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SUMMARY

This paper aims at developing a robust observer based estimated state feedback control design method for an
uncertain dynamical system that can be represented as a LTI system connected with an IQC-type nonlinear
uncertainty. Traditionally in existing design methodologies, a convex semidefinite constraint is obtained at
the cost of conservatism and unrealistic assumptions. On the other hand, the design of the robust observer
state feedback controller in this paper is formulated as a feasibility problem of a bilinear matrix inequality
(BMI) constraint. Unfortunately, the search for a feasible solution of a BMI constraint is a NP hard problem
in general. The applicability of a linearization method, such as the variable change method or the congruence
transformation, depends on the specific structure of the problem at hand and cannot be generalized. This
paper transforms the feasibility analysis of the BMI constraint into an eigenvalue problem and applies the
convex-concave based sequential LMI optimization method to search for a feasible solution. Furthermore,
an augmentation of the sequential LMI algorithm to improve its numerical stability is presented. In the
application part, a vehicle lateral control problem is presented to demonstrate the applicability of the
proposed algorithm to a real-world estimated state feedback control design problem and the necessity of
the augmentation for numerical stability.

KEY WORDS: Output Feedback; Robust Control; Convex Optimization; Control Nonlinearities;
Automotive Control.

1. INTRODUCTION

State feedback control is one of the most commonly used control methods for both linear and
nonlinear systems [1] [23] [28] [29]. Unfortunately, it is not possible or too expensive to measure
all the state variables in many real-world applications. Thus, an observer is a necessary part in the
implementation of the state feedback controller. However, model uncertainty is always the trouble
maker for control engineers. It turns out that the well-known separation principle is not valid even
for linear time invariant (LTT) systems in the presence of parametric uncertainty [24] [44]. Hence,
the controller gain and observer gain need to be decided in a coupled way to guarantee the stability
of the closed-loop system in the presence of model uncertainty. This paper aims at applying a
state-of-the-art optimization algorithm to develop a robust observer state feedback controller for
an uncertain dynamical system that can be represented in the linear fractional transformation (LFT)
form in which a nominal LTI system is connected with an uncertain nonlinear operator satisfying
the integral quadratic constraint (IQC).
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In the last two decades, semi-definite programming (SDP) has gained popularity in the control
systems community [5] [13] [18] [7]. There are a number of successful applications of this numerical
method in controller/observer design and system identification [25] [26] [27]. The essence of
this state-of-the-art methodology is to represent the design of control systems as an optimization
problem with a linear cost function together with a linear matrix inequality (LMI) as the constraint.
The convex property of the LMI ensures that the optimization problem can be solved by the well-
developed interior-point algorithm [30] [6].

However, the formulation of the design of control systems as a LMI based optimization problem
is not always an easy task. Many constraints from practical considerations make the optimization
problem a nonconvex one, such as the fixed-order controller design [19] [20] [14]. On the other
hand, the bilinear matrix inequality (BMI) is a more general semidefinite constraint than a LMI
that frequently appears in the study of control theory [7] [37] [18]. For example, the semidefinite
condition for output feedback controller design contains the product of the Lyapunov matrix and
controller gain parameters with a constant matrix in the middle. Unfortunately, this problem is
traditionally treated as a NP hard problem [4]. Although various convexification methods, such
as change variable and congruence transformation [18] [13] [12], are proposed in the literature to
transform the BMIs into LMIs, the success of these methods depends on the specific structure of
the semidefinite constraint at hand. In some literature, a convex inner approximation of the BMI can
be obtained by trading off the conservatism for computational efficiency [12]. The same with the
previous methods, the tricks that apply to a specific application cannot be generalized to others.

Besides those global convexification methods, there are also several results that apply the local
optimization methods, such as sequential convex programming [17] [2], nonsmooth maximum
eigenvalue minimization [3], augmented Lagrangian approach [41] [21] and Newton-like alternating
projection method [31] to search for a local optimal solution. The successful applications to
robust output feedback controller design show the effectiveness of those algorithms. All of these
local methods start with a strictly feasible initial point such that all the subsequent iterations are
constrained in the feasible set. However, searching for such a feasible initial point is not a trivial
task for a problem with high-dimension decision variables.

In this paper, the design of the robust observer state feedback controller is formulated as the
feasibility problem of a BMI constraint coming from the product of the Lyapunov matrix and the
controller or observer gains. This paper transforms the feasibility analysis of the BMI constraint into
an eigenvalue problem and applies the convex-concave based sequential LMI optimization method
to search for a feasible solution. Furthermore, an augmentation of the sequential LMI algorithm to
improve its numerical stability is presented.

The remainder of this paper is organized as follows. The model of the observer based estimated
state feedback control system connected with an uncertainty block is presented in section 2. The
design of the controller and observer is formulated as a BMI feasibility problem for the IQC-type
uncertainty block in section 3. Then, a sequential LMI algorithm is developed to search for a feasible
solution of the BMI constraint in section 4. The proposed algorithms are applied to a vehicle lateral
control problem in section 5. Section 6 contains the final conclusions and recommendation for future
work.

2. PRELIMINARIES

A brief review of the linear fractional transformation (LFT) representation for a LTI system with
uncertainty together with a formulation of the observer based robust estimated state feedback control
problem will be presented in this section.

2.1. Notations

The notations used in this paper are quite standard. £3[0,00) is the Hilbert space of all square
summable functions f :[0,00) — R™. £%.[0,00) is the extended space the element of which
only needs to be square integrable on finite intervals. A mathematical operator means a function
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fLB]0,00) — L£5,[0,00). RLo is the set of real rational transfer functions bounded on the
imaginary axis. RH, represents the set of real rational, proper and stable transfer functions. The
set of m x n matrices with elements in RL,, or RH, are denoted as RL:*"™ or RHI}*"™. For
the transfer matrix 7'(s) € RH2*", ||T(s)||,, denotes the H..-norm, the largest singular value of
T(jw),Vw € RU {oo}. For a Hermitian matrix H, H < 0, H > 0 (H =< 0, H = 0) means a negative
and positive (semi) definite constraint for H.

2.2. LFT Representation of The Uncertain Plant

In this paper, the uncertain system shown in Fig. | is studied. As can be seen, the uncertainty
operator A is isolated from the nominal linear generalized plant, whose state space model is shown
as [45] [40]

Ea A| By, Bu ||
y | =| Cy| Dyu Dyw u |, w=A(2) (1)
z Cz -Dzu Dzw w

where z, u, y denote the state vector, controller input and the measured output. w and z are the
input and output of the uncertainty channel. Here, it is implicitly assumed that the interconnection
of the generalized plant and the uncertainty block A is well-posed. The relationship of w and z
is crucial for robustness analysis which depends on the structure of A [13] [15]. We will focus on
those operators whose input and output satisfy the general integral quadratic constraint (IQC) in this

paper.

-

Z w
4
[x A B, B,]|x -—
y]= C} .'J).,l D).w [u] u
4L. z c, D,, D, |w

Figure 1. LFT representation of the open-loop system

2.3. Nominal Observer Design

To stabilize an uncertain system with an estimated state feedback controller, an observer is needed
to estimate the state variables from the measurement signal y and control input u. Due to the lack of
model information of the uncertain block A (besides its input-output relationship), the design of the
observer is based on the model of the nominal linear system [24] [44]. The observer state equation
is

& = A% + Byu+ L(y — Cy& — Dyyu) )
The corresponding observer error state equation is
é=(A—LCy)e+ (By — LDyy)w 3)

where e = x — .



2.4. Observer Based Estimated State Feedback Control

With the observer based estimated state feedback control ©w = — K &, the state space model of the
closed-loop system isolated from uncertainty becomes

T A—-B,K B, K B, T
e | = 0 A—-LCy, | By — LDy, e 4)
z C,-D,, K D, K ‘ D.., w

The transfer matrix of the state space realization in (4) is denoted as T'(s) with z(s) = T'(s)w(s).
The block diagram of the closed-loop system with the uncertainty block A can be seen in Fig.
2. The search for the controller gain K and observer gain L such that the closed-loop system is
robustly asymptotically stable against the uncertainty A is the main task of this paper. To facilitate
subsequent analysis, the closed-loop state space matrices A., B., C. and D, are defined as

A—B,K B.K B B,
Ae = 0 A—LCy}’ BC_[BU,—LDW}

Cc: [ Cz_DzuK DzuK :|a Dc:Dzw

®)

p—
A w
7
& A B, B, |rx < f—
y|l= C}" D)’ﬂ D)’W u]
72l |¢, D Dp|lwl |—
.
\ u

Ly — C,% — D, u)

yv
r N
=)
1]
.
&
+
=
=
=
+
]
=

Figure 2. LFT representation of the closed-loop system with uncertainty

3. BMIS FOR ROBUST OBSERVER STATE FEEDBACK DESIGN

It will be shown in this section that the design of the controller gain K and the observer gain L
such that the interconnection in Fig. 2 is robustly stable against the IQC-type uncertainty block A
resorts to searching for a feasible solution of a BMI constraint. Unlike the existing results, such as
[24] [44], the system under study is not limited to be a linear one in this paper because the integral
quadratic constraint itself does not discriminate between the linear and nonlinear operator. It is also
well known that many types of nonlinearities in control systems can be formulated as an IQC-type
uncertainty [36]. Suppose z € £, and w € L3, the IQC for the uncertainty operator A is defined as

/_Z [ ;((ﬁ)) ] () [ ;(ét)) } dw >0 ©)
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where z(jw) and w(jw) represent the Fourier transforms of the signals z and w at frequency w.
II: jR — CU+m)x(+m) js 3 Hermitian-value matrix function. It is also called the IQC multiplier in
some literature.

Many important uncertainties in the feedback control loop can be modeled as a mathematical
operator satisfying the IQC condition, such as uncertain linear time-invariant dynamics, delay,
memoryless nonlinearity in a sector, slope-restricted monotonic odd nonlinearity and so on. The
list of the IQCs for various types of uncertainties can be found in [36] [13] [8] [9] [10]. Once the
IQC multiplier II is obtained, the IQC Theorem can be applied to obtain the sufficient stability
condition for the 7" — A interconnection in Fig. 2.

Theorem 1
(IQC Theorem [36]): Let T'(s) € RH.X™ and A : £}, — L3 is a bounded causal operator. Assume
that:

1) forevery 7 € [0, 1], the interconnection of 7'(s) and 7A is well-posed;
2) for every 7 € [0, 1], the IQC defined in (6) is satisfied by TA;
3) there exist some € > 0 such that

{ T(j;w) Tn(jw) { T(f;”) } < —el, YweR )

Then, the " — A interconnection in Fig. 2 is stable.

fII(jw) € Rngm) x(t+m) (matrix of rational functions with no poles on the imaginary axis), it
always can be factorized as the form in (8), though such a factorization is not unique [36] [38].

(jw) = ¥(jw)" M (jw) ®)

where M = MT, ¥ € RH,, (matrix of rational functions without poles in the closed right-half
plane). Accordingly, the frequency domain inequality (FDI) in (7) becomes

T(jw)

{ T(jw) rq,(jw)*M\If(jW) { I

] }gd,VweR 9)

The state space realization of ¥ has the form shown in (10).

Ty = Avzy + [ By. By ] [ 5) ] , yw =Cozy + [ Dy, Dy ] [ i) } (10)

Furthermore, the corresponding state space model of the transfer function matrix ¥(s) { T-(rs) ]
becomes [38]

(iT Ac 0 xrrT Bc

. = + w

Ty By .C. Ay Tw By w + By . D,

A B (11)
xr
yo = | Dy.C. Cy | { To } + (Dy,w + Dy D) w
c D

T . . .
where 7 = [ ol T ] denotes the state of the transfer function matrix 7'(s). The matrices A,

B, C.and D, are defined in (5). The FDI in (9) is equivalent to the following semidefinite constraint
according to the well-known Kalman-Yakubovich-Popov (KYP) Lemma [35] [16] [38].

p=pT
AT A ®. ~T _ _
AgEfA}?] [gTyWU7D]<0 (12)

Since the matrices A, B shown in (11) are affine matrix functions of the gain parameters K and L,
the semidefinite constraint in (12) is a BMI constraint for (KX, L) and P.
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Remark 1
A remarkable feature of the KYP Lemma is that the matrix decision variable P in the semidefinite
constraint in (12) is not necessary to be positive definite.

4. A SEQUENTIAL LMI APPROACH

4.1. Eigenvalue Problem

The observer based estimated state feedback control design problem discussed above relies on a
feasible solution of a BMI constraint. Unfortunately, no existing numerical algorithm can be directly
applied to search for the feasible solution of such a nonconvex constraint. There exist algorithms
to search for the local Karush-Kuhn-Tucker (KKT) point of a BMI optimization problem but only
with an initial feasible solution [17], which is not assumed to be available in this paper. To make the
local optimization algorithm applicable, a slack variable ¢ is introduced such that the search for the
feasible solution of the BMI constraint is equivalent to the following eigenvalue problem.

minimize ¢
subject to (13)
B(X,Y)—tI <0

where B(X,Y) denotes a bilinear matrix function shown below
BX,Y)=X"Y +YTX +F (14)

with X, Y and F are affine matrix functions of the free variables o = (o, ..., ;) and 8 =
(B1,- - -, Bm) respectively.

X=Xo+Y oXy, Y=Y+ BY;, F=F+Y aiFa;+y BiFs;  (I5)
i=1 j=1 i=1

j=1

It is assumed that the slack variable ¢ is included in either v or 3 in the remainder of the paper.
Once a negative optimal solution of ¢ in (13) appears, the feasible solution is naturally obtained. In
principle, the application of the sequential LMI algorithm to the eigenvalue problem in (13) do not
require the starting point to be a feasible one. However, it will be shown that this algorithm may fail
due to poor numerical conditions before a negative value of ¢ is obtained. An augmentation of the
sequential LMI approach to improve the numerical stability will be presented in this section.

4.2. Convex matrix function

Before presenting the convex-concave decomposition of the bilinear matrix function, it is worth to
review the definition of the convexity for a matrix function.

Definition 1
[39] [17] A matrix-valued mapping G : R™ — SP is said to be positive semidefinite convex on
a convex subset £ C R™ if for all ¢ € [0,1] and z,y € F, it satisfies the following semidefinite
constraint.

Gtz + (1 —t)y) 2 tG(z) + (1 - )G(y) (16)

An equivalent way to define the positive semidefinite convexity of a matrix-valued mapping is
based on its scalarization as shown below.

Lemma 1
[17] A matrix-valued mapping G : R™ — S is said to be positive semidefinite convex on a convex
subset £ C R™ if and only if for any v € RP the function vT'G(z)v is convex on E.
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Although Definition 1 or Lemma 1 can be directly applied to the convexity analysis of any matrix-
valued mapping, a more efficient way for the convexity verification of the quadratic matrix functions
exists.

Lemma 2
Let X and Y be affine matrix functions of the free variables ay, . .., a, and g1, .. ., B, respectively.
X=Xo+) aiXs, Y=Yo+> B, (17)
i=1 j=1

Then, the quadratic matrix function G : R**™ — SP shown in (18) is positive semidefinite convex
on a convex subset £ C R™™™ if the matrix @ is positive semidefinite.

X
G(z)=[ X7 YT}Q[Y} (18)
where © = [, ...,y B1s -+ -5 B T
Proof
The matrix G(x) can be scalarized by any real vector v € RP as
v G(z)v =
T AT T o T T T o T T T Xo
[a" g7 ]T QF[6]+2’U [ X§ Y5 ]QF[5]+U [ X5 Y5 ]Q{YO }U
(19)
where a = [aq,...,a,]7, B=[B1,...,Bm]T. The matrix I is
. le,...,Xn’U 0
L= { 0 Yiv,...,Y v ] (20)

where 0 denotes the zero matrix with a compatible dimension. The positive semidefiniteness of @)
implies the same property of "7 QT for any real vector v € RP. Hence, the quadratic polynomial of o
and 5 in (19) is a convex function [6]. According to Lemma 1, it can be concluded that the quadratic
matrix function G(z) in (18) is positive semidefinite convex on a convex subset £ C R, O

Remark 2

Different from the scalar quadratic function that the positive semidefiniteness of the matrix @ is
just the sufficient condition for the positive semidefinite convexity of the matrix function G(z) not
necessary. The reason lies in the fact that the positive semidefiniteness of I'7 QI" does not guarantee
the same property of () if the matrix I is rank deficient.

4.3. Convex-Concave decomposition

A convex-concave decomposition (or DC decomposition) of the bilinear matrix function B(X,Y)
in (14) is a necessary step to apply the sequential LMI approach. Besides the decomposition in [17],
another form of the DC decomposition will be presented in what follows.

B(X,Y)=[ XT YT]HéH;(}jLF 1)

Q

The matrix @) is an indefinite matrix, the eigenvalues of which distribute at —1 and 1 equally.
Furthermore, the indefinite matrix ) can always be decomposed as the difference of two positive
semidefinite matrices [22].

Q=01 — Qo Q1,Q2=0 (22)



Such a convex-concave decomposition is not unique. In general, the search for (); and Q)5 resorts to
the feasibility problem of a LMI with element-wise linear equality constraints. Hence, the interior-
point algorithm can be used. However, a more simpler way to obtain such two positive semidefinite
matrices (1 and () is based on the eigenvalue decomposition of Q.

ro] vl ]

:V[?][o I]VT—VH][J 0]vT (23)

Q1 Q2

where the matrix V' is composed to the eigenvectors of (). It is quite obvious that (J; and @2 in
(23) satisfy the positive semidefinite constraint in (22). Then, the bilinear matrix B(X,Y") can be
represented as the following convex-concave form

B(X,)Y)=[ X" YT]Ql[;(}JrF[XT YT]QQ{);] (24)

In the following algorithm analysis, the two convex matrix functions in (24) are denoted as
G1(X,Y) and Go(X,Y) respectively.

GL(X,Y) = X7 YT]Ql[);}—kF, Ga(X,Y) = [ X7 YT}QQ{;(] 25)

4.4. Linearization of a BMI

Next, it will be shown that a convex constraint for the decision variables can be obtained through
the linearization of just the concave matrix function around the feasible solution of the relaxed BMI
constraint. Hence, this method provides the possibility to search for a better solution with a smaller
value of ¢ by applying an efficient convex optimization algorithm. At first, let’s review the derivative
of a matrix function.

Definition 2
[17] Suppose G(x) is a matrix-valued mapping from R™ to RP*P, The derivative DG at «* is defined
as

" 9G
DG(x*)h:;hia—zi(x*), Vhe R" (26)
Suppose X and Y are affine matrix functions of the decision variables 1, ..., a, and B1,. .., Bn,

defined in (15). Then, the convex matrix function G2(X,Y") in (25) becomes
n T
XO + Z OéiXi
G2 (X,Y) = i Q2
Yo+ BiY
j=1

XQ + Z OéiXi
o (27)

Yo+ Z B;Y;
j=1

According to the definition in (26), the derivative of the matrix function G5(X,Y") at the available
feasible solution a®) = ({™ ... a{¥) and B® = (B ... 8% has the following form

DGo(X®) |y (R)pk) =

n T n n T n
Z (Oti — Oégk)> Xz X() + Z Otgk)XZ Xo + Zaik)Xi Z (C!i — C!Ek)) Xz
i?} Q- i;l + i’r:nl Q2 i'r:nl

> (8- 58)v; Yo+ sy, Yo+ sy, > (8- 8"y

1

=1 j=1 j=1 j

J
T T T
X x (k) x (k) X x (k) X (k)
(v e Yo [ B0 el ¥ ]2 T0 ] e Ve

(28)



where the elements of the vector 2(*) are composed of a; — a(k), B — ﬂj(.k) withi=1,...,n,j =

i
1,...,m.

Lemma 3

[17] A matrix function G(-) is positive convex on a convex subset £ C R™ if and only if the
following semidefinite constraint is satisfied for all z,y € F

G(y) — G(z) = DG(z)(y — x) (29)
Applying (29), the lower bound of the convex matrix function G2(X,Y") can be obtained as
Go(X,Y) = Go(XP Yy ®)) 4 DGy (X Ry R yp k) (30)

In the subsequent analysis, the linearization of the matrix function G5 (X,Y) at (X®), Y (®)) will be
denoted as LG (X ) Y(R)):

LGy (XM v(R)) = Go(X B y*)) 4 DGo(X )y (R))p (k) (31)
Consequently, an upper bound of the bilinear matrix function B(X,Y) — ¢/ is
B(X,Y)—tI < G1(X,Y) — LGo(X® vy Ry ¢ (32)

Instead of considering the nonconvex BMIs constraint B(X,Y) — ¢t/ < 0, the following convex
quadratic matrix inequality (QMI) constraint will be studied.

G1(X,Y) — LGy (X® Yy —+1 <0 (33)

An improved solution with a lower value for ¢ can be obtained by solving the following LMI
optimization problem.

minimize ¢+ 2 o — a3 + 25 — 8O3
subject to

-1 |0 I]VT“/(] 34

x  F—LGy(X®) y®) _¢1

where * can be deduced from symmetry. p,, pg > 0 are the regularization parameters and 0, I are
the zero and identity matrices with compatible dimensions. The LMI constraint in (34) is equivalent
to the convex QMI constraint in (33) according to Schur Complement [13] [7].

Remark 3

Since the decision variable ¢ as a cost function in (13) is just a linear one, then the two regularization
parameters p,,ps in (34) have to be strictly positive to enforce the strong convexity, which
sufficiently guarantees the optimal value of ¢ in (34) satisfying ¢ — t(*) < 0 as proved in [17].

4.5. Augmented Sequential LMI algorithm

Although the convex LMI optimization problem in (34) can be applied iteratively to obtain
a sequence of the slack variable ¢(9),¢(1) #(2) . that decreases monotonically, the numerical
condition of the LMI constraint may continuously deteriorate. For example, the decision variable
B is composed of the Lyapunov matrix P as 8 = vec(P) in the output feedback control design
application. The condition number of P may become unexpected large as the sequential LMI
algorithm proceeds. Unfortunately, such a bad scaled Lyapunov matrix P returned by the solver
in the current iteration will become a given matrix parameter in the subsequent iterations, which
will result in a failure of the interior point algorithm before the convergence to a local KKT point
or the appearance of a negative value of ¢ [5]. To improve the numerical stability, a constraint on
the condition number of the Lyapunov matrix is necessary, which results in an augmentation of the
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optimization problem in (34) is shown as

minimize ¢+ % [ + & o — otV [+ 45~ 5V 3

subject to
pd X P =2yl
(35)
1 [0 I]vT [ X ]
Y <0

x  F—LGy(X®) YRy —¢1

where p., ;1 > 0 are given penalty parameters and lower bound of the eigenvalues of the Lyapunov
matrix P respectively. The additional decision variable 7. denotes the upper bound of the condition
number of the Lyapunov matrix.

Another difference with [17] is the selection of the starting point of the sequential LMI algorithm.
Although the convergence condition requires the BMI constraint to be strictly feasible at the initial
solution, which is not easy in general, finding a set of decision variables, such that all the eigenvalues
of the bilinear matrix function in (13) are strictly less than a large enough value of ¢, is not a hard
task. An LMI optimization method with a prior selection of one of the two sets of the decision
variables to search for an initial solution will be presented below. Suppose 5 = vec(P) and a set of

numerical values ﬁf)), ceey /6’,,(,?) are preselected as the candidate for the feasible solution in the BMI
constraint in (13). Then, the feasible solution a§°>, ceey a%o) of the other set of decision variables

ai, ..., together with ¢ can be found by solving the following LMI optimization problem.

minimize ¢
subject to (36)
B(X,Y©) — I < el

where V(0 = Y + Z;ﬂ:l ﬂj(-O)Yj and € > 0 is a given parameter that guarantees the strict feasibility
of the initial solution in the BMI constraint in (13). The solution of (36) will be denoted as X (©) =
Xo+ >0, aEO)Xi and ¢(©). Since the initial condition number yéo) is naturally predetermined
together with 5(?), it is unnecessary to add a penalty term in the cost function and the LMI constraint
for ~. as in (35).

The augmented sequential LMI algorithm for the feasibility analysis of the BMI constraint is
summarized in Algorithm 1.

Algorithm 1: Sequential LMI Algorithm for the BMI Constraint B(X,Y) <0

Step 1:  Select a set of numerical values ﬁ§0), ceey Bffl) ) and solve the LMI optimization
problem in (36) to obtain ago), a0l and t©

Step 2:  If the optimized solution ¢(°) < 0, stop the algorithm and return ago), e aglo)

and BEO), ey BSZ) as the solution. Otherwise, jump to Step 3

Step 3:  Linearize the concave matrix function G5 (X,Y") around the available feasible

solution agk)7 ey a%k) and B%k), - 757(,?)
Step 4:  Solve the LMI optimization problem in (35) to obtain the new solution
agkﬂ), ol and ngﬂ), -, BEY together with ¢(k+D)
Step 5:  If t(*+1) < 0, stop the iteration and return agkﬂ), ey a%kﬂ) and B§k+1), cee ,(,]fﬂ)

as the solution. Otherwise, go back to Step 3 until the stop criterion is reached.
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4.6. Convergence Analysis

Although the Algorithm 1 will generate a monotonic decreasing sequence {t(*)}, it is not enough
to guarantee the convergence to the KKT point. In general, the application of the convex-
concave approach for the nonlinear semidefinite programming problem requires to formulate the
optimization problem in the following form

minimize f(z)
subject to 37
Q1(z) — Q2(x) X0

where all the decision variables are collected in z € R™ and f(z) is a convex cost function.
Q1 (z), Q=2(x) are both positive semidefinite convex matrix functions. The convex subproblem that
corresponds to (35) for the eigenvalue problem in the sequential algorithm is

minimize f(z) + 25 ||W,(z — z™)||3
subject to 38)
Q1(x) = DQ2(a®)(x — M) < 0

where pr, > 0 and W}, is a given projection matrix. The semidefinite constraint in (38) is strictly
feasible if the available solution z(*) makes the semidefinite constraint in (37) strictly feasible,
which guarantees the existence of the KKT point of the convex subproblem [6] [17]. Applying the
interior-point algorithm, both the primal variable z(**1) and the dual variable A**1) satisfying
the KKT condition of (38) can be obtained. The convergence of the sequential convex optimization
algorithm for the nonlinear semidefinite programming problem in (37) together with the prerequisite
assumptions is rigorously stated in Theorem 2.

Theorem 2
([17]): Let D denotes the feasible set of the nonlinear semidefinite constraint in (37) that is bounded
in R™. Suppose that f(z) in (37) is bounded from below on D under the following three assumptions.

1) The relative interior of D is nonempty;

2) The matrix function @1(z) in (37) is Schur positive definite convex. In addition, f(x) is
convex quadratic on R™ with a convexity parameter py > 0;

3) The convex subproblem in (38) is solvable and satisfies the strong second order sufficient
condition.

Let {z(*), A®)} be a sequence of the primal and dual variables generated by Algorithm 1 in [17]. If
either f(z) is strongly convex or p;, = p > 0 and W}, = W is full-row-rank for all & > 0 then every
accumulation point {z*, A*} of {z(*), A(")} is a KKT point of (37). Moreover, if the set of the KKT
points of (37) is finite, then the sequence {z*), A(¥)} converges to a KKT point of (37).

The eigenvalue problem defined in (13) is a special case of the nonlinear semidefinite
programming problem in (37). The following corollary proves the convergence of the convex-
concave based Algorithm 1 to a KKT point.

Corollary 1

For the BMI constrained eigenvalue problem in (13), the sequence of the primal variables
{a®) B(F) together with the dual variable A(*) generated by the Algorithm 1 converges to a KKT
point of the following augmented eigenvalue problem.

minimize ¢+ 2 [|v.||3

subject to
pd X P =2 yepl
B(X,Y)—tI <0

(39)

where p > 0 is a given parameter.
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Proof
First, it is obvious that the convex subproblem in (35) comes from the linearization of the concave
part of the BMI constraint in the augmented eigenvalue problem in (39). Thus, the relationship
between (39) and (35) exactly matches that between (37) and (38) for the general nonlinear
semidefinite programming problem. Due to the strictly positiveness of ¢, the initial solution obtained
from the LMI problem in (36) makes the BMI constraint in the augmented eigenvalue problem in
(39) strictly feasible, which implies the satisfaction of the first assumption in Theorem 2. Next,
the matrix function @ (z) in (37) is Schur positive definite convex as proved in (23) and the cost
function ¢ + 5* 17¢ |3 is also a convex quadratic function in spite of the zero convexity parameter.
For the third assumption, the convex subproblem in (35) is just a standard LMI optimization
problem, in which the strict feasibility is guaranteed by the strict feasible initial solution. Hence,
this convex subproblem is solvable and satisfies the strong second order sufficient condition. At
last, the regularization parameters p,, pg are strictly positive and the projection matrix W is an
identity matrix in all the iterations of the convex subproblem.

In summary, all the assumptions in Theorem 2 are satisfied for the BMI constrained eigenvalue
problem defined in (39). Hence, the convergence of the Algorithm 1 to a KKT point is
guaranteed. O

Although the additional penalty of the condition number in (39) leads to a less optimal value of
t compared with the original eigenvalue problem in (13), this trade-off between performance and
numerical stability is necessary for the success of the sequential LMI algorithm as shown in the
next section. Finally, it is also worth to mention that the above sequential LMI algorithm will only
converge to a local optimum of ¢ 4+ £ ||v.||3. Therefore, it cannot be concluded that the given BMIs
constraint is infeasible in case that the algorithm fails to converge to a negative value.

5. VEHICLE LATERAL CONTROL APPLICATION

5.1. Vehicle Dynamical Model and Lateral Control

The above BMI based robust observer state feedback control design method will be applied to the
development of a vehicle steering control system. While steering control for normal road and tire
conditions has been extensively studied in literature [34]. A major challenge in this field is to design
a rigorous control system that is robust to highly nonlinear and uncertain tire-road friction forces
and the existing observer state feedback design methodology presented in [44] cannot generate such
a robust control solution. Hence, it is a perfect example to demonstrate the superiority of the robust
design method presented in this paper.
In the application, a general nonlinear tire model shown in (40) is adopted [34] [33] [42].

wF, (30 — 30%asgn(a) + 62a3), if |a] <
Fa(a:{ ( (@) +0%%), if o o

nF.sgn(a) if |a| >

D= D=

where the slip angle o denotes either oy or o, and F,,(«) is the corresponding tire force. The
parameter 6 is defined as 6 = ‘%‘1;73’,2’@, where 1 and F, represent the tire-road friction coefficient and
normal load of the wheel. a. is half-length of contact patch, b, is half-width of the contact patch,
and k is isotropic stiffness of tire elements per unit area of the belt surface. 1/6 represents the value
of slip at which a saturation of lateral tire force is reached. A typical curve of the nonlinear lateral
tire-road friction model in (40) with p = 0.85, F, = 6000V, 6 = 4.5 is shown in Fig. 3 below.

To simplify the controller design, the nonlinear part in the tire model in (40) is treated as an

additive uncertainty to the linear part.
Fop=rfap+Alay),  For = rrar + Alar) 4D

where k¢ and &, are the coefficients such that the nonlinear function A(«) with o = oy or o, is a
slope-restricted nonlinearity. The state space matrices in the linear generalized plant model in (1)
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Figure 3. A typical curve of the nonlinear tire model in Eq. (40)

are shown below

0 1 0 0 0 0
0 _I{f+li,» Kft+Kr 7Hflf+li7‘lr Kf 1 1
S L A R T AR I
0 7Kflf—r€,,~lr Kflf—m,«lT 7Wfl?+ﬁrl3 Nflf li _l;r‘
LV, . LV, L L L

(42)

where the state vector z € R**!. The control and uncertainty input consist of the steering angle §
T . . . .
andw = [ wy w, |  thatdenote the nonlinear parts in the front and rear tire model. The matrices

. . T
corresponding to the measured output y and the output of the uncertain channel z = [ af o ]
are

10 do 0 00 0
c=l0 —& 1 —& |, [gyu gyw}: 10 0 (43)
0 _VLT 1 ‘l/il; zZu zZw O O O

The nonlinear uncertainty block can be represented as [ wy Wy ]T = [ Alay) Aay) ]T

Since the nonlinear function A(«) is a slope-restricted nonlinearity with 0A/da € [0, 5], the IQC
condition can be constructed from the well-known Zames-Falb multiplier [43] [32].

I BM (jw)
H(Jw)_[ﬁM(jw) _M*(jw)—M(jw)} -

where M (jw) is a diagonal complex matrix

The rational function h(s) is required to satisfy the £, constraint ||h[[; < 1 [43][32][10]. One such

example is H(s) = sia with b < a [11]. The IQC multiplier II(jw) in (44) can be factorized as

i) =[G 11[ 9 0 ][9] (46)
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with I'(jw) defined as

0 0
IN'jw) = ) ) 47
U= | s —M(jw) @
By matching the state space matrices in (42) together with the factorization of the IQC multiplier
in (46) to those in (5) (11) for the closed-loop system, the BMIs constraint in (12) can be obtained
for this application. The Algorithm 1 is applied to search for the feasible solution of this BMIs
constraint. Those regularization parameters used in the algorithm are shown below.

py=10"% pu=10"" p,=ps=25x10"2

The output of the sequential LMI algorithm can be seen in Fig. 4, which shows that the slack
variable ¢ starts from an initial value around 1.4 and approaches a value below 0 after 45 iterations.
The simulation result of the vehicle control system can be seen in Fig. 5 which shows the asymptotic

convergence of the vehicle states and the observer error in the presence of the IQC-type uncertain
tire forces.

0.4r

0.2r °

900000
o
ol ©00000000000000000000000066000600

| | | | | | | | | |
0% 5 10 15 20 25 30 35 40 45 50
Number of Iterations

Figure 4. Sequence of ¢ produced by the Sequential LMI Algorithm 1
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2 L ===ohserver o0 ===chserver
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Figure 5. The simulation result of the vehicle lateral control system with uncertain tire forces
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5.2. Condition Number Regularization

Finally, it is also worth to review the sequence of the condition number of the Lyapunov matrix
generated by the sequential LMI algorithm. The result with the penalty term of v, can be seen in
Fig. 6. It shows that the condition number is constrained below 9 x 104, which can be well handled
by the SDP solver, before the appearance of a negative value of ¢. On the other hand, the result
without the penalty term of 7, is shown in Tab. I. As can be seen that the condition number grows
rapidly as the iteration proceeds. After 4 iterations, the SDP solver fails to return a reasonable
solution due to the extremely large condition number.

9 T T

0000000000000005)

5.5 | I I I | I | I
0 5 10 15 20 25 30 35 40 45

Number of Iterations

Figure 6. Sequence of +. with a penalty term in the cost function

Iteration t Ye
1 1.2468  3.5142 x 10°
2 0.4106  8.4916 x 107
3 0.2264 5.2843 x 10"
4 0.1391  1.0364 x 104
Table I. Sequence of . without a penalty term in the cost function

6. CONCLUSION AND FUTURE WORK

This paper studies the robust observer state feedback control design for the interconnection of
the linear nominal system and the uncertainty block A. The searching for the controller gain
and observer gain parameters against different structure of the uncertainty A is formulated as
a feasibility problem of BMIs constraints, which is traditionally treated as a NP hard problem.
To solve the dilemma, an augmented sequential LMI algorithm, which includes a penalty of the
condition number of the Lyapunov matrix, is proposed to search for such a feasible solution. Finally,
the proposed design methodology and the sequential LMI algorithm is applied to a vehicle lateral
control problem. The simulation examples demonstrate the applicability of the proposed algorithm
and necessity of the regularization of the condition number.

Future research of this convex-concave based sequential LMI algorithm will focus on a better
way to improve the numerical stability and some further study of the application of this algorithm
to other control systems design methodologies, such as fix-order controller design and robust model
predictive control design.
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