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Abstract: Resource allocation based models were shown to capture the main bacterial cell
design principles in steady-state, thus managing the resource allocation between cell processes,
and in fine growth rate. This paper introduces the basis of extension of resource allocation models
to dynamical conditions. The framework is applied to a bioreactor operating in batch mode
for optimizing the production of added-value compounds by bacteria. The optimal predicted
strategy is analyzed and discussed in light of the strategies obtained with other types of
models. This framework should offer new opportunities for biotechnologies, especially for the
simultaneous optimization of strain design and bioprocess control.
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1. INTRODUCTION

Living cells are composed of interacting cellular processes,
that perform specific tasks. Cellular processes consume
resources for achieving their function, which creates op-
erational constraints between these processes. The field
of Systems Biology studied and exploited operational
constraints both for theoretical and predictive purposes,
within the constraint-based modeling framework. The first
operational constraint – the mass balance of the metabolic
network in steady-state – was formalized into an opti-
mization problem known as Flux Balance Analysis (FBA)
(Varma and Palsson, 1994). The FBA method predicts
the flux distribution in the metabolic network and showed
an outstanding predictive capability despite the simplicity
of the cell description. This paved the way for a great
number of works, to refine the cell description, to apply
the framework for metabolic engineering or for the strain
design (Lewis et al., 2012; Chowdhury et al., 2015), and
finally to extend the theoretical framework, especially to
dynamical conditions (dFBA) (Mahadevan et al., 2002).
In Gadkar et al. (2005) and Jabarivelisdeh and Wald-
herr (2016), dFBA formulations were used for strain and
bioprocess design. Mathematically, dFBA correspond to
bilevel optimization schemes that predict the metabolic
time configuration maximizing growth or production of a
product of interest.

Since 2009, a gap has been achieved in the cell descrip-
tion with the explicit integration of non-metabolic cellu-
lar processes within constraint-based models (reviewed in
Goelzer and Fromion (2017)). These models formalize for
a given growth rate, the resource sharing between all cel-

lular processes at genome scale into a convex optimization
problem and include explicitly the detailed building costs
of proteins and molecular machines (e.g. ribosomes). This
paper focuses on the RBA method (Goelzer et al., 2011),
since all other methods can be reformulated under the
RBA framework. In practice, the RBA method predicts in
steady-state the metabolic fluxes and the whole-cell pro-
tein distribution maximizing growth rate and satisfying:
(i) stochiometric constraints and mass conservation; (ii)
viability of the cell, meaning that the cell has to produce
all the cellular components in sufficient quantity compared
to growth demand; (iii) limited capacity of the cellular
processes, e.g. the proteins and the molecular machines
have a limited efficiency to fulfill their function; (iv) lim-
ited density of cellular compartments, limiting the total
amount of proteins allocated to one compartment.
The objective of this paper is to determine the outlines
of extension of the RBA framework to dynamical condi-
tions (dRBA), and like dFBA, apply the framework for
bioreactor optimization.

2. PROBLEM FORMULATION

2.1 Problem description

In this work, a single bacterial species is supposed to be
immersed in a bioreactor, operating in batch mode, i.e.,
with a given and fixed volume of medium, V , assumed
perfectly stirred and homogeneous. In order to keep the
developments simple, we consider that only one substrate
G is available in the medium.
We consider in the sequel a simplified model of the cell
integrating the key ingredients of the RBA approach.
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78350 Jouy-en-Josas, France (e-mail: firstname.name@inra.fr).
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The cell is then described through three main cellular
processes: (i) the first one, denoted ΣT , aggregates all
the cellular processes related to the catabolism, i.e. pro-
cesses (mostly enzymes) involved in the furniture of energy
and elementary bricks necessary for bacteria survival and
growth; (ii) the second one, denoted ΣR, aggregates all the
cellular subprocesses necessary for protein synthesis, i.e.
the so-called translation apparatus, including ribosomes
and a large number of accessory proteins, as e.g. the
elongation factors and chaperones; (iii), the third one,
denoted ΣB , includes all cellular processes involved in
the production of cellular macro-components that are not
proteins as e.g. DNA, membrane, cell-wall, etc. In the se-
quel, for readability purpose and without loss of generality,
we assumed that the molecular machines involved in all
cellular processes are only composed of proteins.
In this simplified model, the substrate G is then imported
and transformed by ΣT , into an internal metabolite S.
The metabolite S can be used indifferently by ΣR and
ΣB in order to build respectively proteins and other cel-
lular macro-components B necessary to the cell growth.
We then associate for each unit of ΣT ,ΣR and ΣB a
resource cost, corresponding to the number of S required
for building each unit, and an efficiency coefficient per unit.
Finally, since the purpose of the model is to optimize the
production of a product of interest P , we add an additional
cellular process, denoted ΣP , to produce P from S and
secrete it in the medium. We finally associate to ΣP , its
resource cost and its efficiency coefficient.

2.2 Cell model description

Following this preliminary description, a part of the
metabolite S is converted into B and P by the fluxes
νB and νP with stochiometric coefficients rB and rP re-
spectively. Another part of S is consumed to produce the
proteins contained in the four cellular processes. We intro-
duce four fluxes of S, denoted by νei with i ∈ {T,B, P,R},
corresponding to the flux of S used to build the proteins
of the i-th cellular process.
Dynamic evolution of S. The differential equation as-
sociated to the internal metabolite S is given by:

˙[S](t) = νT (t)− νB(t)− νP (t)− νeT (t) · · ·
−νeB (t)− νeP (t)− νeR(t)− µ(t)[S](t)

(E.1)
In the previous system, µ(t)[S](t) takes into account the
effects due to the cell volume increase where µ(t) is
the bacterial growth rate (defined in § 2.3). νT is the
nonnegative flux of G imported and transformed by ΣT

into S. The uptake flux is constrained by the maximum
capability of ΣT , leading to this first constraint:

νT ≤ kT [eT ] =
vm,T [G]ext

[G]ext +KT +KS [S]
[eT ] (C.1)

where [eT ] is the concentration of proteins of ΣT . The
efficiency coefficient kT of ΣT follows a first order kinetic
reaction inhibited by the product ’S’ (leading to assume
that the uptake is inhibited by high internal concentration
of S).
Synthesis of macro-components B by ΣB. The differ-
ential equation associated to the production of the cellular
macro-components B is given by:

˙[B](t) = rBνB(t)− µ(t)[B](t) (E.2)

where νB is the nonnegative flux of production of cellular

macro-components. We assume that νB(t) = [B]0
rB

µ(t) in
order to ensure that cellular macro-components remain to
a concentration close to [B]0. The production flux of B is
constrained by the maximum capability of ΣB , leading to
introduce this second constraint:

νB ≤ kB [eB ] =
vm,B [S]

[S] +KB
[eB ] (C.2)

where [eB ] is the concentration of proteins of ΣB and kB ,
the efficiency coefficient of ΣB , is a Michaelis-Menten like
relation.
Synthesis of P by ΣP . The differential equation associ-
ated to the production of P is given by:

˙[P ]ext(t) = rP νP (t)[Mtot]ext(t) (E.3)

where [Mtot]ext is the concentration of cells in the biore-
actor and νP is the nonnegative production flux. Like the
other cellular processes, ΣP is constrained by:

νP ≤ kP [eP ] =
vm,P [S]

[S] +KP
[eP ] (C.3)

where [eP ] is the concentration of proteins of ΣP and
kP is the efficiency coefficient of ΣP , corresponding to a
Michaelis-Menten like relation.
Synthesis of proteins by ΣR. Finally, the proteins ei
for i ∈ {T,B, P,R} involved in the cellular processes are
produced by ΣR, which leads to the following differential
equations:

˙[ei](t) = reiνei(t)− µ(t)[ei](t) (E.4)

where rei is the resource cost necessary to build the protein
ei and µ[ei] takes into account the effects due to the
cell volume increase. The production flux of proteins is
constrained by the maximum capability of ΣR, leading to
the constraint:∑

P,B,R,T

νei ≤ kR[eR] =
vm,R[S]

[S] +KR
[eR] (C.4)

with [eR] the concentration of proteins of ΣR and kR
the efficiency coefficient of ΣR depending on S, as in
Marr (1991). We further assume that dilution is the only
phenomenon responsible for decreasing enzyme concentra-
tions, i.e. the fluxes νei for i ∈ {T,B, P,R} take only
nonnegative values.
Moreover, all concentrations have also to take nonnegative
values.

2.3 Population dynamics and growth rate evolution

Kubitschek et al. (1984) revealed that cell density is
constant for any growth condition and along the cell cycle
of bacteria as E. coli (or B. subtilis). We then follow the
approach of Marr (1991), by relating the cell density, D0,
to the whole protein components:

∑
P,B,R,T

[ei](t)

rei
= D0.

In order to keep the density constant, the cell has to
increase its volume when new proteins are produced. This
leads to constrain the growth rate of bacteria. Such a
mechanism can be described by this first order differential
equation:

µ̇(t) =
1

τµ
(
1

D0

∑
P,B,R,T

νei(t)− µ(t)) (E.5)
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The cell is then described through three main cellular
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vm,T [G]ext

[G]ext +KT +KS [S]
[eT ] (C.1)

where [eT ] is the concentration of proteins of ΣT . The
efficiency coefficient kT of ΣT follows a first order kinetic
reaction inhibited by the product ’S’ (leading to assume
that the uptake is inhibited by high internal concentration
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where [eB ] is the concentration of proteins of ΣB and kB ,
the efficiency coefficient of ΣB , is a Michaelis-Menten like
relation.
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ated to the production of P is given by:

˙[P ]ext(t) = rP νP (t)[Mtot]ext(t) (E.3)
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actor and νP is the nonnegative production flux. Like the
other cellular processes, ΣP is constrained by:
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where [eP ] is the concentration of proteins of ΣP and
kP is the efficiency coefficient of ΣP , corresponding to a
Michaelis-Menten like relation.
Synthesis of proteins by ΣR. Finally, the proteins ei
for i ∈ {T,B, P,R} involved in the cellular processes are
produced by ΣR, which leads to the following differential
equations:

˙[ei](t) = reiνei(t)− µ(t)[ei](t) (E.4)

where rei is the resource cost necessary to build the protein
ei and µ[ei] takes into account the effects due to the
cell volume increase. The production flux of proteins is
constrained by the maximum capability of ΣR, leading to
the constraint:∑
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with [eR] the concentration of proteins of ΣR and kR
the efficiency coefficient of ΣR depending on S, as in
Marr (1991). We further assume that dilution is the only
phenomenon responsible for decreasing enzyme concentra-
tions, i.e. the fluxes νei for i ∈ {T,B, P,R} take only
nonnegative values.
Moreover, all concentrations have also to take nonnegative
values.

2.3 Population dynamics and growth rate evolution

Kubitschek et al. (1984) revealed that cell density is
constant for any growth condition and along the cell cycle
of bacteria as E. coli (or B. subtilis). We then follow the
approach of Marr (1991), by relating the cell density, D0,
to the whole protein components:

∑
P,B,R,T

[ei](t)

rei
= D0.

In order to keep the density constant, the cell has to
increase its volume when new proteins are produced. This
leads to constrain the growth rate of bacteria. Such a
mechanism can be described by this first order differential
equation:
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where τµ is the constant related to the cell wall synthesis
dynamics. Consequently, in each differential equation of
§ 2.2, growth rate is responsible of a dilution term, −µ[∗]
for all concentration dynamics.
Following this definition of the cell volume increase and
since we have only one species of bacteria, and that their
density remains constant, we can describe the evolution of
the cell population through this differential equation:

˙[Mtot]ext(t) = µ(t)[Mtot]ext(t). (E.6)

Finally, the dynamics of the external substrate [G]ext in
the medium is given by the following differential equation:

˙[G]ext(t) = −rGνT (t)[Mtot]ext(t) (E.7)

where rG is the stochiometric coefficient, corresponding to
the number of G required to build S by the process ΣT .

2.4 dRBA optimization problem

The maximization of production can be formulated in sev-
eral ways. The final quantity or concentration of product
of interest is the most natural criterion, but the time nec-
essary to obtain the maximal quantity is also an essential
issue. As suggested in Gadkar et al. (2005), a solution could
be to find the Pareto front of maximum final quantity of
product versus final time tf . Here we follow the approach
proposed in Jabarivelisdeh and Waldherr (2016) by defin-
ing a criterion given by the ratio between the concentration
of the product at the final time and the culture duration.
The dynamics and the constraints of the optimization
problem have been defined in § 2.2 and § 2.3. It remains
to introduce the initial concentrations in G, P and Mtot

(respectively denoted [G]0ext, [P ]0ext and [Mtot]
0
ext) and to

define the final time tf of the culture duration within the
bioreactor as the time where G is less than or equal to 1%
of its initial concentration:

max
νeP

,νeB
,νeR

,νeT

[P ]ext(tf )

tf

w.r.t.




(E.1), . . . , (E.7)
(C.1), . . . , (C.4)
νi ≥ 0 for all i ∈ {P,B, T}
νei , [ei] ≥ 0 for all i ∈ {P,B,R, T}
[S], [B], [G]ext, [P ]ext ≥ 0
Initial conditions, [G]0ext, [P ]0ext, [Mtot]

0
ext

[G]ext(tf ) ≤ 1%[G]0ext
(1)

The problem formulated in (1), called hereafter dRBA,
is a Mayer problem, see e.g. Lee and Markus (1967) or
Bryson and Ho (1975). We invoke the necessary conditions
given by the Pontryagin’s maximum principle to identify
the trajectory candidates for optimality.
From practical point of view, for speed and simplicity, we
use Bocop (Bonnans et al. (2017)) in order to compute
efficiently the open-loop control and the associated optimal
trajectory (the computation time for solving our problem
is around ten seconds with a laptop).

3. RESULTS

The dRBA optimization problem (1) is solved using model
parameters deduced from Jeanne et al. (2016), and initial
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Fig. 1. Optimal time evolution of: A- growth rate, B-
concentration of micro-organisms, C- concentration of
product of interest, D- intracellular concentration of
enzymes. In red, the optimal solution predicted by
dRBA. In grey, the dRBAu case (see text) mimicking
dFBA formulation. gCDW is gram per cell dry weight.

conditions (10,0,0.045) for [G]0ext, [P ]0ext and [Mtot]
0
ext

respectively. The time evolutions of state variables are
given in Fig. 1. The optimal trajectory presents three main
phases:

(i) Proteins are first allocated towards biomass synthesis
only: cells grow at constant growth rate without
production of P . Enzyme concentrations are constant
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and this phase coincides with a so-called balanced
exponential regime;

(ii) Cell mass is increasing linearly while proteome con-
figuration is switching towards the synthesis of P .
The synthesis of enzyme eP and the secretion of P
begin while the syntheses of eB and eR stop (νeB and
νeR are null). The cell accumulates eP and eT while
keeping the cell integrity, i.e. synthesis of biomass in
agreement with the volume increase.

(iii) The production of all proteins stops, leading to the
arrest of growth. The uptake flux ofG is fully rerouted
towards the synthesis of P . The proteome configura-
tion is not totally devoted to the production of P
since low concentrations of ribosomes and anabolic
enzymes remain in the cell. This is in agreement with
the fact that cells are not able to degrade proteins.

We would like to compare the difference between dRBA
and the dFBA formulation of Gadkar et al. (2005). How-
ever, the formulation of both methods are far different. Ac-
tually dFBA does not integrate the dynamics of proteins,
which allows for instantaneous changes of flux distribution
over time. We thus chose to mimic dFBA conditions by
removing the constraints on the positiveness of ei for
i ∈ {P,B,R, T} and by constraining µ to take nonnegative
values within dRBA (referred as dRBAu in Fig. 1 and
Table 1). This relaxation leads to convert ’instantaneously’
a type of protein into another one. We solved the optimiza-
tion problem dRBAu for the same initial conditions. We
obtained two phases, close to phase (i) and (iii) of dRBA
(in grey on Fig. 1, Table 1). The cell switched abruptly
from a phase of biomass production (eP = 0) to a phase
of P production (eB = eR = 0). This strategy is close to
the bang-bang optimal strategy obtained using dFBA in
Gadkar et al. (2005).

Table 1. Comparison of dRBA and dRBAu

dRBA Strategy dRBAu Strategy

J = [P ]ext(tf )/tf 0.38 0.44

[P ]ext(tf ) (in mmol.L−1) 2.33 2.45

tf (in h) 6.08 5.58

[Mtot]ext (in gCDW .L−1) 0.32 0.29

4. CONCLUSION & PERSPECTIVES

This paper proposes a dynamical model integrating a sim-
plified resource allocation model of cells and the bioreactor
operating in batch mode. Compared to other predictive
methods, using resource allocation models enables predic-
tions, where the cell behavior over time results from a
trade-off between operational constraints on cellular pro-
cesses and the bioreactor. The predicted optimal strategy
for maximizing the product of interest is surprisingly close
to a standard steering politics (Cuthrell and Biegler, 1989).
Perspectives of this work cover two main topics. The first
one is to explore other bioreactor operating modes (e.g.
fedbatch). The second one is to go further within the cell
description since we have already a validated genome-scale
cellular model of B. subtilis (Goelzer et al., 2015). This
perspective paves the way towards a rational strategy of
strain modifications where the strain and the bioreactor
are designed together.
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operating in batch mode. Compared to other predictive
methods, using resource allocation models enables predic-
tions, where the cell behavior over time results from a
trade-off between operational constraints on cellular pro-
cesses and the bioreactor. The predicted optimal strategy
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to a standard steering politics (Cuthrell and Biegler, 1989).
Perspectives of this work cover two main topics. The first
one is to explore other bioreactor operating modes (e.g.
fedbatch). The second one is to go further within the cell
description since we have already a validated genome-scale
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