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Abstract— In this paper we present a study on the Random
Forest (RF) family of ensemble methods. In a ”classical” RF in-
duction process a fixed number of randomized decision trees are
inducted to form an ensemble. This kind of algorithm presents
two main drawbacks : (i) the number of trees has to be a priori
fixed (ii) the interpretability and analysis capacities offered
by decision tree classifiers are lost due to the randomization
principle. This kind of process where trees are independently
added to the ensemble, offers no guarantee that all those trees
will well cooperate into the same committee. This statement
rises two questions : are there any decision trees in a RF that
make the performance of the ensemble decrease? If so, is it
possible to form a more accurate committee by removing from
the initial ensemble those decision trees? The answer to these
questions is tackled as a classifier selection problem, and we thus
show that better subsets of decision trees can be obtained even
using a sub-optimal classifier selection method. This proves that
”classical” RF induction process, for which randomized trees
are arbitrary added to the ensemble, is not the best approach
to produce accurate RF classifier. We also show the interest in
designing RF by adding trees in a more dependent way than it
is traditionally done in these ”classical” algorithms.

I. INTRODUCTION

One of the Machine Learning issues consists in designing

high performance classification systems based on a set of

representative samples of a population of data. Among the

different approaches to deal with this kind of problematic,

combining an ensemble of individual weak classifiers to

form a unique classification system — called Classifier

Ensemble — has aroused a growing interest in the scientific

community. This interest has been fed by recent researches

that have shown some combination principles to be

particularly efficient, such as Boosting [1] (or Arcing [2]),

Bagging [3], Random Subspaces [4], or more recently,

Random Forests [5]. The efficiency in combining classifiers

leans on the ability to take into account the complementarity

between individual classifiers, in order to improve as much

as possible the generalization performance of the ensemble.

An explanation of this link between complementarity and

performance is the diversity property. Although there is no

agreed definition for diversity [6], this concept is usually

recognized to be one of the most important characteristics

for the improvement of the generalization performance in an

ensemble of classifiers [7]. One can define it as the ability

of the individual classifiers of an ensemble to agree mainly

on good predictions and to disagree on prediction errors.

Among the different approaches that aim at building

ensembles of diverse classifiers, those using randomization

to produce diversity have proven to be particularly efficient,

as for Bagging [3] or Random Subspaces methods [4].

These two methods both use randomization in the induction

process, in order to build base classifiers different from

each others, and thus introducing diversity among them.

Recently Leo Breiman has proposed a new family of

ensemble methods called Random Forest (RF) [5], based on

this randomization concept. RF can be defined as a generic

principle of classifier combination that uses L tree-structured

base classifiers {h(x,Θk), k = 1, ...L} where {Θk} is

a family of independent identically distributed random

vectors, and x is an input data. The particularity of this

kind of combination is that each decision tree is built from

a random vector of parameters. A Random Forest can be

built for example by randomly sampling a feature subset

for each decision tree (as in Random Subspaces), and/or by

randomly sampling a training data subset for each decision

tree (as in Bagging).

Since they have been introduced in 2001, RF have

been studied in many ways, theoretically as well as

experimentally [8], [9], [5], [10], [11], [12], [13], [14],

[15]. In most of those works, it has been shown that RF

are particularly competitive with one of the most efficient

learning principles, i.e. boosting [5], [11], [14]. However,

the mechanisms that explain the good performance of

RF are not clearly identified. For example, it has been

theoretically proved in [5] and experimentally confirmed

in [13], that above a certain number of trees, adding more

trees in the forest does not improve the accuracy. This

statement concerns the induction processes that randomly

produce trees without any a priori knowledge on their

intrinsic characteristics. Yet, no research work has studied

the effect of the number of trees on the performance of a RF.

In this paper we propose to go one step further in the

understanding of RF mechanisms. The goal is to determine

whether or not it is possible to select a subset of trees from

a forest that is able to outperform this forest. Our aim is not

to find the optimal subset of individual classifiers among

a large ensemble of trees, but rather to study the extent to



which it is possible to enhance accuracy of a RF by focusing

on some particular subsets of trees. The ”final” goal of

this work is thus to identify some particular properties

that are shared by these sub-forests, and the tree selection

approach we propose in this paper is a first step toward

this direction. Therefore, as we will discuss in section III,

there is no need here to apply optimal classifier selection

techniques to RF. We have thus decided to use two simple

classifier selection techniques, i.e. SFS (Sequential Forward

Selection) and SBS (Sequential Backward Selection) [16],

and to monitor the error rates of each subset obtained during

the experiments. Moreover, using a selection process such

as SFS allows to highlight the interest in designing RF by

adding trees in a more dependent way than it is traditionally

done in ”classical” RF induction methods, where trees are

built strictly independently from each other. We also show

that a sequential tree induction approach, in which trees

are dependently added to the forest, would considerably

”minimize” the number of trees to combine in a RF.

The paper is thus organized as follows: we recall in section

2 the Forest-RI principles; in section 3, we first explain

our approach of classifier selection in RF, and then describe

our experimental protocol, the datasets used, and the results

obtained. We finally draw some conclusions and future works

in the last section.

II. THE FOREST-RI ALGORITHM

One can see Random Forests as a family of methods, made

of different decision trees ensemble induction algorithms,

such as the Breiman Forest-RI method often cited as the

reference algorithm in the literature. In this algorithm

the Bagging principle is used with another randomization

technique called Random Feature Selection. The training

step consists in building an ensemble of decision trees, each

one trained from a bootstrap sample of the original training

set — i.e. applying the Bagging principle — and with a

decision tree induction method called Random Tree. This

induction algorithm, usually based on the CART algorithm

[17], modifies the splitting procedure for each node, in such

a way that the selection of the feature used for the splitting

criterion is partially randomized. That is to say, for each

node, a feature subset is randomly drawn, from which the

best splitting criterion is then selected.

To sum up, in the Forest-RI method, a decision tree is

grown by using the following process :

• Let N be the size of the original training set. N
instances are randomly drawn with replacement, to form

the bootstrap sample, which is then used to build the

tree.

• Let M be the dimensionality of the original feature

space, and K a preliminary fixed parameter so that

K ∈ [1,M ]. For each node of the tree, a subset of K
features is randomly drawn without replacement, among

which the best split is then selected.

• The tree is thus built to reach its maximum size. No

pruning is performed.

In this process the tree induction is directed by a single

hyperparameter, i.e. the number K of randomly selected

features. This number allows to introduce more or less

randomization in the induction. Consequently, except when

K = M , in which case the tree induction is not randomized

at all, each tree of a RF presents structure and properties

that can not be foreseen a priori. With the introduction of

randomization in the RF induction, we hope to take benefits

of complementarities of individual trees, but there is no

guarantee that adding a tree in a RF will allow to improve

the performance of the ensemble. One can even imagine

that some trees of a RF make the accuracy of the ensemble

be lower. This idea has led us to study how to improve the

performance of a RF by selecting a particular subset of its

trees.

In the literature, only few research works have focused

on the number of trees that have to be grown in a RF. When

introducing RF formalism in [5], Breiman demonstrated

that above a certain number of trees, adding more trees

does not allow to improve the performance. Precisely

he stated that for an increasing number of trees in the

forest, the generalization error converges to a maximum.

This result indicates that the number of trees in a forest

does not have to be as large as possible to produce an

accurate RF. The work of Latinne et al. in [13], and

our work in [8] experimentally confirm this statement.

However, noting that above a certain number of trees no

improvement can be obtained by adding more ”arbitrary”

trees in the forest does not mean obviously that the optimal

performance has been reached. Thus the idea of our

experimental work is to establish whether or not a subset

of individual trees is able to outperform the whole ensemble.

Notice that in the rest of this paper, the term Random

Forest (RF) will always stand for a forest built with the

Forest-RI algorithm.

III. SELECTING BETTER SUBSETS OF TREES FROM A RF

The principle of our experiments is to apply classifier

selection techniques on a RF made up of a large number of

trees. For that purpose two main choices have to be made:

a selection criterion and a selection method.

Selection criteria for classifier selection can be divided

into two main approaches: the filter approach and the

wrapper approach [18]. On the one hand the filter approach

consists in selecting a subset of classifiers according to

an a priori evaluation that does not take into account the

combination performance. On the other hand, the wrapper

approach attempts to select the subset of classifiers that a

posteriori optimizes the combination performance. As our

goal is to establish whether or not a better subset of trees



that outperforms the initial forest can be found, the wrapper

principle has been adopted for our experiments. Thus

classifiers have been selected by optimizing the accuracy —

i.e. minimizing the error rate — of the resulting subsets of

trees.

Concerning the selection methods, as mentioned in

section I, our aim is not to find the optimal subset of

individual classifiers among a large ensemble of trees, but

rather to analyze the extent to which RF performance can be

improved by removing from the ensemble some particular

trees. Thus the optimality of the selection methods is not a

priority here. That is the reason why the two well-known

classifier selection algorithms, SFS (Sequential Forward

Selection) and SBS (Sequential Backward Selection)

have been chosen. These two methods are known to be

sub-optimal because the sequential process makes each

iteration depend on the previous one, and finally not all

the possible solutions are explored. However they present

the advantage to be fast and simple. Those two selection

techniques iteratively build a sub-optimal subset from

an ensemble of classifiers according to a given criterion

[16]. At each iteration of the SFS process, each remaining

classifier is added to the current subset and the one that

optimizes the performance of the ensemble is retained. In

the same manner, in the SBS process, each classifier of

the current subset is removed, and the one for which the

remaining ensemble exhibits the best accuracy is definitely

discarded. The stopping criterion in such iterative processes

is commonly based on the convergence of the accuracy, but

it can also be defined for example by a maximum number

of iterations that determines the number of classifiers in the

final subset [19]. For our experiments we have decided to let

the selection algorithms explore all the possible iterations,

i.e. for a number L′, from 1 to L, of trees in the final subset,

where L is the size of the original RF. In that way we can

also study the evolution of the RF accuracy according to

the number of trees retained in the subset, in order to have

an idea of how many trees can be removed from the RF to

obtain a more accurate classifier, and how the performance

can be improved.

We first describe in the following subsection the datasets

used. We then detail our experimental protocol and results

in the next two subsections.

A. Datasets

The 10 datasets that have been used in these experiments

are described in Table I: the first 7 datasets in the table have

been selected from the UCI repository [20]; Twonorm and

Ringnorm are two synthetic datasets designed by Breiman

and are described in [2]; and the MNIST database [21] is a

handwritten digit recognition database on which greyscale

mean values have been extracted as explained in [8]. Those

datasets have been selected because they do not contain

any missing value and the features are all numerical features.

Note that for the experiments described in this section we

have decided to randomly split each original dataset, with

two thirds of the samples used for training, and the last third

for testing.

B. Experimental protocol

Our experiments consist in applying the two previously

presented classifier selection methods on a large ensemble

of trees, and in monitoring the evolution of the error rate

of each subset obtained during the selection processes. The

full experimental protocol is described below.

First, each dataset has been divided into a training

and a testing subset, with respectively two thirds of the

samples used for training, and the other third for testing.

As explained previously, our goal is to study the evolution

of the accuracy of a RF according to the number of trees

it contains. Thus only one split of each dataset has been

produced. We denote this split by T = (Tr, Ts) where Tr

and Ts stand respectively for the training set and the testing

set.

Then, a RF is grown from Tr, with a number L of trees

fixed to 300. The value of the hyperparameter K has been

fixed to
√

M , which is a default value commonly used in

the literature. A previous work on the parametrization of

RF, presented in [22], has shown that this value of K is

a good compromise to induct accurate RF. SFS and SBS

methods are applied on the RF, so that at each iteration the

tree to add (SFS) or to remove (SBS) is the one that allows

to obtained the most accurate sub-forest. For comparison

another random selection method has been applied to the

RF, that iteratively adds a randomly selected tree from

the original RF to the final subset. This selection process,

noted SRS (for Sequential Random Selection), allows to

simulate the induction of a RF, for an increasing number of

trees from 1 to L. Finally three tables of L error rates are

obtained for each dataset.

Algorithm 1 summarizes the whole experimental protocol

applied to each dataset. This procedure outputs a table of

L × 3 error rates (one table for each selection method) for

each dataset. Those results are presented and discussed in

the next subsection.

C. Results

Figure 1 presents 10 diagrams of our results for the

10 datasets used. For each of them, three curves have

been plotted, representing the error rates obtained with the

three previously detailed selection processes, according to

the number of trees in the subsets. Table II presents the

best error rates obtained for each of the three selection

processes on each dataset, and the number of trees of the

corresponding subsets.

One can first observe from Table II that in spite of the

sub-optimality of SFS and SBS, these algorithms always



TABLE I

DATASETS DESCRIPTION

Dataset Size Features Classes Dataset Size Features Classes

Gamma 19020 10 2 Vehicle 946 18 4

Letter 20000 16 26 Waveform 5000 40 3

Pendigits 10992 16 10 Ringnorm 7400 20 2

Segment 2310 19 7 Twonorm 7400 20 2

Spambase 4610 57 2 Mnist 60000 84 10

Fig. 1. Error Rates obtained during the three selection processes on 10 datasets, according to the number of trees in the subsets. The black curves represent
the error rates obtained with SFS, the gray curves the error rates with SBS, and the dashed-line curves the error rates with SRS.

allow to find a subset of trees that outperforms the initial

RF, inducted with Forest-RI. This observation highlights the

interest of studying the selection of subsets of trees in RF to

improve the performance. Therefore one can first conjecture

that the performance should be much more improved by

searching for the optimal subset of trees, using for example



TABLE II

BEST ERROR RATES AND NUMBER OF TREES OF THE CORRESPONDING SELECTED SUBSETS

Dataset
SFS SBS Forest-RI

error rates # trees error rates # trees 300 trees

Gamma 11.07 79 11.17 50 12.19

Letter 3.07 98 3.20 70 4.09

Pendigits 0.41 32 0.57 28 1, 01

Segment 0.66 15 1.57 8 2.49

Spambase 3.33 31 3.98 24 5.22

Vehicle 14.29 25 19.64 9 26.79

Waveform 10.16 86 10.46 56 14

Ringnorm 1.9 34 2.15 31 3.33

Twonorm 1.82 75 2.19 51 3.2

MNIST 4.41 97 4.4 119 4.93

Algorithm 1 Experimental Protocol

Require: N the number of samples in the original dataset.

M the number of features in the original dataset.

Randomly draw without replacement 2
3 ×N samples from

the original dataset to form the training subset Tr. The

remaining samples form the testing subset Ts.

h← Forest-RI(L = 300,K =
√

M ,Tr).

h
(0)
SFS ← ∅.

h
(0)
SBS ← h.

h
(0)
SRS ← ∅.

for i = 1 to L do

h
(i)
SFS ← h

(i−1)
SFS ∪ h(k) where k = argmin

h(j)/∈h
(i−1)
SF S

{error(h
(i−1)
SFS ∪ h(j),Ts) }.

h
(i)
SBS ← h

(i−1)
SBS \ h(k) where k = argmin

h(j)∈h
(i−1)
SBS

{error(h
(i−1)
SBS \ h(j),Ts) }.

h
(i)
SRS ← h

(i−1)
SRS ∪ h(k) where k = random(j), h(j) /∈

h
(i−1)
SRS .

Store the error rates of h
(i)
SFS , h

(i)
SBS and h

(i)
SRS .

end for

optimal (Branch and Bound method [23]) or near optimal

(Genetic Algorithms [16]) classifier selection methods.

A second observation that can be made from those di-

agrams is that the lowest error rate, for each dataset, is

reached by a subset of decision trees obtained with a small

number of trees, i.e. almost every time less than 100 trees.

This corresponds to less than 1
3 of the total number of trees

in the initial forest. In other words for each RF grown

during our experiments, at least 2
3 of the trees have been

removed to reach the best error rates. This number is even

sometimes much more important since the best accuracy

has been reached for some datasets with less than 30 trees

(Segment and Vehicle), which corresponds to only 10% of

the total number of trees grown in the initial RF. This shows

that among all the trees of a RF, only few of them should

be combined to obtain an accurate classifier. Furthermore

those results highlight that when a RF is grown with a

”classical” RF induction algorithm such as Forest-RI, all

the trees do not allow to improve the performance, and

some of them even make the ensemble do more prediction

mistakes. In addition the fact that the forward search is

always the most efficient approach to find a sub-optimal

subset of trees, makes us conjecture that it could be useful to

design a dynamical RF induction process that would add to

the ensemble only decision trees that improve the accuracy

of the RF. This would be beneficial in terms of computational

and performance gain.

IV. CONCLUSIONS

In this paper, a study on tree selection in Random Forests

has been presented. The goal was to highlight that some

particular subsets of trees of a RF are able to perform

better than this forest. Two well-known selection methods

have been used for that purpose : SFS (Sequential Forward

Selection) and SBS (Sequential Backward Selection). In

spite of the sub-optimality of the SFS and SBS methods,

this work has shown that it always exists a subset of well

selected trees able to outperform an ensemble grown with a

”classical” RF induction algorithm such as Forest-RI. Thus

an interesting perpective of those experiments would be

to apply some other classifier selection methods known to

be more efficient than SFS and SBS, like the Branch and

Bound method for example which is an optimal selection

method [23], or like genetic algorithms [16]. It would allow

to better foresee the extent to which a subset is able to



outperform the whole ensemble of trees.

Moreover using SFS selection process in these

experiments, has allowed to highlight the interest in

designing RF by adding trees in a more dependent way than

it is traditionally done in ”classical” RF induction methods,

where trees are built strictly independently from each other.

However the nature of this dependance still remain an

open issue and we believe that the next task to achieve in

this research work is to identify some particular properties

shared by the best sub-RF found during the selection

process, so that those properties could be used as criteria

for leading the sequential tree induction process. This could

be tackled for example through the study of out-of-bag

estimates, strength, correlation [5], diversity, specificities of

the tree structure like for example the splitting features, or

the bag samples, etc.

Finally we believe that such a sequential approach for

inducting RF would be interesting in the way it could

allow to decrease the number of trees to be inducted in

a RF, since our experiments have shown that the best

sub-forests obtained during the selection process contained

significantly less trees than the initial RF. However this

observation highlights another point of interest that should

be studied: which stopping criterion should be used for such

a sequential RF induction?

REFERENCES

[1] Y. Freund and R. Schapire, “Experiments with a new boosting algo-
rithm,” International Conference on Machine Learning, pp. 148–156,
1996.

[2] L. Breiman, “Arcing classifiers,” The Annals of Statistics, vol. 26, no. 3,
pp. 801–849, 1998.

[3] ——, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp.
123–140, 1996.

[4] T. Ho, “The random subspace method for constructing decision
forests,” IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, vol. 20, no. 8, pp. 832–844, 1998.

[5] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[6] L. Kuncheva, “That elusive diversity in classifier ensembles,” IbPRIA,
pp. 1126–1138, 2003.

[7] ——, Combining Pattern Recognition. Methods and Algorithms. John
Wiley and Sons, 2004.

[8] S. Bernard, L. Heutte, and S. Adam, “Using random forests for
handwritten digit recognition,” International Conference on Document

Analysis and Recognition, pp. 1043–1047, 2007.

[9] P. Boinee, A. D. Angelis, and G. Foresti, “Meta random forests,”
International Journal of Computational Intelligence, vol. 2, no. 3, pp.
138–147, 2005.

[10] L. Breiman, “Consistency of random forests and other averaging
classifiers,” Technical Report, 2004.

[11] A. Cutler and G. Zhao, “Pert - perfect random tree ensembles,”
Computing Science and Statistics, vol. 33, 2001.

[12] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine Learning, vol. 36, no. 1, pp. 3–42, 2006.

[13] P. Latinne, O. Debeir, and C. Decaestecker, “Limiting the number
of trees in random forests,” 2nd International Workshop on Multiple

Classifier Systems, pp. 178–187, 2001.

[14] J. Rodriguez, L. Kuncheva, and C. Alonso, “Rotation forest : A new
classifier ensemble method,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 28, no. 10, pp. 1619–1630, 2006.

[15] M. Robnik-Sikonja, “Improving random forests,” European Confer-

ence on Machine Learning, LNAI 3210, Springer, Berlin, pp. 359–370,
2004.

[16] H. Hao, C. Liu, and H. Sako, “Comparison of genetic algorithm
and sequential search methods for classifier subset selection.” Seventh

International Conference on Document Analysis and Recognition,
vol. 2, pp. 765–769, 2003.

[17] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and

Regression Trees. Chapman and Hall (Wadsworth, Inc.): New York,
1984.

[18] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artificial Intelligence, vol. 97, no. 1-2, pp. 273–324, 1997.

[19] F. Roli, G. Giacinto, and G. Vernazza, “Methods for designing multiple
classifier systems,” Multiple Classifiers Systems, pp. 78–87, 2001.

[20] A. Asuncion and D. Newman, “UCI machine learning repository,”
2007. [Online]. Available: http://archive.ics.uci.edu/ml/

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[22] S. Bernard, L. Heutte, and S. Adam, “Influence of hyperparameters
on random forest accuracy,” Technical Report, University of Rouen,
2008.

[23] P. Somol, P. Pudil, and J. Kittler, “Fast branch and bound algorithms
for optimal feature selection,” IEEE transactions on Pattern Analysis

and Machine Intelligence, vol. 26, no. 7, pp. 900–912, 2004.


