating that
there is obvious correlation between the shape vectors. The 24-dimensional shape subspace
spanned by the 9-CP TPS is redundant for the ROI. Therefore, it is feasible to rebuild the shapes
in a lower-dimensional space spanned by few eigen-shapes.

According to Eq. (7), the rebuilding error can be indicated more intuitively with the Signal-to-
Noise Ratio (SNR) γ and the Root-Mean-Square Error (RMSE) σp, where

γ = 10 lg

( ∑K′

j=1 λj∑K′
j=J+1 λj

)
, σp =

√∑K′
j=J+1 λj

N L
(18)

Figure 3(b) gives the SNR and RMSE curves with respect to J. In our study, we choose
the least J that ensures γ > 20 dB. Following this guideline, the first 8/6/12/10 eigen-shapes
are reserved for statistical modeling on the video I/II/III/IV, corresponding to the RMSE of
0.048/0.072/0.070/0.094 mm/pixel, much lower than the measurement error (about 0.1 mm) of
the stereo-endoscope image system itself and thus ignorable.

(a) Eigenvalues (b) SNR & RMSE

Fig. 3. PCA of shape data on videos I-IV

To show the statistical stability of shape data, we compared the PCA results computed from
the first 600 frame and from all 800 frames. Figure 4 shows the corresponding mean shapes
and first eigen-shapes on each video. The differences between the corresponding shapes are
trivial (of the order of 0.01 mm/pixel), showing that the statistics of heartbeats are stable and
thus reconstructing future frames with the statistical model trained from past frames is feasible.

3.2. Reconstruction experiments

In the reconstruction experiments, the first L = 600 frames in each video, serving as training
frames, are pre-reconstructed with the 9-CP TPS, while the subsequent 200 frames, serving as
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Fig. 4. Mean shapes and 1st eigen-shapes calculated from all 800 frames vs. from the first
600 frames. For each video, the first row shows the mean shapes, the second row the 1st
eigen-shapes; the left shapes are from all 800 frames, the right shapes from the first 600
frame.

test frames, are reconstructed with the eigen-shape based Statistical Deformable Models (SDMs).

3.2.1. Qualitative analyses

Since the ground truth is unknown, reconstructed ROI is usually evaluated qualitatively by
visually inspecting its concordance with heart beating and by analyzing its motion trajectories.

Figure 5 shows some reconstructed frames in each video. The SDMs can successfully handle
soft-tissue deformations on beating hearts. The 3D shapes reconstructed at various frames are
consistent with those perceived by human vision, and the center of the ROI is located accurately.
For comparison, the corresponding frames reconstructed by a 4-CP TPS on the video I are

given in Fig. 6. Even though the 4-CP TPS has 12 parameters more than those (8 eigen-shape
weights + 3 position parameters) of the SDM learnt for the video I, the 3D surfaces represented
by the 4-CP TPS appear to be over-smooth with many 3D details missed out, comparing with
those in Fig. 5(a), and therefore the advantages of the SDM are demonstrated.

The motion trajectories of the ROIs on the phantom videos (I and II) and their Power Spectral
Densities (PSD) are shown in Fig. 7. The trajectories of po along x, y, z axes exhibit highly
regular periodicity, and their power concentrates at 1.5 Hz and its second (3.0 Hz) and third (4.5
Hz) harmonics, which is consistent with the given rate of phantom heart beating.

3.2.2. Quantitative evaluation

The SDMs are evaluated quantitatively and compared with well-established deformable models
based on the ESM solution in terms of robustness, accuracy and speed. The reference models

                                                                      Vol. 9, No. 12 | 1 Dec 2018 | BIOMEDICAL OPTICS EXPRESS 6229 



(a) Video I (see Visualization 1) (b) Video II (see Visualization 2)

(c) Video III (see Visualization 3) (d) Video IV (see Visualization 4)

Fig. 5. Reconstructed ROI with the statistical deformable models on various videos.

Fig. 6. Reconstructed ROI with the 4-CP TPS on video I.
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(a) Video I (b) Video II

Fig. 7. Motion trajectory analysis of ROI (po) tracked by the statistical deformable model.

under comparison include the 9-CP TPS, 9-CP PBM and 9-CP B-Spline (all of them contain 27
parameters), and the Quasi-Spherical Triangle (QST) [16] of 10 parameters. In addition, the
4-CP TPS is tested on the phantom videos and the 5-CP TPS on the in vivo videos, since their
ranks are close to those of the SDMs built for the corresponding videos.

Robustness: The ROI reconstruction with stereo-endoscope is very challenging. The processing
chain for continuous image sequence is often interrupted by dynamic effects in the MIS. As
recursive structure is usually adopted for efficiency, in which the final estimate at the current
frame serves as an initial estimate for the next frame, reconstruction algorithms normally cannot
recover by themselves when interrupted and must be restarted. The robustness of reconstruction
algorithms can be measured by the number of frames processed continuously.
All 200 test frames on the phantom videos can be continuously processed by all investigated

models, due to ideal imaging conditions and less dynamic disturbance. On the in vivo videos,
the SDMs and the QST can take all 200 test frames, performing much better than the 9-CP TPS,
9-CP PBM and 9-CP B-Spline models which take averagely 58, 47 and 42 frames, respectively. It
verifies that the high-rank models with too many parameters are susceptible to dynamic effects in
the MIS, making the ESM prone to divergence, while the low-rank models with fewer parameters
are easier to find optimal solutions in the noisy environments. The SDMs also perform better
than the 5-CP TPS (taking averagely 152 frames) on the in vivo videos, though the ranks of
these models are identical or similar. The result shows that for a specific ROI, the solution-space
designed online by statistical modelling is more efficient than the fixed solution-space spanned
by a general deformable model of identical or similar rank.

Accuracy: For evaluating accuracy, natural landmarks in the ROIs are manually tracked in
both left and right image sequences. The 3D coordinates of the landmarks obtained by the
model-based reconstruction are projected back onto the left and right images, and compared with
the manually tracked results. To ensure the comparability of the results, interrupted algorithms
are restarted manually. The joint pixel error is calculated at each frame

ε =

√mL − ḿL
2
+

mR − ḿR
2
, (19)

where mL/R denotes the pixel coordinates projected onto the left/right image and ḿL/R denotes
those manually tracked. The Mean Error (ME) and Standard Deviation (SD) of ε over 200 test
frames on each video are shown in Table 1.

On the phantom videos, good results are obtained by all models, as in the robustness test. The
high-rank (9-CP) models have a slight advantage over the low-rank models (4-CP TPS, SDMs
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and QST). However, the SDM of 8/6 eigen-shapes on the video I/II performs better than the 4-CP
TPS and QST, though have similar ranks. On the in vivo videos, dynamic effects in the MIS
complicate the reconstruction task. The best results are obtained by the SDMs, showing that the
proposed method is efficient for handling complicated deformations on in vivo hearts. Although
the SDMs are trained from the shape data obtained by the 9-CP TPS, they are still able to achieve
more accurate results than the latter in in vivo settings, thanks to the intrinsic advantage that the
eigen-shapes extracted by the SDMs are insensitive to small noises in the training data.

Speed: The computational cost of reconstruction algorithms depends on the rank of the
employed model. The most time-consuming operation in the ESM iteration is the pseudo-inverse
calculation of the Jacobian matrix in Eq. (17). For a K-rank model on a N-size ROI, the
computational complexity for one frame is O(µNK2), where µ is the number of the ESM
iterations. Typically, on the in vivo videos, the average µ of the 12 eigen-shape SDM is 6.8, close
to that of the QST and about half those of the 9-CP models, confirming that models with fewer
parameters are easier to converge. For the same ROI, the computational cost of a typical 12
eigen-shape SDM is nearly 15% that of a 9-CP model.
To evaluate practical speed, the average CPU time is computed based on our experimental

platform (Matlab R2012a, Intel Xeon E3-1231 CPU and 8GB RAM). The speed of the 12
eigen-shape SDM is 2.9 s/frame, much faster than 9.2 s/frame of the 9-CP TPS. By means of
statistical modeling, real-time reconstruction is feasible if Graphics Processor Units (GPU) and
more efficient programming languages (e.g. C/C++) are adopted.

Finally, the SDMs built with different SNR guidelines (γ > 30 dB and γ > 10 dB) are tested.
For γ > 30 dB, the first 12/10/19/16 eigen-shapes are reserved on the video I/II/III/IV. There is not
significant improvement in the reconstruction accuracy though more eigen-shapes are employed,
while the robustness and speed are decreased obviously. Their performances are between those
of the SDM (γ > 20 dB) and the 9-CP TPS. For γ > 10 dB, only the first 4/2/5/5 eigen-shapes
are reserved on the video I/II/III/IV, which results in faster and more robust reconstructions.
However, the reconstructed surfaces are inaccurate due to too few shape degrees of freedom. The
tracking errors are even larger than those of the QST in Table 1.
Overall, high-rank models can render tissue surfaces more accurately in theory; however, in

practice they often confuse parameter estimation algorithms due to too many degrees of freedom.
For general deformable models based on spline or mesh, increasing CPs will result in a quadratic
growth of computational burden and cause model parameters difficult to convergence, while
reducing CPs may lead to over-smoothing and loss of 3D details. It is a dilemma for these general
models to choose an appropriate rank, since they were designed for handling general surfaces
without taking into account the statistics and specificities of the ROI. The proposed method

Table 1. Tracking errors (ME±SD) compared with manually tracked results.

Methods Video I Video II Video III Video IV

SDM 1.26±0.46 1.27±0.62 2.52±0.98 2.40±0.90

QST 1.42±0.51 1.51±0.70 3.09±1.10 2.80±1.09

4/5-CP TPS 1.40±0.52 1.44±0.68 3.03±1.11 2.75±1.01

9-CP TPS 1.21±0.51 1.23±0.64 2.83±1.04 2.59±0.87

9-CP PBM 1.23±0.53 1.29±0.66 2.92±1.09 2.64±0.92

9-CP B-Spline 1.21±0.53 1.27±0.63 2.90±1.10 2.60±0.90
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provides a good solution to this dilemma, which can balance the robustness, accuracy and speed
well. As shown in the experiments, the SDMs are efficient in computation and robust against
dynamic disturbances without sacrificing reconstruction accuracy, and they are fully superior to
the general models of the same or similar rank.

4. Conclusions

We propose a statistical modeling method to reconstruct ROIs on beating heart from stereo-
endoscopic video. Statistical shape models are trained online by learning eigen-shapes from past
shapes of ROIs. To obtain past shapes, the high-rank versions of classical deformable models
(such as but not limited to the TPS) after decoupling and orthonormalizing, can be employed
to pre-reconstruct a ROI for a number of frames. The linear transferability of PCA is proved,
which can significantly reduce the computational burden of eigen-shape learning. Since the
statistical model is trained specially for fitting the 3D structure of the ROI, it is very efficient
when incorporated into a model-based reconstruction framework, which formulates the dynamic
reconstruction as an optimization problem of model parameters for each stereo image frame.
Based on a general model equation, the efficient second-order minimization algorithm is derived
to iteratively solve model parameters. We validate the modeling method on the stereo-endoscopic
videos collected by the da Vinci robots. The analyses of shape data from various videos show
the sparsity of eigenvalues and statistical stability of eigen-shapes, and thus the feasibility of
low-rank statistical modeling. The ROI reconstruction experiments demonstrate the efficiency of
the statistical models and their advantages over the traditional models in balancing robustness,
accuracy and speed. The proposed method provides an efficient and robust way to track and
reconstruct dynamic soft-tissues with stereo-endoscope, which is important for further improving
the functionality and applicability of surgical robots. Besides, the proposed method is also
useful for offline tasks, e.g. surgical simulation or visual medical record, which require efficient
representation and rendering of 3D tissues.

Appendix A. Proof of proposition 2

Since U � V, U and V have the same dimension, denoted to be M without loss of generality.
Since BU/V is a column-orthonormal, for any vector set D ⊂ RM , using Proposition 1 gives

P
(
BU/VD

)
= BU/VP (D) (20)

Suppose X ⊂ U. Since U � RM , there is a unique coordinates set D ⊂ RM that identifies X with
the orthonormal basis B, i.e. X = BUD and D = BT

UX. From Eq. (20), one can get

P
(
BVBT

UX
)
= P (BVD) = BVP (D) (21)

P (D) = BT
UBUP (D) = BT

UP (BUD) = BT
UP (X) , (22)

and thus P ◦ F(X) = P(BVBT
UX) = BVBT

UP(X) = F ◦ P(X).
Similarly, using Proposition 1 gives S(BU/VD) = S(D), and thus S ◦ F(X) = S(BVD) =
S(BUD) = S(X).

Appendix B. Computations of Jacobians

B.1. Computation of ∇ξIL/R

The n-th row of ∇ξIY (with Y denoting L or R) can be decomposed into four sub-Jacobians

∇ξIY
(
mY

n

)
= ∇mY

n
IY ∇pY

n
H ∇ppY ∇ξp|mn, (23)
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where:
a) ∇mY

n
IY is the gradient (1 × 2) of the image IY at mY

n .
b) ∇pY

n
H is the derivative of functionH at pY

n . From Eq. (14), one derives

∇xH =


1/c 0 −a/c2

0 1/c −b/c2

 (24)

c) ∇ppY ≡ [CY]3 and ∇ξp|mn ≡ T(mn) are constant for a given ROI.

B.2. Computation of ∇ξ∗IL/R

The Jacobian cannot be computed directly because the ideal parameter ξ∗ is unknown. An
effective approximation is derived by using the template image and the current parameter ξ.
Given a parameter ξ, the mapping Mξ : m 7→ mY is normally invertible, i.e., there is

m =M−1
ξ

(
mY)

. By using Eq. (15), the n-th row of ∇ξ∗IY can be written as

∇ξ∗IY
(
mY

n

)
= ∇ξ∗IT (mn) , (25)

and similarly decomposed into

∇mnIT ∇mY
n
M−1

ξ∗ ∇pY
n |ξ∗H ∇ppY ∇ξp|mn (26)

where:
a) ∇mnIT is the gradient of IT at mn.
b) ∇ppY and ∇ξp|mn are constant, independent of ξ∗, the same as in Eq. (23).
c) ∇mY

n
M−1

ξ∗
is the inverse of the Jacobian

∇mnMξ∗ = ∇pY
n |ξ∗H ∇ppY ∇mnp|ξ∗, (27)

where pY
n |ξ∗ , the ideal homogeneous coordinates determined by ξ∗, can be approximated by pY

n ,
and ∇mnp|ξ∗ , the derivative (3 × 2) of the deformable model at mn with ξ∗, for m = [u v]T,

∇mnp|ξ∗ =
[
∂T(m)
∂u

���
un

ξ∗
∂T(m)
∂v

���
un

ξ∗
]
+ ∇mnd(m), (28)

can be approximated by letting ξ∗ = ξ.
In Eq. (28), ∂T(m)/∂η (with η denoting u or v for convenience) and ∇md(m) are constant

and can be pre-computed for a given ROI. Take the statistical model in Eq. (10) for example:

∂T(m)
∂η

=

[
∂B(m)
∂η

R−1 [UΘ′]J 0
]
, (29)

∇md(m) =
[
∂B(m)
∂u

R−1θ̄
′ ∂B(m)

∂v
R−1θ̄

′
]

(30)

where, according to Eq. (3), ∂B(m)/∂η is formed diagonally with

∂b(m)
∂η

=

[
ϕ′ (m)
∂η

1/0 0/1︸     ︷︷     ︸
for η=u/v

]
(31)
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Let C1 and C2 be two complementary submatrices of the left matrix in Eq. (2), where C1 is 3× 3
invertible, corresponding to the three eliminated elements of α, and C2 corresponds to α′. Then

ϕ′ (m) = ϕ (m)

−C−1

1 C2

I(K−3)

 (32)

and the derivatives of the k-th radial basis kernel in ϕ (m) can be pre-computed by using[
∂ϕ (‖m − ck ‖)

∂u
∂ϕ (‖m − ck ‖)

∂v

]
= (2 ln ‖m − ck ‖ + 1) (m − ck)T (33)
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