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Abstract: For families of partial differential equations (PDEs) with particular boundary
conditions, strict Lyapunov functionals are constructed. The PDEs under consideration are
parabolic and, in addition to the diffusion term, may contain a nonlinear source term plus a
convection term. The boundary conditions may be either the classical Dirichlet conditions, or
the Neumann boundary conditions or a periodic one. The constructions rely on the knowledge
of weak Lyapunov functionals for the nonlinear source term. The strict Lyapunov functionals
are used to prove asymptotic stability in the framework of an appropriate topology. Moreover,
when an uncertainty is considered, our construction of a strict Lyapunov functional makes it
possible to establish some robustness properties of Input-to-State Stability (ISS) type.
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1. INTRODUCTION

Lyapunov functional based techniques are central in the
study of partial differential equations (PDEs). The tech-
nics are useful for the stability analysis of systems of many
different families (although other approaches can be used
too, especially when parabolic PDEs are studied; see in
particular the contributions Matignon and Prieur (2005);
Iftime and Demetriou (2009); Drame et al. (2008)).

Amongst the remarkable results for PDEs which exten-
sively use Lyapunov functionals, it is worth mentioning
the following. In Cazenave and Haraux (1998) a Lyapunov
functional is used to establish the existence of a global
solution to the celebrated heat equation. In Krstic and
Smyshlyaev (2008), Lyapunov functionals are designed for
the heat equation with unknown destabilizing parameters
(see also Smyshlyaev and Krstic (2007a,b) for further
results on the design of output stabilizers). Lyapunov
functionals have been also used to establish controllability
results for semilinear heat equations. For example in Coron
and Trélat (2004) the computation of a Lyapunov func-
tional, in combination with the quasi-static deformation
method, is a key ingredient of the proof of the global
controllability of this equation. In all the preceding papers,
parabolic PDEs are considered, but Lyapunov function-
als can also be useful for other kinds of dynamics. For
instance, in Coron and d’Andréa Novel (1998) the stabi-
lization of a linear dynamic equation modeling a rotating
beam is achieved through a control design relying on weak
Lyapunov functional, i.e. a Lyapunov functional whose
derivative along the trajectories of the system which is con-
sidered is non-positive (but not necessarily negative defi-
nite), and in Coron and Trélat (2006) the controllability of
the wave equation is demonstrated via a Lyapunov func-

tional. Besides, the knowledge of Lyapunov functionals can
be useful for the stability analysis of nonlinear hyperbolic
systems (see the recent work Coron et al. (2008)) or even
for designing boundary controls which stabilize a system
of conservation laws (see Coron et al. (2007))

To demonstrate asymptotic stability through the knowl-
edge of a weak Lyapunov functional, the celebrated LaSalle
invariance principle has to be invoked (see e.g. Cazenave
and Haraux (1998); Slemrod (1974); Luo et al. (1999)). It
requires to demonstrate a precompactness property for the
solutions, which may be difficult to prove (and is not even
always satisfied, as illustrated by the hyperbolic systems
considered in Coron et al. (2007)). This technical step is
not needed when is available a strict Lyapunov functional
i.e. a Lyapunov functional whose derivative along the
trajectories of a system which is considered is negative
definite. Thus designing such a Lyapunov functional is a
way to overcome this technical difficulty. This is not the
unique motivation for designing strict Lyapunov function-
als. From the knowledge of the explicit expression of strict
Lyapunov functionals one can estimate the robustness of
the stability of a system with respect to the presence of
uncertainties and one can analyze the sensitivity of the
solutions with respect to external disturbances.

The present paper is devoted to new techniques of con-
structions of strict Lyapunov functionals for parabolic
PDEs. For particular families of PDEs with diffusion
and convection terms and specific boundary conditions,
we modify weak Lyapunov functionals, which are readily
available, to obtain strict Lyapunov functionals given by
explicit formulas. The resulting functionals have rather
simple explicit expressions. The underlying concept of
strictification used in our paper is the same as the one
exposed in Malisoff and Mazenc (2009), (see also Mazenc



and Nesic (2007), Mazenc et al. (2009)). However, due to
the specificity of PDEs, the techniques of construction that
we shall present are by no means a direct application of any
constructions available for ordinary differential equations.

In a second part of our work, we design strict Lyapunov
functionals to establish robustness properties of Input-to-
State (ISS) type for a family of globally asymptotically
stable PDEs with disturbances. Although the ISS notion
is very popular in the area of the dynamical systems of
finite dimension (see e.g. the recent survey Sontag (2007))
and, for a few years, begins to be used in the domain of the
systems with delay (see for instance Mazenc et al. (2008),
Pepe (2009), Pepe and Ito (2010), Karafyllis et al. (2008)),
the present work is, to the best of our knowledge, the first
one which uses it to characterize a robustness property of
a PDE.

Our paper is organized as follows. Basic definitions and
notations are introduced in Section 2. Constructions of
Lyapunov functionals under various sets of assumptions
are performed in Section 3. In Section 4 the analysis of the
robustness of a family PDEs with uncertainties is carried
out by means of the design of a so called ISS Lyapunov
functional. An example in Section 5 illustrates the main
result of Section 4. Concluding remarks in Section 7 end
the work. Due to space limitation, some of the proofs are
omitted.

Notation. Throughout the paper, the argument of the
functions will be omitted or simplified when no confusion
can arise from the context. Given a matrix A, its induced
matrix, Sym(A) = 1

2 (A + A⊤) stands for the symmetric
part of A. The norm | • |L2(0,L) is defined by: |φ|L2(0,L) =
√

∫ L

0
|φ(z)|2dz. Finally, we denote CL = C2([0, L], Rn),

the set of all twice-differentiable R
n-valued functions de-

fined on a given interval [0, L].

2. BASIC DEFINITIONS AND NOTIONS

Throughout our work, we will consider partial differential
equations of the form

∂X

∂t
(z, t) =

∂2X

∂z2
(z, t) + ∆(z, t)

∂X

∂z
(z, t)

+f(X(z, t)) + u(z, t) ,
(1)

with z ∈ [0, L] and X(., t) ∈ CL for all t ≥ 0, where ∆ is
continuous and bounded in norm, f : R

n → R
n is contin-

uously differentiable and where u is a continuous function
(which typically is unknown and represents disturbances).

Let us introduce the notions of weak and strict Lyapunov
functionals that we will consider in this paper (see e.g.
(Luo et al., 1999, Def. 3.62)).

Definition 2.1. Let µ : CL → R be a continuously
differentiable function. The functional µ is said to be
a weak Lyapunov functional for (1), if there are two
functions κS and κM of class K∞ such that, for all
functions φ ∈ CL,

κS

(

|φ|L2(0,L)

)

≤ µ(φ) ≤
∫ L

0

κM (|φ(z)|) dz (2)

and, in the absence of u, for all solutions of (1), for all
t ≥ 0,

dµ(X(., t))

dt
≤ 0 .

The functional µ is said to be a strict Lyapunov functional
for (1) if, additionally, in the absences of u, there exits
λ1 > 0 such that, for all solutions of (1), for all t ≥ 0,

dµ(X(., t))

dt
≤ −λ1µ(X(., t)) .

The functional µ is said to be an ISS Lyapunov functional
for (1) if, additionally, there exit λ1 > 0 and a function
λ2 of class K such that, for all continuous functions u, for
all solutions of (1), and for all t ≥ 0,

dµ(X(., t))

dt
≤ −λ1µ(X(., t)) +

∫ L

0

λ2(|u(z, t)|)dz .

Remark 1. 1. For conciseness, we will often use the

notation µ̇ instead of dµ(X(.,t))
dt

.

2. When a strict Lyapunov functional exists and u is
not present, then the value of a strict Lyapunov func-
tional for (1) along the solutions of (1) exponentially
decays to zero and therefore each solution X(z, t) satisfies
lim

t→+∞
|X(., t)|L2(0,L) = 0. When in addition, there exists

a function κL of class K∞, such that, for all functions
φ ∈ CL,

µ(φ) ≤ κL

(

|φ|L2(0,L)

)

, (3)

then the system (1) is globally asymptotically stable for
the topology of the norm L2.

3. When the system (1) admits an ISS Lyapunov func-
tional µ, then, one can check through elementary calcula-
tions that, for all solutions of (1) and for all instants t ≥ t0,
the inequality

|X(., t)|L2(0,L) ≤ κ−1
S

(

2e−λ1(t−t0)

∫ L

0

κM (|X(z, t0)|)dz

)

+ κ−1
S

(

2

λ1
sup

ℓ∈[t0,t]

(

∫ L

0

λ2(|u(z, ℓ)|)dz

))

holds. This inequality is the analogue for the PDE (1)
of the ISS inequalities for ordinary differential equations.
It gives an estimation with the L2 norm of the influence
of the disturbance u on the solutions of the system (1).
Of course this inequality does not imply that a similar
inequality holds when another norm is selected. ◦

3. CONSTRUCTIONS OF LYAPUNOV
FUNCTIONALS

In this section, we give several constructions of Lyapunov
functionals for the system

∂X

∂t
(z, t) =

∂2X

∂z2
(z, t) + f(X(z, t)) (4)

with z ∈ [0, L], X(z, t) ∈ R
n and where f is a nonlinear

function of class C1.

3.1 Weak Lyapunov functional for the system (4)

To prepare the construction of strict Lyapunov functionals
of the forthcoming sections, we recall how a weak Lya-
punov functional can be constructed for the system (4)
under the following assumptions:



Assumption 1. There is a symmetric positive definite
matrix Q such that the function

W1(Ξ) := −∂V

∂Ξ
(Ξ)f(Ξ) , (5)

with V (Ξ) = 1
2Ξ⊤QΞ, is nonnegative.

Assumption 2. The boundary conditions are such that,
for all t ≥ 0,

either |X(L, t)|
∣

∣

∣

∣

∂X

∂z
(L, t)

∣

∣

∣

∣

= |X(0, t)|
∣

∣

∣

∣

∂X

∂z
(0, t)

∣

∣

∣

∣

= 0 ,

or X(L, t) = X(0, t) and
∂X

∂z
(L, t) =

∂X

∂z
(0, t) .

(6)

Some comments on Assumptions 1 and 2 follow.

Remark 2. 1. Assumption 1 is equivalent to claiming
that V is a weak Lyapunov function for the ordinary
differential equation

Ξ̇ = f(Ξ) (7)

with Ξ ∈ R
n. Therefore it implies that this system is

globally stable.

2. Assumption 2 is satisfied in particular if the Dirichlet
or Neumann conditions or the periodic conditions, i.e.
X(0, t) = X(L, t) and ∂X

∂z
(0, t) = ∂X

∂z
(L, t) for all t (see

Chen and Matano (1989)), are satisfied.

3. Since Q is positive definite, there exist two positive real
values q1 and q2 such that, for all Ξ ∈ R

n,

q1|Ξ|2 ≤ V (Ξ) ≤ q2|Ξ|2 . (8)

The constants q1 and q2 will be used in the constructions
of strict Lyapunov functionals we shall perform later. ◦

The construction we perform below is given for instance in
Krstic and Smyshlyaev (2008); Coron and Trélat (2004).

Lemma 3.1. Under Assumptions 1 and 2, the functional

U(φ) =

∫ L

0

V (φ(z))dz (9)

is a weak Lyapunov functional whose derivative along the
solutions of (4) satisfies

U̇ = −
∫ L

0

∂X

∂z
(z, t)⊤Q

∂X

∂z
(z, t)dz

−
∫ L

0

W1(X(z, t))dz .

(10)

Proof. The proof is omitted.

3.2 Strict Lyapunov functional for the system (4): first
result

In this section, we show that the functional U given in (9)
is a strict Lyapunov functional for (4) when this system
is associated with special families of boundary conditions
or when W1 is larger than a positive definite quadratic
function. We state and prove the following result:

Theorem 1. Assume that the system (4) satisfies As-
sumptions 1 and 2 and that one of the following property
is satisfied

(i) there exists a constant α > 0 such that, for all Ξ in R
n,

W1(Ξ) ≥ α|Ξ|2 ,

(ii) X(0, t) = 0 for all t ≥ 0,

(iii) X(L, t) = 0 for all t ≥ 0.

Then the functional U given in (9) is a strict Lyapunov
functional for (4).

Proof. Let us assume that the property (i) holds. Then it
follows straightforwardly from (8) and (10) that

U̇ ≤ − α

q2

∫ L

0

V (X(z, t))dz

and U is a strict Lyapunov functional (see Definition 2.1).

We consider now the cases (ii) and (iii).We consider now
the cases (ii) and (iii). Let us recall the Poincaré inequality.

Lemma 3.2. For any function w, continuously differen-
tiable on [0, 1], and for c = 0 or c = 1,

∫ 1

0

|w(z)|2dz ≤ 2w2(c) + 4

∫ 1

0

∣

∣

∣

∣

∂w

∂z
(z)

∣

∣

∣

∣

2

dz . (11)

From this lemma, we deduce that for all L ≥ 0 and c = 0
or L, and for any function w, continuously differentiable
on [0, L], the inequality
∫ L

0

|w(z)|2dz ≤ 2Lw2(c) + 4L2

∫ L

0

∣

∣

∣

∣

∂w

∂z
(z)

∣

∣

∣

∣

2

dz , (12)

is valid. We deduce that when X(0, t) = 0 for all t ≥ 0 or
X(L, t) = 0 for all t ≥ 0 then, for all t ≥ 0, the inequality
∫ L

0

|X(z, t)|2dz ≤ 4L2

q1

∫ L

0

∂X

∂z
(z, t)⊤Q

∂X

∂z
(z, t)dz

where q1 is the constant in (8), is satisfied. Combining this
inequality with (10) yields

U̇ ≤ − q1

2L2

∫ L

0

|X(z, t)|2dz .

Using (8) again, we can conclude that U is a strict
Lyapunov functional for the system (4). •

3.3 Strict Lyapunov functional for the system (4): second
result

One can check easily that Assumptions 1 and 2 alone do
not ensure that the system (4) admits the zero solution
as an asymptotically stable solution. 1 Therefore an ex-
tra assumption must be introduced to guarantee that a
strict Lyapunov functional exists. In Section 3.2 we have
exhibited simple conditions which ensure that U is a strict
Lyapunov functional. In this section, we introduce a new
assumption, less restrictive than the condition (i) of The-
orem 1, which ensures that a strict Lyapunov functional
different from U can be constructed.

Assumption 3. There exist a nonnegative function M :
R

n → R of class C2, and a continuous function W2 : R
n →

R such that

M(0) = 0 ,
∂M

∂Ξ
(0) = 0 , (13)

∂M

∂Ξ
(Ξ)f(Ξ) ≤ −W2(Ξ) , ∀Ξ ∈ R

n , (14)
∣

∣

∣

∣

∂2M

∂Ξ2
(Ξ)

∣

∣

∣

∣

≤ q1

2
, ∀Ξ ∈ R

n , (15)

1 More precisely, we can construct examples of systems (4) which
are not asymptotically stable when Assumption 1 is satisfied and
Assumption 2 holds with the Neumann boundary conditions.



and there exists a constant q3 > 0 such that W1 + W2 is
positive definite and

W1(Ξ) + W2(Ξ) ≥ q3|Ξ|2 , ∀Ξ ∈ R
n : |Ξ| ≤ 1 (16)

where W1 is the function defined in (5).

We are ready to state and prove the following result:

Theorem 2. Under Assumptions 1 to 3, there exists a
function k of class K∞, of class C2 such that k′ is positive,
k′′ is nonnegative and the functional

U(φ) =

∫ L

0

k(V (φ(z)) + M(φ(z)))dz (17)

is a strict Lyapunov functional for (4).

Remark 3. Assumption 3 seems to be restrictive. In fact,
it can be significantly relaxed. Indeed, if the system

Ξ̇ = f(Ξ) (18)

is locally exponentially stable and satisfies one of Ma-
trosov’s conditions which ensure that a strict Lyapunov
function can be constructed then one can construct a func-
tion M which satisfies Assumption 3. For constructions
of strict Lyapunov functions under Matrosov’s conditions,
the reader is referred to Malisoff and Mazenc (2009). ◦

Proof. Let us consider the functional U defined in (17).
Since we impose a priori on k to be of class K∞ and (15)
holds, we deduce easily that inequalities of the type (2)
are satisfied.

Next, let us evaluate what is the time derivative of U along
the solutions of (4). With the notation S = V +M , we have

U̇ =

∫ L

0

k′(S(X(z, t)))
∂S

∂Ξ
(X(z, t))

∂X

∂t
(z, t)dz

= T1(X(., t)) + T2(X(., t))
(19)

with

T1(φ) =

∫ L

0

k′(S(φ(z)))
∂S

∂Ξ
(φ(z))f(φ(z))dz ,

T2(φ) =

∫ L

0

k′(S(φ(z)))
∂S

∂Ξ
(φ(z))

∂2φ

∂z2
(z)dz .

(20)

Since
∂S

∂Ξ
(Ξ)f(Ξ) =

∂V

∂Ξ
(Ξ)f(Ξ) +

∂M

∂Ξ
(Ξ)f(Ξ) ,

we deduce from Assumptions 1 and 3 that

T1(φ) ≤ −
∫ L

0

k′(S(φ(z)))[W1(φ(z))+W2(φ(z))]dz . (21)

Now, we consider T2. By integrating by part, we obtain

T2(φ) = T3(φ) −
∫ L

0

∂H(φ(z))

∂z

∂φ

∂z
(z)dz (22)

with

T3(φ) = k′(S(φ(L)))
∂S

∂Ξ
(φ(L))

∂φ

∂z
(L)

−k′(S(φ(0)))
∂S

∂Ξ
(φ(0))

∂φ

∂z
(0) ,

(23)

and

H(Ξ) = k′(S(Ξ))
∂S

∂Ξ
(Ξ) . (24)

Since
∂H(φ(z))

∂z
= k′′(S(φ(z)))

∂S

∂Ξ
(φ(z))

∂φ

∂z
(z)

∂S

∂Ξ
(φ(z))

+k′(S(φ(z)))
∂φ

∂z
(z)⊤

∂2S

∂Ξ2
(φ(z)) ,

(25)

we deduce from (22) that

T2(φ) = T3(φ) − T4(φ) − T5(φ) (26)

with

T4(φ) =

∫ L

0

k′′(S(φ(z)))

(

∂S

∂Ξ
(φ(z))

∂φ

∂z
(z)

)2

dz ,

T5(φ) =

∫ L

0

k′(S(φ(z)))
∂φ

∂z
(z)⊤

∂2S

∂Ξ2
(φ(z))

∂φ

∂z
(z)dz .

Since we impose on k to be such that k′′ is nonnegative,
we immediately deduce that

T2(φ) ≤ T3(φ) − T5(φ) . (27)

Now, observe that

∂2S

∂Ξ2
(φ(z)) = Q +

∂2M

∂Ξ2
(φ(z)) . (28)

This equality, inequalities (8), Assumption 3 and the fact
that we impose on k to be such that k′ > 0 ensure that

T5(φ) ≥ 2q1

∫ L

0

k′(S(φ(z)))

∣

∣

∣

∣

∂φ

∂z
(z)

∣

∣

∣

∣

2

dz

−q1

2

∫ L

0

k′(S(φ(z)))

∣

∣

∣

∣

∂φ

∂z
(z)

∣

∣

∣

∣

2

dz

=
3q1

2

∫ L

0

k′(S(φ(z)))

∣

∣

∣

∣

∂φ

∂z
(z)

∣

∣

∣

∣

2

dz .

It follows that

T2(φ) ≤ T3(φ) − 3q1

2

∫ L

0

k′(S(φ(z)))

∣

∣

∣

∣

∂φ

∂z
(z)

∣

∣

∣

∣

2

dz . (29)

Hence (19), (21), and (29) give

U̇ ≤ −
∫ L

0

k′(S(X(z, t)))W3(X(z, t))dz

+ T3(X(., t)) − 3q1

2

∫ L

0

k′(S(X(z, t)))

∣

∣

∣

∣

∂X

∂z
(z, t)

∣

∣

∣

∣

2

dz

with W3 = W1 + W2. Assumption 2 ensures that, for all
t ≥ 0, T3(X(., t)) = 0. We deduce that

U̇ ≤ −
∫ L

0

k′(S(X(z, t)))W3(X(z, t))dz .

By (16) and the inequality S(Ξ) ≥ q1|Ξ|2, we can con-
struct, through simple but lengthy calculations, a function
k of class C2 of class K∞ such that k′ is positive, k′′ is
nonnegative and

k′(S(Ξ))W3(Ξ) ≥ Ck(S(Ξ)) , ∀Ξ ∈ R
n .

where C is a positive constant. Therefore, selecting this
function k, we obtain

U̇ ≤ −CU(X(., t)) .

It follows that U is a strict Lyapunov functional for (4). •

4. ISS PROPERTY FOR A FAMILY OF PDES

In the previous section, we have constructed Lyapunov
functionals for PDEs without uncertainties and without
convection term. In this section, we show how our tech-
nique of construction can be used to estimate the impact
of uncertainties on the solutions of PDEs with a convection
term and uncertainties of the form

∂X

∂t
(z, t) =

∂2X

∂z2
(z, t) + [D1 + v(z, t)]

∂X

∂z
(z, t)

+f(X(z, t)) + u(z, t) (30)



where D1 is a constant matrix, v is an unknown matrix
function and u is an unknown continuous function.

Remark 4. For a linear finite dimensional system

ẋ = Ax + Bu (31)

where A and B are constant matrices respectively in R
n×n

and in R
n×1, it is well-known that if the linear system

(31) without input u, i.e. ẋ = Ax, is asymptotically
stable then bounded inputs result in bounded solutions.
However, for nonlinear finite dimensional systems, global
asymptotic stability does not imply input/state stability of
any sort. See (Sontag, 2007, Section 2.6) for a simple scalar
example, which is globally asymptotically stable but which
have solutions with a finite time explosion for a suitable
constant input.

Also for linear infinite dimensional system, asymptotic
stability does not imply input-to-state stability. More pre-
cisely, we exhibit in Section 6 below an example of linear
system which is globally asymptotically stable without any
input, but which may have unbounded solutions in the
presence of a bounded input. ◦

To cope with the presence of a convection term and the
uncertainty v, we introduce the following assumption:

Assumption 4. Considering the symmetric positive def-
inite matrix Q given by Assumption 1, there exists a non-
negative real number δ such that

|v(z, t)| ≤ δ

|Q| , ∀z ∈ [0, L] , t ≥ 0 . (32)

Moreover, the matrix QD1 is symmetric.

Moreover, we replace Assumption 3 by a more restrictive
assumption:

Assumption 5. There exists a nonnegative function M :
R

n → R such that, for all Ξ ∈ R
n,

M(0) = 0 ,
∂M

∂Ξ
(Ξ)f(Ξ) = −W2(Ξ) , (33)

where W2 is a nonnegative function and there exist ca > 0,
cb > 0 and cc > 0 such that, for all Ξ ∈ R

n, the inequalities
∣

∣

∣

∣

∂M

∂Ξ
(Ξ)

∣

∣

∣

∣

≤ ca|Ξ| ,

∣

∣

∣

∣

∂2M

∂Ξ2
(Ξ)

∣

∣

∣

∣

≤ cb , (34)

|Ξ|2 ≤ cc[W1(Ξ) + W2(Ξ)] , (35)
where W1 is the function defined in (5), are satisfied.

Remark 5. If f is linear and Ξ̇ = f(Ξ) is exponentially
stable, then Assumption 5 is satisfied with a positive
definite quadratic function as function M . ◦

We are ready to state and prove the main result of the
section

Theorem 3. Assume that the system (30) satisfies As-
sumptions 1, 4 and 5 and is associated with boundary
conditions satisfying

X(L, t) = X(0, t) and
∂X

∂z
(L, t) =

∂X

∂z
(0, t) , ∀t ≥ 0 .

(36)
Then the functional

U(φ) =

∫ L

0

[KV (φ(z)) + M(φ(z))]dz (37)

with

K = max

{

1,
2cb

q1
,
8ccc

2
a(|D1| + 1)2

q1

}

(38)

satisfies, along the trajectories of (30),

U̇ ≤ −λ1U(X(z, t)) + λ2

∫ L

0

|u(z, t)|2dz (39)

for some positive constants λ1, λ2, provided that δ in
Assumption 4 satisfies

δ ≤ min

{

|Q|,
√

q1

2
√

2ccK

}

. (40)

Remark 6. Using Assumption 5, one can prove easily
that the ISS Lyapunov functional U defined in (37) is
upper and lower bounded by a positive definite quadratic
functional. We deduce easily that (39) leads to an ISS
inequality of the type

|X(., t)|L2(0,L) ≤ Λ1e
−

λ1
2 (t−t0)|X(., t0)|L2(0,L)

+Λ2 sup
m∈[t0,t]

√

∫ L

0

|u(z, m)|2dz ,
(41)

where Λ1, Λ2 are positive real numbers. ◦

Proof. The proof is omitted.

5. EXAMPLE

In this section, we illustrate Theorem 3 through the
nonlinear system


























∂x1

∂t
(z, t) =

∂2x1

∂z2
(z, t) − ∂x1

∂z
(z, t)

+x2(z, t)[1 + x1(z, t)2] + u1(z, t)
∂x2

∂t
(z, t) =

∂2x2

∂z2
(z, t) − x1(z, t)[1 + x1(z, t)2]

−x2(z, t)[2 + x1(z, t)2] + u2(z, t)

(42)

with X = (x1, x2)
⊤ ∈ R

2 and where u1 and u2 are
continuous real-valued functions. Equation (42) is a system
of two heat equations with a convection term in the first.
Let us check that Theorem 3 applies. One can check
readily that Assumption 1, 4 and 5 are satisfied with the
positive definite quadratic functions V (Ξ) = 1

2 [ξ2
1 + ξ2

2 ]

and M(Ξ) = ξ2
1 + ξ2

2 + ξ1ξ2 , and the matrix Q =

(

1 0
0 1

)

.

Indeed, with f(Ξ) = (ξ2[1+ξ2
1 ] , −ξ1[1+ξ2

1 ]−ξ2[2+ξ2
1 ])⊤,

we have, for all Ξ in R
2,

∂V

∂Ξ
(Ξ)f(Ξ) = −ξ2

2 [2 + ξ2
1 ] ,

∂M

∂Ξ
(Ξ)f(Ξ) = −(3 + ξ2

1)ξ2
2 − (1 + ξ2

1)ξ2
1 − ξ1ξ2(2 + ξ2

1)

≤ −ξ2
2 −

(

1

2
+

3

4
ξ2
1

)

ξ2
1 .

Moreover, through elementary calculations, one obtains
the following values: q1 = 1

2 , |D1| = 1, ca = cb = 3, cc = 2
for the constants in (38). Therefore Theorem 3 guarantees
that, if (36) is satisfied, then the functional

U(φ) = 1153

∫ L

0

[

φ1(z)2 + φ2(z)2
]

dz

+

∫ L

0

φ1(z)φ2(z)dz

is an ISS Lyapunov functional for the system (42).

6. APPENDIX: ILLUSTRATION OF REMARK 4

In this section, we introduce an example of a linear infi-
nite dimensional system which is globally asymptotically



stable without any input, but which may have unbounded
solutions in presence of a bounded input.

To do that, let us consider the following system composed
by an infinite number of scalar ordinary differential equa-
tions written by, for each n in N,

Ẋn = − 1

n + 1
Xn + un . (43)

Given an initial condition in l2(N), there exists a solution
of (43) defined for all time t ≥ 0 for un ≡ 0, for all n
in N. Moreover system (43) is globally asymptotic stable,
without any input, i.e. when un ≡ 0, for all n in N.

Let us consider the input satisfying, for each n in N, and
for all t ≥ 0,

un(t) =
1

(n + 1)2
e
− 1

(n+1)2
t

.

Note that, denoting by ‖ • ‖l2(N) the usual norm in l2(N),
we have t → ‖(un(t))n∈N‖l2(N) is bounded. We even have

‖(un(t))n∈N‖l2(N) ≤ π2

6 e−t → 0, as t → ∞. Moreover the
solution of (43) with, for all n in N, Xn(0) = 0 is given by,
for all t ≥ 0,

Xn(t) =
1

n

[

e
− 1

(n+1)2
t − e−

1
n+1 t

]

for n ≥ 1. Therefore Xn(t) is not in l2(N) for t > 0, and
the system (43) is not asymptotically stable. System (43)
is an example of asymptotic stable systems which is not
input-to-state stable, as considered in Remark 4.

7. CONCLUSIONS

For important families of PDEs, we have shown how
weak Lyapunov functionals can be transformed into strict
Lyapunov functionals. Robustness properties of the ISS
type can be inferred from our constructions. Much remains
to be done. Other types of equations can be studied and
robustness with respect to other types of disturbances can
be proved.

REFERENCES

Cazenave, T. and Haraux, A. (1998). An introduction to
semilinear evolution equations. Oxford University Press.

Chen, X.Y. and Matano, H. (1989). Convergence,
asymptotic periodicity, and finite-point blow-up in one-
dimensional semilinear heat equations. Journal of Dif-
ferential Equations, 78(1), 160–190.

Coron, J.M., Bastin, G., and d’Andréa Novel, B. (2008).
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