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Introduction Energy Context

Energy context

Non-residential building sector is one of the most energy-consuming sectors
Needs to reduce consumption have led to new low-consumption
non-residential buildings

⇒ Then heating and cooling can be significantly reduced

But:
Low consumption buildings have limited heat power and high inertia
Non-residential buildings have known intermittent occupation

⇒ Therefore important thermal discomfort and energy waste can appear:
Thermal comfort takes too long to be good after a none-occupancy period
Internal heat gain can cause energy waste and overheating
Energy consumption until the end of occupancy is not always required

Eynard, Bourdais, Gueguen & Dumur UPVD/Supélec Predictive Control for Heating Buildings Building Simulation Conference 2013 4 / 26



Introduction Energy Context

Energy context

Non-residential building sector is one of the most energy-consuming sectors
Needs to reduce consumption have led to new low-consumption
non-residential buildings

⇒ Then heating and cooling can be significantly reduced

But:
Low consumption buildings have limited heat power and high inertia
Non-residential buildings have known intermittent occupation

⇒ Therefore important thermal discomfort and energy waste can appear:
Thermal comfort takes too long to be good after a none-occupancy period
Internal heat gain can cause energy waste and overheating
Energy consumption until the end of occupancy is not always required

Eynard, Bourdais, Gueguen & Dumur UPVD/Supélec Predictive Control for Heating Buildings Building Simulation Conference 2013 4 / 26



Introduction Energy Context

Energy context

Non-residential building sector is one of the most energy-consuming sectors
Needs to reduce consumption have led to new low-consumption
non-residential buildings

⇒ Then heating and cooling can be significantly reduced

But:
Low consumption buildings have limited heat power and high inertia
Non-residential buildings have known intermittent occupation

⇒ Therefore important thermal discomfort and energy waste can appear:
Thermal comfort takes too long to be good after a none-occupancy period
Internal heat gain can cause energy waste and overheating
Energy consumption until the end of occupancy is not always required

Eynard, Bourdais, Gueguen & Dumur UPVD/Supélec Predictive Control for Heating Buildings Building Simulation Conference 2013 4 / 26



Introduction “Sustainable Building and Innovation” Project

“Sustainable Building and Innovation” Project

Financial support and partnerships
Research chair on “Sustainable Building and Innovation”
Financial support of Bouygues Construction
Partnership between research laboratories of Supelec (French
graduate school of engineering) and the CSTB (French Scientific
and Technical Center for Building)

Objectives
Develop a simulation model of a low-energy non-residential
building using Simbad
Evaluate the impact of intermittent occupation on both the thermal
comfort of the occupants and energy consumption
Propose predictive control algorithms to manage heating efficiently,
taking into account intermittency
Propose solutions which are computationally tractable in order to
been implanted in industrial embedded system
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Model Based Predictive Control Control structure

PI-control struture for the heating system

Linear thermal model of the building

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xb(k + 1) = Abxb(k) +Bb

⎡⎢⎢⎢⎢⎢⎣

UHS(k)
Tout(k)
Noc(k)

⎤⎥⎥⎥⎥⎥⎦
Top(k) = Cbxb(k)

(1)

PI-control of the heating system

{ xc(k + 1) = Acxc(k) +Bcε(k)
UHS(k) = Ccxc(k) +Dcε(k)

(2)

Closed loop of the PI-control

𝑇𝑠𝑝 𝑘  PI-
controller 

𝒙𝒄 

𝜀 𝑘  
+ - 

𝑈𝐻𝑆 𝑘  Building 
model 
𝒙𝒃 

𝑇𝑜𝑝 𝑘  

𝑁𝑜𝑐 𝑘  𝑇𝑜𝑢𝑡 𝑘  Physical variables 
𝑇𝑠𝑝 → set-point temperature 

𝑇𝑜𝑝 → operative temperature 

𝑇𝑜𝑢𝑡 → outdoor temperature 
𝑈𝐻𝑆 → heat power 
𝑁𝑜𝑐 → number of occupants 
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Model Based Predictive Control Control structure

MPC-control struture for the heating system

Predictive controller 

Internal model 

Simbad simulator 

Simbad model of 
the room 

PI-controller for 
heating system 

State observer 
to reset the 
identified 

linear model of 
the room 

Identified  
linear model of 

the room 

PI-controller for 
heating system 

Other perturbations 

Outdoor temperature 
and internal heat gains  

Forecasting: 
- Outdoor temperature 
- Internal heat gains 
- Comfort periods 
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Model Based Predictive Control Predictive controller MPC 1

1st predictive controller (with linear optimization)
On-line linear optimization problem

Problem

At a time k, given xb(k), xc(k), the optimization problem is:

min
TSP(k ∶k+Nh−1)

Nh−1

∑
j=0

UHS(k + j), (3)

s.t. ∀j = 1..Nh/Noc(k + j) ≠ 0

Top,min ≤ Top(k + j) ≤ Top,max (4)
0 ≤ UHS(k + j) ≤ Umax

HS (5)

Top and UHS are computed according to linear models of the room
and PI-controller with the prediction of:

TSP(k ∶ k +Nh − 1) (output of the MPC controller),

Tout(k ∶ k +Nh − 1) (flat prediction)

Noc(k ∶ k +Nh − 1) (supposed known)
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Model Based Predictive Control Predictive controller MPC 2

2nd predictive controller (without on-line optimization)

Logical decision based on the prediction model
No optimization toolbox needed
The controller answers two questions:

Case 1: During inoccupancy, when switching the heating system on to ensure the
thermal comfort for the next working hours, now or later ? (later if possible)
Case 2: During occupancy, when switching the heating system off to ensure the
thermal comfort until the last occupancy hour, now or later ? (now if possible)

Algorithms to solve these problems:
Case 1 : One simulation with input: TSP(k ∶ k +Nh) = [0,TSP ,TSP , . . . ,TSP]

T

⇒ if Top(k ∶ k +Nh) ≥ Top,min(k +Nh) then apply: TSP(k) = 0
else apply: TSP(k) = TSP

Case 2 : One simulation with input: TSP(k ∶ k +Nh) = [0,TSP ,TSP , . . . ,TSP]
T

⇒ if ∀i = 1, . . . ,Nh,Top(k + i) ≥ Top,min(k + i) then apply: TSP(k) = 0
else apply: TSP(k) = TSP
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Case study Geometry, thermal parameters and systems

Geometry of the building and window parameters

One room in a low-consumption energy building used for office work
Second floor of the 4-floor building
Two external walls and two internal walls
28 windows on the Northwest side

Plan office of the 2nd floor 
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Case study Geometry, thermal parameters and systems

Thermal parameters for walls and windows

THERMAL PARAMETERS FOR WALLS
Wall Layer Thickness Density Capacity Conductivity

m kg⋅m−3 J⋅kg−1
⋅K−1 W⋅m−1

⋅K−1

External

Reinforced concrete 0.2 2150 1008 1.650
Rockwool “Rockfaçade®” 0.12 39 1030 0.036

Unventilated air gap 0.02 1 1000 0.130
Ventilated air gap 0.022 1 1000 0.192

Terra cotta “Terreal Zéphir®” 0.014 2286 1008 0.98

Internal
Drywall “BA13” 0.0125 825 1008 0.25

Unventilated air gap 0.025 1 1000 0.155
Drywall “BA13” 0.0125 825 1008 0.25

Floor Concrete 0.31 2350 880 2.3

THERMAL PARAMETERS FOR WINDOWS
Parameters Value

Thermal diffusivity (W⋅m−2
⋅K−1) 1.8

Solar absorption 0.095
g factor 0.42

Light transmission 0.71
Emissivity of exterior side 0.095
Emissivity of interior side 0.095
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Case study Geometry, thermal parameters and systems

Systems for lighting and HVAC

Lighting system
PARAMETERS OF THE LIGHTING SYSTEM

Name Unit Value
Total lighting power W 40

Illuminance efficiency lm/W 88
Luminaire mean efficiency − 0.8

Luminaire maintenance factor − 1.11
Lighting heat gain − 0.25

HVAC system
Mechanical ventilation with heat recovery (ε = 84%)
Air flow during occupancy : 0.3454 kg⋅s−1

Air flow during inoccupancy : 0.034 54 kg⋅s−1

Heat power : 0 to 12.588 kW (8.8 W⋅m3)

Eynard, Bourdais, Gueguen & Dumur UPVD/Supélec Predictive Control for Heating Buildings Building Simulation Conference 2013 14 / 26



Case study Scenario Inputs

Outdoor temperature and number of occupants
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Case study Scenario Inputs

Solar radiation
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Simulation Results Identification of a linear model

Identification of a linear model

Identification of a 4-order linear model of the room (open loop), using the
numerical algorithm for subspace state-space systems, based on dataset
generated with Simbad
Validation of the closed-loop model (with the PI-controller) considering 2
scenarios

V1: heating control always switched on
V2: heating control works during occupancy periods
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VALIDATION OF THE CLOSED-LOOP MODEL

Criterion Unit V1 V2
FIT of Top % 95.6 96.7
FIT of UHS % 80.1 95.8

Total energy difference % −0.62 0.26



Simulation Results Evaluation of thermal comfort

Evaluation of thermal comfort

Thermal comfort is evaluated according to % of time in three comfort domains
for the operative temperature Top

D1: the optimal comfort domain (a 1°C width temperature band, centered around
the set-point).
D2: the low discomfort domain.
D3: the high discomfort domain, when the occupants feel an important thermal
discomfort.

THERMAL COMFORT DOMAINS
Name Conditions

D1 {Tsp + 0.5 > Top > Tsp − 0.5}

D2
{Tsp + 1.5 > Top > Tsp + 0.5}
∪{Tsp − 0.5 > Top > Tsp − 1.5}

D3
{Top > Tsp + 1.5}
∪{Top < Tsp − 1.5}
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Simulation Results Simulation results of PI-controller strategies

Results of PI-controller strategies
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PI-S1: Heating switched on 24/7
Energy consumed: 797 kWh
% of time with an optimal comfort:
91.1%
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PI-S2: 6-hour anticipation
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Simulation Results Simulation results of Predictive Control MPC 1

Results of the 1st Predictive Controller (MPC 1)

Energy consumed: 670 kWh (-15.9% than PI-S1, -4.2% than PI-S2)
% of time with an optimal comfort: 95.2% (+4.5% than PI-S1 +35.4% than PI-S2)
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Simulation Results Simulation results of Predictive Control MPC 2

Results of the 2nd Predictive Controller (MPC 2)

Energy consumed: 700 kWh (-12.2% than PI-S1, equal than PI-S2)
% of time with an optimal comfort: 99.3% (+9% than PI-S1, +41.2% than PI-S2)
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Conclusion and outlook

Conclusion and outlook

Conclusions
Development of a simple but intelligent predictive strategy
Preservation of local controllers
Computationally tractable algorithms

on-line linear optimization (MPC 1)
no-online optimization (MPC 2)

Significant reduction of energy use and better comfort level

Future works
Estimation of operative temperature without any radiant
measurement
Use of PMV instead of operative temperature
Generalization for multi-zone buildings
Control of multiple systems (blinding system. . . )
Integration of variable cost of energy
Experimental validation in a real building
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Conclusion and outlook

Thank you for your attention
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